1. \checkmark Are path components equal to connected components for a CWcomplex?
2. Show that a homology equivalence between simply-connected CWcomplexes is a homotopy equivalence. Give counterexamples omitting (a) the hypothesis of a CW-complex or (b) the hypothesis of simplyconnected.
3. \checkmark What are examples of based spaces $\left(A, a_{0}\right)$ and $\left(B, b_{0}\right)$ so that

$$
\left[\left(A, a_{0}\right),\left(B, b_{0}\right)\right] \rightarrow[A, B]
$$

is not a bijection. Give some criteria for this to be a bijection. Do you know what happens for the case when A is a sphere?
4. \checkmark Show that a map $X \rightarrow Y$ gives a map on CW approximations $X^{\prime} \rightarrow$ Y^{\prime} so that

commutes up to homotopy. Show that that top horizontal map is welldefined up to homotopy.
5. \checkmark Let the G be the dihedral group of order 6 ($=$ symmetric group S_{3}). Then G acts on the solid equilateral triangle by isometries. Give the triangle a G-CW-structure (or at least, describe the cells).
6. \checkmark Give a map $f: A \rightarrow B$ which is not a cofibration by showing the definition is not satisfied.
7. \checkmark Show that a pair (X, A) is a cofibration iff $A \times I \cup X \times 0 \subset X \times I$ is a retract.
8. \checkmark Use obstruction theory to show (at least in the simply-connected case), that a CW pair (X, A) is a cofibration.
9. \checkmark Let

be a pushout diagram which remains a pushout diagram after crossing with I. Show that if $A \rightarrow C$ is a cofibration then so is $B \rightarrow D$.
10. \checkmark Let X be a G-set. Suppose H is a subgroup of G. Give, with proof, a bijection $\operatorname{Map}_{G}(G / H, X) \leftrightarrow X^{H}$.
11. Let $f:\left(B, b_{0}\right) \rightarrow\left(Y, y_{0}\right)$ be a map of based spaces. Establish a long exact sequence of pointed sets ${ }^{1}$

$$
\cdots \rightarrow \pi_{n}\left(B, b_{0}\right) \rightarrow \pi_{n}\left(Y, y_{0}\right) \rightarrow \pi_{n}\left(f, b_{0}, y_{0}\right) \rightarrow \pi_{n-1}\left(B, b_{0}\right) \rightarrow \ldots
$$

12. $\checkmark c \in \mathcal{C}$ is a representing object for a functor $F: \mathcal{C}^{\text {op }} \rightarrow$ Set if there is a natural isomorphism $F(-) \cong \mathcal{C}(-, c)$. Show that any two representing objects are isomorphic. Give an example of a functor with more than one representing object.
13. \checkmark Show that the fundamental group of an aspherical manifold is torsionfree.
14. \checkmark Are the categories Set and Set ${ }^{\text {op }}$ isomorphic?
15. \checkmark "Adjoints are unique:" Show that if $F \dashv G$ and $F \dashv G^{\prime}$, then $G \cong G^{\prime}$.
16. "Adjoints are everywhere:" Find left adjoints for the forgetful functors G - Set \rightarrow Set and ComRing \rightarrow Set, and find an adjoint pair of your own.
17. \checkmark Express the property $\operatorname{Hom}\left(A \otimes_{R} B, C\right) \cong \operatorname{Hom}_{R}(A, \operatorname{Hom}(B, C))$ as an adjoint pair for a noncommutative ring R, or express the property $\operatorname{Map}\left(A \times{ }_{G} B, C\right) \cong \operatorname{Map}_{G}(A, \operatorname{Map}(B, C))$ as an adjoint pair for a group G.
18. \checkmark How many objects in $\operatorname{Or}\left(S_{3}\right)$? How many morphisms in $\operatorname{Or}\left(S_{3}\right)$?
19. \checkmark Show that $\operatorname{Aut}_{\text {Or } G}(G / H, G / H) \cong N(H) / H$ where $N(H)=\{g \in G \mid$ $\left.g H g^{-1}=H\right\}$ is the normalizer of H.

[^0]20. Show $\mathbb{Z}[1 / 2]=\underset{n \rightarrow \infty}{\operatorname{colim}} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \xrightarrow{\times 2} \mathbb{Z} \rightarrow \ldots$ by showing

is a universal cocone (i.e. satisfies the universal property of a colimit), where $\phi_{n}(a)=a / 2^{n}$.
21. \checkmark Stability: Let

be a classical colimit. Show
(a) $\underset{n \rightarrow \infty}{\operatorname{colim}} X_{n}=\bigcup_{n} \phi_{n}\left(X_{n}\right)$
(b) Let $a, b \in X_{n}$. Then $\phi_{n}(a)=\phi_{n}(b) \Longleftrightarrow \exists N$, such that im $a=$ $\operatorname{im} b \in X_{N}$.
22. Let $X(0) \bullet \rightarrow X(1) \bullet \rightarrow X(2) \bullet \rightarrow \cdots$ be a sequence of chain complexes and chain maps. Use stability to prove homology commutes with classical colimits:
$$
\underset{n \rightarrow \infty}{\operatorname{colim}} H_{i}(X(n) \bullet) \xrightarrow{\cong} H_{i}\left(\operatorname{colim}_{n \rightarrow \infty} X(n) \bullet\right)
$$
23. \checkmark The p-adic integers $\mathbb{Z}_{p}=\lim _{\leftarrow} \mathbb{Z} / p^{n}$ are uncountable.
24. \checkmark Let $F: G \rightarrow G$ be a group automorphism. Then F is inner if and only if $\mathrm{Id} \simeq F$, i.e. the functors Id and F are naturally isomorphic.
25. Define a simplicial set with X_{n} the monotone maps from $[n]=\{0,1,2, \ldots, n\}$ to $[1]=\{0,1\}$. For each n, how many degenerate and nondegenerate simplicies are there in X_{n} ? Show that the geometric realization of $|X$. is the interval.
26. \checkmark Show $\left.\mid \mathcal{N}_{\bullet} \cdot C_{2}\right) \mid \cong \mathbb{R} P^{\infty}$.
27. Let $\omega=0 \rightarrow 1 \rightarrow 2 \rightarrow \cdots$. Compute $H_{n}(\omega ; M)=H_{n}\left(P_{\underline{\mathbb{Z}}} \otimes M\right)$.
28. \checkmark Give an alternate characterization of a free ω-CW-complex. (Only the answer is required.).
29. \checkmark Let $F, G: \mathcal{C} \rightarrow \mathcal{D}$ be functors. There is a natural transformation $F \Rightarrow G$ if and only if there is a functor $H: \mathcal{C} \times(0<1) \rightarrow \mathcal{D}$ with $F=H_{\mathcal{C} \times 0}$ and $G=H_{\mathcal{C} \times 1}$.
30. Let Λ be the category $2 \leftarrow 0 \rightarrow 1$. Given an alternate characterization of a free Λ-CW-complex.
31. (a) Let $c_{u}: R \rightarrow R$ be an inner automorphism. Then $K_{0}\left(c_{u}\right)$ is the identity.
(b) There is a functor $K_{0}: \operatorname{Or} G \rightarrow \mathrm{Ab}$ so that $K_{0}(G / H)=K_{0}(\mathbb{Z} H)$ and if $K<H<G$, then $K_{0}(G / K \rightarrow G / H)=K_{0}(\mathbb{Z} K \hookrightarrow \mathbb{Z} H)$.
32. If $F: \mathcal{A} \rightarrow \mathcal{B}$ is an equivalence of small additive categories, then $K_{0} F: K_{0} \mathcal{A} \rightarrow K_{0} \mathcal{B}$ is an isomorphism.

[^0]: ${ }^{1} \mathrm{~A}$ sequence of pointed sets $\left(X, x_{0}\right) \xrightarrow{\alpha}\left(Y, y_{0}\right) \xrightarrow{\beta}\left(Z, z_{0}\right)$ is exact if $\beta^{-1} z_{0}=\alpha(X)$.

