
Vector Bundles

1 Vector Bundles and maps

The study of vector bundles is the study of parameterized linear algebra.

Definition 1. A vector bundle is a map π : E → B together with a vector
space structure on π−1b for each b ∈ B so that for every x ∈ B there is a
neighborhood U and a k ∈ Z≥0, a homeomorphism φ : π−1U → U × Rk so
that there is a commutative diagram

π−1U U × Rk

U

φ

∼=

so that the induced bijection π−1b → {b} × Rk ∼= Rk is a vector space
isomorphism for all b ∈ U .

B is called the base space, E is called the total space, and the vector
spaces Eb = π−1b are called the fibers.

A vector bundle is smooth if E and B are smooth manifolds, π is a smooth
map and if for every x ∈ B there is a neighborhood U and a smooth chart
φ : π−1U → U × Rk as above.

A map of vector bundles is a commutative diagram

E ′ E ′

B′ B

f̂

f
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which induces a linear map on the “fibers” π−1x→ π′−1f(x).
An example of a vector bundle is the tangent bundle of a manifold. The

differential of a smooth map f : X → Y gives a map of vector bundles
df : TX → TY .

If X ⊂ Rn then

TX = {(p, v) ∈ X ×Rn | v is the tangent vector of a curve in X through p}

If Xk is an abstract smooth manifold with atlas A = {φ : V → U ⊂ Rk}
then the tangent bundle can be defined as a quotient

TX =

∐
U × Rk

∼
A map of vector bundles over B is a commutative diagram

E ′ E

B

f̂

which induces a linear map on the fibers.

2 Extra structure on vector bundles

Definition 2. An oriented vector bundle is a vector bundle π : E → B
together with an orientation on each fiber, so that there is an atlas of charts
{φU : π−1U → U×Rk} inducing orientation-preserving isomorphisms π−1b→
Rk for each chart φU and for each b ∈ U .

An oriented manifold is a manifold X with an orientation on its tangent
bundle TX.

Definition 3. An vector bundle with metric is a vector bundle π : E → B
together with an inner product 〈 , 〉b : π−1b × π−1b → R on each fiber so
that there is an atlas of charts {φU : π−1U → U × Rk} inducing isometries
for each chart φU and for each b ∈ U .

Every vector bundle over a paracompact space admits a metric.
An Riemannian manifold is a manifold X with a smooth metric on its

tangent bundle TX.
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3 New vector bundles from old

Definition 4. Given vector bundles π′ : E ′ → B′ and π : E → B, the
product bundle is product map π′ × π : E ′ × E → B′ ×B.

Definition 5. Given vector bundles π′ : E ′ → B and π : E → B, the
Whitney sum is the bundle E ′ ⊕ E → B where E ′ ⊕ E = {(e′, e) ∈ E ′ × E |
π′(e′) = π(e)}. The fiber above b is π′−1b′ ⊕ π−1b.
Definition 6. A subbundle of a bundle π : E → B is a subspace E ′ ⊂ E
so that π|E′ : E ′ → B is a vector bundle. Given a subbundle, there is the
quotient bundle E/ ∼E′ → B where ∼E′ is the equivalence relation on E
given by e1 ∼ e2 if they are both in the same fiber and if e1 − e2 ∈ E ′.

If E ′ → B is a subbundle of a bundle E → B with a metric, then E → B
is a Whitney sum E ′ ⊕ E ′⊥ → B, where E ′⊥ = {e ∈ E | 〈e, E ′π(b)〉 = 0}.
Furthermore the obvious map E ′⊥ → E/ ∼E′ gives an isomorphism of vector
bundles over B.

As a consequence one sees that a short exact sequence

0→ E ′ → E → E ′′ → 0

of vector bundles over a paracompact B splits.
The restriction of a vector bundle π : E → B to B′ ⊂ B is the vector

bundle π−1B′ → B′. We write this as E|B′ → B′.

Example 7. Let Xk ⊂ Y l ⊂ Rn be submanifolds. Let N(X ⊂ Y ) be the
orthogonal complement TX⊥ of TX in TY |X . Let ν(X ⊂ Y ) be the quotient
bundle (TY |X)/TX (or rather TY |X/ ∼TX in the previous notation). We
call both of these (isomorphic) bundles the normal bundle of X ⊂ Y . Note

TY |X = TX ⊕ TX⊥ = TX ⊕N(X ⊂ Y )

In particular the tangent bundle and normal bundle of X ⊂ Rn are Whitney
sum inverses.

Definition 8. Given a vector bundle π : E → B and a map f : B′ → B, the
pullback bundle is given by f ∗E → B where f ∗E = {(b′, e) ∈ B′×E | f(b′) =
π(e)}. (One also writes f ∗E = B′ ×B E.) Use the commutative diagram

f ∗E E

B′ B

π2

π1

f
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which induces a bijection on the fibers to define the vector space structure
on the pullback.

As an example, if i : B′ ↪→ B is the inclusion then E|B′ is the pullback
bundle i∗E.

Exercise 9. Suppose

E ′ E

B′ B

π′ π

f

π and π′ are vector bundles and f is a continuous map. There is a bijection
between vector bundle maps f̂ : E ′ → E over f and vector bundle maps
E ′ → f ∗E over B. In particular, there is a fiberwise isomorphism covering
f if and only if E ′ and f ∗E are isomorphic vector bundles over B.

E ′ f ∗E E

B′ B

π′ π

f

4 Bundles and transversality

Lemma 10. Let f : X → Y be a linear transformation, Z ⊂ Y be a subspace,
and S = f−1Z. Then

f(X) + Z = Y ⇐⇒ f : X/S → Y/Z is an isomorphism.

Theorem 11. Let f : X → Y be smooth map of manifolds and Z ⊂ Y be a
submanifold. Then

f t Z ⇐⇒

1. S = f−1Z is a manifold.

2. df : ν(S ⊂ X) → ν(Z ⊂ Y ) is a fiberwise isomorphism of vector
bundles (⇐⇒ df : ν(S ⊂ X) ∼= f ∗ν(Z ⊂ Y )).
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5 Bundles, orientation, and transversality

An orientation on two of the three vector spaces E ′, E ′′, and E ′ ⊕ E ′′ de-
termines a orientation on the third. The same is true with vector spaces
replaced by vector bundles over B.

Given a short exact sequence of vectors spaces

0→ E ′ → E → E ′′ → 0

an orientation on two of the three vector spaces determines an orientation
on the third. The same is true with vector spaces replaced by vector bundles
over B.

Definition 12. Suppose f : X → Y with f t Z. Suppose X, Y , and Z are
oriented. Then we orient S = f−1Z (equivalently we oriented TS) using the
equations

1. N(Z ⊂ Y )⊕ TZ = TY |Z

2. df : N(S ⊂ X)
∼=−→ f ∗N(Z ⊂ Y )

3. N(S ⊂ X)⊕ TS = TX|S

Note that (unfortunately) order matters in points 1 and 3 above.
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