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ABSTRACT. These are the notes from a course that was an introduction to the theory of finite (or
compact) transformation groups, including basic definitions and facts, standard examples, algebraic
restrictions, fundamental constructions, all with an emphasis on group actions on manifolds in low-
dimensional geometric topology. There is a focus on problems and results that have interesting ver-
sions in low dimensional topology, including the study of group actions on surfaces, 3-manifolds, and
4-manifolds. Many other deep results, especially in higher dimensions, are also briefly surveyed with-
out full proofs.
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1. INTRODUCTION

The subject of Transformation Groups is the study of the symmetries of spaces. As such it is both
a rich subfield of topology (thriving in both its algebraic and geometric branches) and at the same
time a point of view applicable to many areas of mathematics. One often studies a mathematical
object by studying its symmetries. A torus has less symmetry than a sphere, and a surface of genus
greater than one has even less symmetry. Standard examples are often the objects with the greatest
amount of symmetry. One seeks to classify the symmetries of given objects and to prove that other
objects under study necessarily have certain symmetries. At the same time one seeks to construct
examples that have little or no symmetry. The most natural invariant of a symmetry is its fixed
point set. And one tries to classify the possible fixed points. And so on.

We will restrict attention to compact or finite groups of transformations, with the primary em-
phasis on finite groups. If one drops this, and for example considers actions of the discrete infinite
cyclic group, one is in the much, much different realm of topological dynamics.

References on Transformation Groups. The best general introduction is Bredon’s book [4]. Its
introduction to Smith Theory, its examples, and its introduction to spectral sequence methods are
especially recommended. The book by Kawakubo [6] is another more or less elementary text. The
seminar notes edited by Borel [3] are mainly of historical interest. It marks a major step forward in
the use of spectral sequence methods and in the attention to Cech-type cohomology appropriate for
actions on very general spaces. The text by Allday and Puppe [2] is the most recent and exhaustive
treatment of cohomological methods.

2. SOME BASIC DEFINITIONS

2.1. G-spaces. Let G denote a finite group (with the discrete topology), or, more generally, a com-
pact topological group, with e ∈ G its identity element. An action of G on a space X is a continuous
map

θ : G× X → X

such that for g, h ∈ G and x ∈ X we have

(1) θ(gh, x) = θ(g, θ(h, x)), and
(2) θ(e, x) = x.

Strictly speaking this is a left action, with the definition being easily adapted to give an analogous
notion of right action.
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We sometimes view the action as given by a corresponding homomorphism of groups θ̂ : G →
Homeo(X), where θ̂(g)(x) = θ(g, x). When only one group action is under consideration we often
suppress the name θ, writing simply gx for θ(g, x).

When the group G is a cyclic group Cn, with generator g, acting on a space X we will often
identify the group action with the action of the generator g : X → X viewed as a periodic map of
period n. A periodic map of period 2 is called an involution.

We will almost exclusively consider actions that are effective in the sense that θ̂ is injective. Equiv-
alently, for every non-identity element g ∈ G there is some x ∈ X such that gx 6= x.

The orbit of x is the subspace of X given by

G(x) = {gx : g ∈ G}

The isotropy group of x is the subgroup of G

Gx = {g ∈ G : gx = x}
The natural map G → X given by g→ gx gives a bijection (indeed homeomorphism)

G/Gx → G(x)

It is a quick calculation to check that
Gg(x) = gGxg−1

The fixed point set of G acting on X is the set

Fix(G, X) = XG = {x ∈ X : gx = x for all g ∈ G}

A group action is free if the only group element fixing a point is the identity. In other words, all
isotropy groups Gx are trivial. The study of free actions is closely related to covering space theory,
and more generally to the study of fiber bundles.

An action is semifree if for each point in the space, the point is either fixed by the whole group or
fixed only by the identity element. In other words the isotropy groups are either trivial or the whole
group, nothing in between. An action of a cyclic group Cp, p prime, is automatically semifree.

An action is pseudofree if the set of points with nontrivial isotropy group is discrete.

The orbit space of an action of a group G on a space X, denoted X/G is the quotient space of
X by the equivalence relation generated by setting x ∼ gx for x ∈ X and g ∈ G. If G is finite
and acts freely on X, then the orbit map X → X/G is a regular covering with G as group of deck
transformations.

2.2. G-maps. What are the morphisms and equivalences of G-spaces? A map ϕ : X → Y of G-
spaces is equivariant (or a “G-map”) if ϕ(gx) = gϕ(x) for all x ∈ X and g ∈ G.

Lemma 2.1. If ϕ : X → Y is a G-map, then Gx ⊂ Gϕ(x).

In particular fixed points map to fixed points.

If the action satisfies the stronger condition that Gx = Gϕ(x) for all x ∈ X, then the G-map is said
to be isovariant.

Note that a G-map ϕ : X → Y induces H-maps ϕ|XH : XH → XH for all subgroups H ⊂ G.

A G-homeomorphism is a G-map that is a homeomorphism. One easily checks that the inverse
map is also a G-map. Two G-spaces that are G-homeomorphic will sometimes be called equivalent.
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A G-map ϕ : X → Y is a G-homotopy equivalence if there exists a G-map ψ : Y → X such
that the compositions ψϕ and ϕψ are G-homotopic to the identity. That is, there exist G-maps
H : X × I → X and K : Y × I → Y (where G acts trivially on the I = [0, 1] factor) such that
H(x, 0) = ψϕ(x), H(x, 0) = x, K(y, 0) = ϕψ(y), and K(y, 1) = y, for all x ∈ X and y ∈ Y.

Lemma 2.2. If ϕ : X → Y is a G-homotopy equivalence, then the restriction

ϕ|XH : XH → YH

is a homotopy equivalence for all subgroups H ⊂ G.

This is to be contrasted with the weaker notion of a G-map that is a homotopy equivalence.

3. STANDARD EXAMPLES

It is always helpful to have some standard familiar examples illustrating definitions and sug-
gesting questions for investigation. Here we consider linear actions on euclidean spaces, spheres,
quotients of spheres, and related manifolds.

Throughout, we ask how nearly do general group actions resemble the standard examples?

3.1. Spheres and Euclidean spaces. The compact group O(n) acts on both Rn and Sn−1. More
generally, any finite or compact subgroup G ⊂ O(n) acts linearly on Rn and Sn−1. Note that the
fixed point set of such a linear action on Rn is a vector subspace, homeomorphic to Rk for some k
in the former case. In the latter case the fixed point set is a sphere Sk−1.

The isotropy group of a point is a conjugate of the standard O(n − 1) ⊂ O(n). the action of
SO(n) on Sn−1 is transitive, and the inclusion of an orbit identifies Sn−1 ∼= O(n)/SO(n− 1).

Question 1. Is a finite group action on Rn or Sn−1 equivalent to a linear action?

Question 2. If a finite group acts effectively on Rn or Sn−1 is it isomorphic to a subgroup of SO(n)?

Question 3. If a finite group acts effectively on Rn or Sn−1 is the fixed point set homeomorphic to a euclidean
space or a sphere of some dimension less than n? In low dimensions? In general? In low codimensions?

Question 4. Can an action on Rn have no fixed points?

Question 5. Can an action of a finite group on Sn have just one fixed point? (In the purely topological
category this would be equivalent to the preceding question.)

In general these sorts of questions tend to have simple answers in low dimensions and com-
plicated answers in higher dimensions. One naturally tries to classify or understand the more
complicated situations.

3.2. Projective spaces. Linear actions on euclidean space induce natural actions, also called “lin-
ear”, on projective spaces.

3.2.1. Actions on the complex projective plane.

Problem 1. Analyze the actions of a cyclic group of order n on CP2 for which a group generator g acts by
multiplication by powers of a primitive nth root of unity ζ = exp(2π/n) in the coordinates.

Problem 2. Analyze the action of the symmetric group of degree 3 on CP2 induced by permutations of the
homogeneous coordinates.

Question 6. How nearly does an arbitrary action on RPn or CPn resemble a linear action?
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3.3. Lens spaces. Consider, for example, a 3-dimensional lens space L(p, q).

Problem 3. Compare and contrast standard actions on L(p, q) by the group Cp with actions of a group Cn
where n is prime to p.

3.4. Brieskorn manifolds. Let integers a1, . . . , an+1 ≥ 2 be given, and consider a complex polyno-
mial of the form

f (z1, . . . , zn+1) = za1
1 + za2

2 + · · ·+ zan+1
n+1

The origin is the only critical point of f , so the intersection of V = f−1(0) with a small (2n + 1)-
sphere Sε of radius ε centered at the origin in Cn+1 is a smooth manifold Σ2n−1 of dimension 2n− 1.
Often Σ2n−1 is a homotopy sphere, and Σ2n−1 has some interesting actions obtained by restricting
standard linear actions on Cn+1.

3.5. Other homogeneous spaces G/H. Here we mention a few other examples of standard or geo-
metric group actions. If G is a compact Lie group and H is a closed subgroup, G and its subgroups
act on the left coset space G/H by left translation where g(xH) = (gx)H. If H is normal (e.g. H is
trivial), then G also acts on G/H by conjugation, where g(xH) = gxg−1H.

Problem 4. Interpret some of the earlier examples of standard actions as being of this sort. Find more
interesting example that arise this way.

4. ACTIONS ON SPHERES AND TORI IN DIMENSIONS 1 AND 2

4.1. Dimension 1. We attempt to give a hands-on discussion of actions on the interval, line, and
circle.

Proposition 4.1. An effective finite group action on [−1, 1] or R is equivalent to the C2 action in which the
generator acts by multiplication by −1.

Proposition 4.2. An effective finite group action on S1 is equivalent to an orthogonal action by a subgroup
of O(2). In particular such a group is either cyclic or dihedral.

Proof idea. There is a point that is freely permuted by the group action and one can therefore choose
a small interval neighborhood of the point that is moved off itself by all nontrivial group elements.
Let J be a maximal interval with the property that its interior is mapped off itself by all nontrivial
group elements.This interval and its images under the group action give the circle the structure of
an n-gon preserved by the group action. It follows that the group is cyclic of order n or dihedral of
order 2n and the action is standard. �

4.2. Surfaces. We will have more to say about actions on surfaces later.

4.2.1. The 2-sphere. Here is a statement of the general classification theorem in this case.

Theorem 4.3. A compact group action on the 2-sphere is equivalent to the action of a subgroup of O(3).

Here we content ourselves with a hands-on discussion of involutions on S2. We also assume the
action is simplicial with respect to some triangulation of the 2-sphere.

Proposition 4.4. A nontrivial action of C2 on S2 is equivalent to one of the following three actions (in which
we describe the action of a generator):

(1) The antipodal map (x, y, z)→ (−x,−y,−z)
(2) Rotation by 180◦ about the north-south axis, (x, y, z)→ (−x,−y, z), or
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(3) Reflection in the equator, (x, y, z)→ (x, y,−z).

When the fixed point set is empty, one applies covering space theory, arguing that the orbit space
must by RP2.

Applying our analysis of the 1D case locally, we see that fixed points are either isolated or con-
tained in the interior of a fixed interval. Therefore the fixed point set in general is a union of isolated
points and simple closed curves.

If there is a simple closed curve, then we may apply the Jordan Curve Theorem to see that there
are no other fixed points, and the Schönflies Theorem to see that the action is equivalent to reflection
in the equator.

It remains to consider the case of a nonempty fixed point set F consisting of a finite number of
isolated points. In this case one can argue that the orbit space S2/C2 is a surface, even though there
are isolated fixed points .(The quotient of a circle by a free involution is again a circle!) Carefully
counting vertices, edges, and faces of the induced triangulation leads to the following formula:

χ(S2) = 2χ(S2/C2)− |F|
where |F| > 0 denotes the cardinality of the fixed point set. Otherwise, for now, just visualize as
many different kinds of involutions on surfaces as you can. By the classification of surfaces we
know that χ(S2/C2) ≤ 2. From this it follows that χ(S2/C2) ≤ 2 and |F| = 2.

Let x0 and x1 be the two fixed points and let D0 and D1 be two small, disjoint, invariant disk
neighborhoods, obtained by taking simplicial neighborhoods of the two fixed points. The action
on each of the disks Di is a cone and by the analysis of actions on circles is equivalent to a standard
rotation. The portion X = cl(S2 − (D0 ∪ D1)) is a cylinder homeomorphic to S1 × I, I = [0, 1].

The action on the cylinder is standard, as one can see from covering space theory and the classi-
fication of surfaces with boundary.

A standard action has exactly the same decomposition into three standard pieces.

One can then construct an equivariant homeomorphism to the standard action, piece by piece:
one disk, then the cylinder, then the second disk.

This completes our outline.

4.2.2. Actions on the torus. The first issue is describe the natural actions on the torus T2.

In this case T2 is itself a compact Lie group, which acts on itself by left translation. It also has an
automorphism group that acts on T2. So we have

1→ T2 → E2 → Aut(T2)→ 1

An automorphism of T2 lifts to an automorphism of R2 preserving the integer lattice Z2 by cover-
ing space theory. In this way we can identify Aut(T2) = GL2(Z), which we can also think of as the
automorphism group of the fundamental group, or of the first homology group.

Theorem 4.5. An action of a compact group on T2 is equivalent to the action of a compact subgroup of E2.

We will content ourselves with a hands-on, informal, discussion of involutions.

Theorem 4.6. An action of a generator of C2 on T2 is equivalent to one of the follwing standard actions on
R/Z×R/Z:

• (x, y)→ (−x, y) where F = S1 ∪ S1
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• (x, y)→ (y, x) where F = S1

• (x, y)→ (−x,−y) where F = 4 points
• (x, y)→ (x + 1/2, y) where F = ∅
• (x, y)→ (x + 1/2,−y) where F = ∅

First consider the case that the fixed set is empty. Then the orbit map T2 → T2/C2 is a covering.
What are the surfaces whose fundamental group contains Z2 as a subgroup of index 2. One finds
two: the torus itself and the Klein bottle. Up to equivalence there is one 2-fold covering of the torus
by the torus; and there is a unique orientable 2-fold covering of any nonorientable manifold. This
gives the last two cases above.

Now consider the case that the fixed set consists of isolated points. The Euler characteris-
tic formula χ(T2) = 2χ(T2/C2) − |F|, combined with the classification of surfaces, shows that
T2/C2 = S2 and that |F| = 4. One can easily show that this action is equivalent to the third one
above. Indeed, any two such involutions with four isolated fixed points are equivalent. Any such
involution can be built from four disks with standard involutions by adding three pairs of bands
equivariantly in a row, with orbit space modelling the diagram ∗ − ∗ − ∗ − ∗ and then capping off
with two disks. Using this description one can build an equivariant homeomorphism between any
two such involutions.

Finally consider the case that the fixed point set contains a simple closed curve. It follows that the
action is orientation-reversing. Therefore one cannot have any isolated fixed points. If the fixed set
separates T2, it must separate into two homeomorphic pieces and the orbit space is homeomorphic
to the closure of one the the two pieces. It follows that the orbit space is an annulus and T2 is
expressed as a union of two annuli. This is the first case above.

Finally, if the fixed set is non-separating, we conclude that it is a single simple closed curve (with
a neighborhood that is an invariant annulus) with complementary domain a second annulus. This
is case two above. The quotient of each annulus is a Möbius band, one of which is a neighborhood
of the image of the fixed set in the orbit space.

4.2.3. Higher genus surfaces. In these higher genus cases it is more difficult to give a complete and
satisfactory account from first principles. These surfaces have distinctly less symmetry. It turns out
that any transformation group of any higher genus surface is finite of bounded order. Moreover
the group always acts faithfully on homology. We will prove these facts later.

For the moment we will content ourselves with considering various possibilities for examples in
the next subsection.

4.2.4. Problems. Here are a few problems to ponder:

Problem 5. What are the possibilities for the number of isolated fixed points of an involution on a surface of
genus g that you can find?

Problem 6. What are the possibilities for the number of circles of fixed points of an (orientation-reversing)
involution on a surface of genus g that you can find?

Problem 7. Find an involution on a surface that has both isolated fixed points and circles of fixed points!

Problem 8. Visualize a C3 action with more than 2 fixed points. With any number of fixed points k ≥ 2?
With just 1 fixed point?
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5. TOPOLOGICAL AND GEOMETRIC CONSIDERATIONS

One can consider continuous group actions on rather general spaces, but meaningful results
often require spaces with more structure preserved by the group actions. For consideration of
group actions and covering spaces it is natural to assume the spaces involved are locally path-
connected and semilocally 1-connected, for example.

It is often nice to be able to assume one’s G-spaces are subspaces of linear G-spaces. It is also
useful to be able to assume that fixed point sets have nice invariant neighborhoods.

Here we mention several particularly useful categories of G-spaces and their simplest properties.

5.1. Finitistic G-spaces. For technical reasons one needs spaces to have some properties. We will
assume all spaces under consideration are Hausdorff and paracompact. As suggested above, when
issues of covering spaces are concerned, it is generally appropriate to assume spaces are locally
path-connected and semilocally 1-connected. Moreover, for algebraic topology purposes it is ap-
propriate to assume spaces are finitistic (in the sense of Swan) i.e., every covering has a finite-
dimensional refinement. This condition allows one to apply Cech homology and cohomology tech-
niques to extend results that we will only give in detail in the case of simplicial or CW spaces.

5.2. Simplicial G-spaces. The main issue here is that the action should be regular in the sense that
a simplex is only mapped into itself as the identity. This can always be achieved by passing to
the barycentric subdivision. From a geometric point of view we consider mainly PL actions on
polyhedra, which become simplicial after choosing an invariant (regular) triangulation. We will
work in this category when we develop the basic algebraic topology of finite group actions. At that
point we’ll give more details.

5.3. G-CW-complexes. These are CW-complexes on which a finite group G acts by permuting the
cells. We require that if a cell is left invariant by an element of the group, then that group element
acts as the identity on that cell. One can think of these G-spaces as being built up inductively
by equivariantly attaching “G-cells” of the form G/H × en. The main advantage over simplicial
G-spaces is that G-CW-spaces tend to have much fewer cells.

5.4. Smooth G-manifolds. Smooth actions arise naturally in many examples and applications. But
at some point technical issues such as exotic spheres intervene in natural conjectures. A key prop-
erty is that in a neighborhood of any point x the action of the isotropy subgroup Gx is equivalent
to the linear action of Gx on the tangent space TMx. It follows that fixed point sets are smooth sub-
manifolds with equivariant tubular neighborhoods that come from equivariant normal bundles. It
is known that any smooth G-manifold admits a compatible G-simplicial structure.

5.5. Locally linear G-manifolds. These are actions on topological manifolds M such that in a
neighborhood of any point x ∈ M the action of Gx is equivalent to a linear G action. These have
the good local properties of smooth actions but are defined on topological manifolds and do not
have the delicate global issues that arise from smooth structures. (If one pursues this too deeply,
however, they do have their own delicate global issues: Do fixed submanifolds have equivariant
normal bundles? Does the complement of a fixed point set of a group action on a compact manifold
have the homotopy type of a finite complex?)
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5.5.1. Examples of wild actions. All actions on surfaces are equivalent to PL and smooth actions. But
in higher dimensions things go “wild”.

Example 1. There is an involution on the 3-sphere whose fixed point set is a wildly embedded 2-
sphere. Bing 1950s.

Example 2. There is an involution on the 3-sphere whose fixed point set is a wildly embedded knot.

Project 1. Read Bing’s proof that the union of two copies of the wild half of the Alexander Horned
sphere is homeomorphic to S3.

Exercise 1. Assuming Bing’s result, argue that there are “wild” actions in all higher dimensions.

6. SIMPLICIAL COMPLEXES

6.1. Basics about simplicial complexes. See Spanier [10], Chapter 3, Sections 1-4, for more details.

A simplicial complex on a set V is a collection K of finite nonempty subsets of V such that

(1) If s ∈ K and t ⊂ s, t 6= ∅, then t ∈ K, and
(2) For each v ∈ V, the singleton {v} ∈ K.

Sometimes for emphasis we might call this an abstract simplicial complex.

The singletons {v} are the vertices of K. The elements s ∈ K are the simplices and the nonempty
subsets of s are the faces of s. If |s| = n, then we call s an n-simplex and also sometimes say
dim s = n. A 0-simplex is just a vertex; a 1-simplex is sometimes called an edge.

The set of proper faces of a simplex s is itself a simplicial complex, denoted ∂s or ṡ. If K is
a simplicial complex, then its q-dimensional skeleton Kq is the simplicial complex consisting of all
p-simplices of K with p ≤ q.

The topological realization |K| of a simplicial complex K, determined by |s| for all s ∈ K. As a
set we define |K| to be the set of all functions α : V → I such that

(1) For any α, the set
supp α = {v ∈ V : α(v) 6= 0}

is a simplex of K. (In particular α(v) 6= 0 for only a finite set of vertices.)
(2) for any α, ∑v∈V α(v) = 1.

The topology on |K| is induced from the product or compact-open topology on IV = Maps (V, I).
Alternatively define a metric on the set |K| by the formula

d(α, β) =
√

∑
v∈V

[α(v)− β(v)]2

and let |K|d denote |K| with the metric topology. Either of these choices works fine, and gives the
same result, for finite complexes.

To handle infinite simplicial complexes appropriately we look more closely at the topology in-
duced on a q-simplex s = [v0, v1, . . . , vq]. There is a natural one-to-one correspondence between s
and

{x ∈ Rq+1 : 0 ≤ xi ≤ 1, ∑ xi = 1}
We assign to |s| the topology |s|d making this correspondence a homeomorphism. We then give |K|
the weak topology generated by the topologies on all the simplices, in which a subset X ⊂ |K| is
defined to be closed if and only if X ∩ |s| is closed in |s| for all simplices s ∈ K.
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In particular, it follows that a function f : |K| → X, where X is a topological space, is continuous
if and only the restriction f ||s| : |s| → X is continuous for every s ∈ K.

For technical reasons it is useful to define certain subdivisions of a simplicial complex, which
become more flexible in a certain way, but still have homeomorphic topological realizations. The
barycentric subdivision K′ of K is defined as follows. The vertices of K′ are the simplices of K and a
set [s0, s1, . . . , sq] of simplices of K form a simplex of K′ if and only (in some ordering) we have a
string of proper inclusions

s0 ⊂ s1 ⊂ · · · ⊂ sq

Our goal is to show that there is a natural homeomorphism |K′| ∼= |K|.

We need to look more closely at the geometric q-simplex

{x ∈ Rq+1 : 0 ≤ xi ≤ 1, ∑ xi = 1}
and more generally any geometric q-simplex, defined as the convex hull ∆q of any set of q + 1
affinely independent points x0, x1, . . . , xq in some Rn (n ≥ q). In this geometric situation, the
barycenter of ∆q is defined to be the point

b∆q = ∆̂q =
1

q + 1

q

∑
i=0

xi

We then define |K′| → |K| by defining |s′| → |s| for each s ∈ K as follows. For a face t ⊂ s assign
t → t̂ in |K|. This defines a function Vert K′ → Rq+1 which extends by linearity on simplices to a
continuous function |s′| → Rq+1 that is an embedding onto the image of |s|.

6.2. Basics of Regular Neighborhood Theory. If L is a subcomplex of a simplicial complex K,
define the simplicial neighborhood of L in K to be

N = N(L, K) = {s ∈ K : there exists r ∈ L, t ∈ K, with r < t, s < t}
In words, N consists of a simplices that touch L, together with all the faces of such simplices.
Without more care this neighborhood may not adequately reflect the nature of the subcomplex L.
One can improve the situation by passing to the second derived subdivision.

Lemma 6.1. |N(L′′, K′′)| strong deformation retracts to |L′′|.

One constructs the deformation simplex by simplex, mapping vertices of N(L′′, K′′) − L′′ into
vertices of L′′ in such a way that if vertices of N span a simplex, then their images in L′′ span
a simplex. Then just extend linearly over simplices. Note that the corresponding retraction is
homotopic to the identity via a straight line homotopy. With more work one can arrange that the
deformation is an isotopy, that is a homotopy through homeomorphisms.

There is the following uniqueness statement: If (K1, L1) and (K2, L2) are simplicial complexes
that triangulate a polyhedral pair (X, Y), then there is a PL homeomorphism fixing Y and moving
N(L′′1 , K′′1 ) to N(L′′2 , K′′2 ).

See Rourke and Sanderson [8] for me details about the geometric theory of simplicial complexes.

6.3. Simplicial complexes with group action. A simplicial G-complex is a simplicial complex K on
a set V with an action of the group G on V such that the induced action on subsets of V preserves K.
For many purposes this is not completely satisfactory. For example we want KG to be a simplicial
complex. We also want the fixed set |K|G = |KG| and we want K/G to be a simplicial complex in
a natural way. Consider the action of C3 on a 2-simplex, cyclically permuting the vertices, to get a
sense of the problem.
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A simplicial G-complex K is regular of for each subgroup H ⊂ G the following property holds:

If h0, h1, . . . , hn ∈ H and both (v0, v1, . . . , vn) and (h0v0, h1v1, . . . , hnvn) are simplices of K, then there
exists an element h ∈ H such that h(vi) = hi(vi) for all i.

Theorem 6.2 (Bredon). If K is a G-simplicial complex, then the second derived complex K′′ is a regular
G-simplicial complex.

6.4. Equivariant Regular Neighborhoods. The basic construction of regular neighborhoods can
be arranged to respect a group action. The main case we need is that if K is a regular G-simplicial
complex, then the simplicial neighborhood N = N(K′′G, K′′) is invariant under the G action and
the strong deformation of |N| to |K′′G|may be chosen to be equivariant. More generally, if L is any
G-invariant subcomplex of K, then the simplicial neighborhood N = N(L′′, K′′) is invariant under
the G action and the strong deformation of |N| to |L′′|may be chosen to be equivariant.

7. HOMOLOGY OF SIMPLICIAL COMPLEXES

7.1. Definition of Simplicial Homology. We compute the simplicial homology of a simplicial com-
plex K, by using the simplicial chain complex C∗(K) = {Cn(K)}, where each Cn(K) is the free mod-
ule (using some unstated choice of commutative coefficient ring) on the set of n-simplices of K. We
have the standard boundary operator ∂ = ∂n : Cn(K)→ Cn−1(K) given by

∂n[v0, . . . , vn] =
n

∑
i=0

(−1)i[v0, . . . , v̂i, . . . , vn]

Then one defines Hn = ker ∂n/im ∂n+1.

The uniqueness theorem for ordinary homology shows that this agrees with ordinary singular
homology of |K| (at least for finite complexes).

7.2. Euler characteristic. The Euler characteristic of a finite complex K is defined to be

χ(K) = ∑
i

# i-simplices of K

In a similar manner one defines the Euler characteristic of any finitely generated free chain complex
over a field or domain by

χ(C∗) = ∑
i
(−1)i dim Ci

If C∗ were not free, but we are in a situation where torsion submodule makes sense and where
torsion free modules are free, then we can interpret dim Ci to be dim Ci/torsion.

7.3. Homological Invariance.

Theorem 7.1. If C∗ is a finitely generated free chain complex over a field, then

χ(C∗) = χ(H∗(C∗))

We have the following families of short exact sequences

0→ Zi → Ci → Bi−1 → 0

0→ Bi+1 → Zi → Hi → 0
It follows easily that

dim Ci = dim Zi + dim Bi−1
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and
dim Zi = dim Hi + dim Bi

so that
dim Ci = dim Hi + dim Bi + dim Bi−1

The terms dim Bj then all cancel in the alternating sum.

It follows that χ(K) is a homotopy invariant of the underlying polyhedron |K|.

7.4. Sum Theorem. If a polyhedron Z is the union of two subpolyhedra X and Y, with polyhedral
intersection Z, then

χ(Z) = χ(X) + χ(Y)− χ(Z)
This is a triviality if one assumes, as we do, that one has a simplicial complex N that is the union of
two subcomplexes K and L, with intersection M, since then

#i-simplices in N = #i-simplices in K + #i-simplices in L− #i-simplices in M

7.5. Euler characteristic of a fixed point set.

Theorem 7.2. Let G be the cyclic group of prime order p and let K be a finite regular G-simplicial complex.
Then

χ(K) = pχ(K/G)− (p− 1)χ(KG)

The proof is a simple counting argument, that shows that

dim Ci(K) = p dim Ci(K/G)− (p− 1) dim Ci(KG)

for each i: Over each simplex of K/G that does not come from a fixed simplex there are exactly p
simplices in K. But there is only one simplex over a simplex corresponding to a fixed simplex in K.

For more complicated groups there would in general be more possibilities for terms in such a
formula. Reducing mod p yields a simple and memorable formula, valid for all p-groups.

Corollary 7.3. If G is a finite p-group and K is a regular G-simplicial complex, then

χ(KG) ≡ χ(K) mod p

Proof. If G = Cp, then this follows immediately from the theorem. therefore we proceed by induc-
tion on |G|, the order of the group. Assume G is a p-group of order greater than p and that the
result is true for p-groups of smaller order. By elementary finite group theory there is a normal
subgroup H < G with G/H ≈ Cp. By induction χ(KH) ≡ χ(K) mod p. Now G/H acts on KH

with (KH)G/H = KG. Therefore χ(KG) ≡ χ(KH) mod p and we are done. �

When we study the Smith Theory of p-group actions we will generalize this to the case of non-
compact spaces with finitely generated homology, for which the Euler characteristic is therefore
defined. We will show that the Euler characteristic of the fixed point set is well-defined with Zp
coefficients in such a situation and that a similar formula holds in that case as well.

8. LEFSCHETZ FIXED POINT FORMULA

Here we give a different calculation of the Euler characteristic of a fixed point set of a cyclic
action.
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8.1. Traces and Lefschetz Numbers. If f : V → V is a homomorphism of a finitely generated
module over a field or domain, then one may describe f by a matrix with respect to a basis (of
V/torsion) and then define trace f to be the sum of the diagonal entries in the matrix. It is a
standard fact of linear algebra that trace f is independent of the choice of basis.

If f : C∗ → C∗ is a chain homomorphism of a finitely generated free chain complex, then f
induces homomorphisms Z( f ) : Z∗( f ) → Z∗( f ), B( f ) : B∗( f ) → B∗( f ), and H( f ) : H∗( f ) →
H∗( f ). Easy examples show that these traces are not homotopy invariants. It turns out, however,
that suitable alternating sums of traces are homotopy invariants.

Theorem 8.1 (Homological invariance). If f = { fi} : C∗ → C∗ is a chain self-map of finitely generated,
free chain complex, then ∑i(−1)itrace fi = ∑i(−1)itrace H( fi)

The proof follows the lines of the proof of homological invariance of the Euler characteristic. By
choosing suitable bases one shows that

trace C( f )i = trace Z( f )i + trace B( f )i−1

and
trace Z( f )i = trace H( f )i + trace B( f )i

so that
trace C( f )i = trace H( f )i + trace B( f )i + trace B( f )i−1

Once again the extra terms cancel out in the required alternating sum.

Suppose X is a compact polyhedron, or other reasonably nice compact space. If f : X → X,
define the Lefschetz number of f to be

Λ( f ) = ∑
i
(−1)i trace[ fi∗ : Hi(X; Q))→ Hi(X; Q)]

More generally for any chain map f : C∗ → C∗ (of a finitely generated, free chain complex) we can
define its Lefschetz number in the same way as the alternating sum of its traces.

Theorem 8.2 (Sum Theorem). If a polyhedron W is the union of two subpolyhedra X and Y, with polyhe-
dral intersection Z, and f : W →W, with f (X) ⊂ X, f (Y) ⊂ Y, and f (Z) ⊂ Z, then

Λ( f ) = Λ( f |X) + Λ( f |Y)−Λ( f |Z)

Assuming that W is the underlying space of a finite simplicial complex K, with X, Y, Z corre-
sponding to subcomplexes L, M, P, then it there is a short exact sequence of simplicial chain com-
plexes of the form

0→ C∗(P)→ C∗(L)⊕ C∗(M)→ C∗(K)→ 0
It follows that

trace Ci( f |L) + trace Ci( f |M) = trace Ci( f |P) + trace Ci( f |K)

The result follows by taking alternating sums of these equalities.

8.2. The Fixed Point Formula. The grandmother of all fixed point theorems is that due to Brouwer.

Theorem 8.3 (Brouwer Fixed Point Theorem). Let f : Dn → Dn. Then there is a point x ∈ Dn such
that f (x) = x.

It follows that a cyclic group action on a disk has a nonempty fixed point set.

Question 7. Does any finite group action on a disk have a nonempty fixed point set?
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The BFPT has gone through many generalizations in many different directions. One of the best
generalizations is due to Lefschetz.

Theorem 8.4. If f : X → X is a map of a compact polyhedron to itself without fixed points, then Λ( f ) = 0.
Alternatively, if Λ( f ) 6= 0, then f has a fixed point.

For a full proof (which depends upon subdivision and simplicial approximation) see Spanier. In
the case of a simplicial map f : K → K that maps no simplex to itself (such as arises from a free,
regular Cn-simplicial complex), the proof is clear. Such a map induces a chain map C∗(K)→ C∗(K)
that has trace zero in each degree. It follows that Λ(C∗( f )) = 0, hence that Λ(H∗( f )) = 0.

In the case of periodic maps there is the following stronger statement.

Theorem 8.5 (LFPT). Let g : X → X be a piecewise linear periodic map on a compact polyhedron with
fixed point set F. Then Λ(g) = χ(F).

Addendum: ∑g∈G Λ(g) = |G|χ(K/G), which follows from elementary representation theory. If
V is a finite dimensional, linear G-space, then ∑g∈G trace(g) = |G|dim VG.

If the map is not PL (i.e., simplicial in some triangulation), or some related hypothesis, then the
theorem becomes false. We will eventually construct a periodic map of a high-dimensional sphere
with exactly one fixed point.

To reduce to the more familiar version, what we need is a nice compact g-invariant polyhedral
neighborhood N of the fixed point set F. Set Y = X− N, and Z = Y ∩ N. Then

Λ(g) = Λ(g|N) + Λ(g|Y)−Λ(g|Z)

= Λ(g|F) + 0− 0

= χ(F)

Exercise 2. Compute the Lefschetz numbers of the five standard involutions on 2-tori and compare
with the Euler characteristic of the fixed point set in each case.

9. TRANSFER

Suppose that a finite group G acts on a space X with orbit space X/G and orbit map π : X →
X/G. We seek to understand H∗(X/G), given H∗(X) with its induced action of G. We succeed
nicely in the case of rational coefficients. Dealing with torsion of order dividing |G|, however, is
much more delicate.

Theorem 9.1. There is a homomorphism (of groups) τ∗ : Hk(X/G) → Hk(X), such that π∗τ∗ = |G|Id
and τ∗π∗ = ∑g∈G g∗.

The transfer τ∗ does not come from a map of spaces, but rather comes from a homomorphism
τ : C∗(X/G)→ C∗(X) of chain complexes. It is nonetheless a natural transformation. The transfer
theorem remains valid for any choice of (ordinary, untwisted) coefficients.

Here is the idea in the simple case of a covering map, that is, the case when action of G on X
is free. Then the transfer on the chain level is intuitively clear: to any k-simplex σ in X/G assign
the sum of the k-simplices in X over σ. The required identities clearly hold at the chain level. One
verifies that this τ is in fact a chain map, commuting with boundary operators. It then determines
a homomorphism on homology and a fortiori satisfies the required identities. We note that the
transfer exists for any finite covering projection, regular or not. Of course in general one then only
has the relation π∗τ∗ = |G|Id.
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In the case of rational coefficients the situation is particularly simple. The equation π∗τ∗ = |G|Id
shows that π∗ is surjective. Then the second equation shows that the image of τ∗ is fixed, i.e., in
H∗(X; Q)G. Then the first equation shows that π∗ is surjective when restricted to H∗(X; Q)G. But
on H∗(X; Q)G, ∑g∈G g∗ is the same as |G|Id. We therefore have the following result.

Corollary 9.2. The orbit map induces an isomorphism H∗(X; Q)G → H∗(X/G; Q).

Question 8. If G acts freely on a closed oriented n-manifold M, then Hn(M) = Z = Hn(M/G). Find
different examples of what π∗ and τ∗ can be as homomorphisms from the integers to the integers.

There is a relative version for relative homology, where one has a G-space X and invariant sub-
space Y and considers relative homology H∗(X, Y).

There is a similar cohomology transfer. The cohomology transfer is not in general a ring homo-
morphism.

There also is a more subtle transfer for actions of compact Lie groups in general.

Proof in the simplicial case. We now give a proof of the existence of the transfer under the simplify-
ing assumption that the action is PL, i.e, simplicial with respect to some triangulation, which, by
subdivision may be assumed to be regular. Therefore, suppose now that K is a regular G-simplicial
complex, with well-defined orbist space simplicial complex K/G. Then the simplicial chain groups
C∗(K) form a chain complex of modules over the integral group ring Z[G].

We need to understand the homomorphism

π∗ : C∗(K)→ C∗(K/G)

induced by the orbit map. Note that π∗ is onto, since by the definition of regular G-simplicial
complex, every simplex in the orbit space comes from a simplex in K.

Consider the element σ = ∑g∈G g ∈ Z[G] and its action on the chain groups C∗(K)

σ∗ : C∗(K)→ C∗(K)

On simplices we will define τ∗(s) = σs1, where πs1 = s. But there are details to check.

Lemma 9.3. ker σ∗ = ker π∗.

To see this, we must show that for any chain c ∈ Cq(K), σ∗(c) = 0 if and only if π∗(c) = 0. Now
a typical chain has the form ∑ nisi, where the si are q-simplices of K. For checking when π∗ or σ∗
vanishes it suffices to assume the simplices s1, . . . , sn form a single G-orbit of q-simplices (although
some of the coefficients ni might be 0. In particular we may assume all si map to the same q-simplex
s ∈ K/G. Then π∗ ∑ nisi = ∑ nis. It follows that π∗ ∑ nisi = 0 if and only if ∑ ni = 0.

On the other hand σ∗c = ∑g∈G g∗ ∑n
i=1 nisi = ∑n

i=1 ni ∑g∈G g∗si = ∑n
i=1 niσ∗si = ∑n

i=1 niσ∗s1 =

(∑n
i=1 ni)σ∗s1 = (∑n

i=1 ni)
|G|
n (s1 + · · ·+ sn).

It follows that σ(∑ nisi) = 0 if and only if ∑ ni = 0, as required. We note that this argument
would be valid working over any commutative ring other than Z for which |G|n is not a zero divisor.

Note that the image of σ∗, σC∗(K) is a G-invariant subcomplex of C∗(K).

Corollary 9.4. The orbit map induces an isomorphism of chain complexes

σC∗(K)→ C∗(K/G)
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The inverse of this isomorphism, followed by inclusion, defines the transfer on the chain level.

We will check that τ then satisfies the required identities on the chain level, hence also on the
homology level. An equivalent way of describing τ is the following. If s ∈ K/G, then there are
simplices s1, . . . , sn in K that map to s. Then τ(s) = |G|

n (s1 + · · ·+ sn). Then it is clear that π∗τ(s) =
|G|
n (ns) = |G|s.

On the other hand, suppose s1 ∈ K with π(s1) = s ∈ K/G. Let s1, . . . , sn be the full orbit of s1

under the action of G. The τ(s) = |G|
n (s1 + · · ·+ sn) = ∑g∈G s1, as required.

�
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10. SMITH THEORY

We seek deeper relationships between the homology of a G-space and the homology of its fixed
point set and its orbit space. We follow Bredon [4], chapter 3, in part.

10.1. Main Conclusions. Here we briefly state some of the main consequences of the theory to be
developed.

Theorem 10.1. If a p-group acts on a Zp-acyclic space X (i.e. H∗(X; Zp) = H∗(pt; Zp)), then XG is also
Zp-acyclic.

More generally,

Theorem 10.2. If a p-group acts on a “finitistic” space X with finitely generated Zp homology, then

∑
i≥n

dim Hi(XG; Zp) ≤ ∑
i≥n

dim Hi(X; Zp)

and

Theorem 10.3. If a p-group G acts on a “finitistic” space X with χ(X; Zp) defined, then χ(XG; Zp) is
defined and χ(XG; Zp) ≡ χ(X; Zp) mod p.

In particular, the preceding result eliminates the finiteness (compactness) assumption when we
previously derived a similar Euler characteristic formul by more elementary means.

As a consequence we have the following.

Theorem 10.4. If a p-group G acts on a space X with H∗(X; Zp) ≈ H∗(Sn; Zp), then H∗(XG; Zp) ≈
H∗(Sk; Zp) for some k ≤ n. Moreover, if p is odd, then n− k is even.

Some minimal hypotheses are necessary on the spaces and/or the action. In very general cases
one must use Cech homology, or something of that sort. We will prove the results in the case of
G-simplicial complexes.

10.2. Smith homology groups (simplicial case). Unless stated otherwise, we let G = Cp = 〈g〉, a
cyclic group of prime order p, with a chosen generator g. (More general p-groups will be handled
later by induction on order of the group.) Let K denote a regular G-simplical complex. We seek
relations among the homology groups H∗(K), H∗(K/G), and H∗(KG). Here and throughout this
section we understand all homology as well as chain complexes to be using Zp coefficients. Some
parts of what follows have suitable analogues for Z coefficients, but the crucial parts use Zp in
an unavoidable way. It can be an interesting exercise to find those parts that do have integral
analogues.

Consider the simplicial chain groups, C∗(K), C∗(KG), and C∗(K/G). These consist of free Zp-
modules, with bases in one-to-one correspondence with the relevant simplices. But C∗(K) also has
an action of G, and thus is a module over the group ring Zp[G]. As such in each dimension it is a
direct sum of modules of two possible types

• Zp, corresponding to a fixed simplex, and
• Zp[G], corresponding to a free orbit of simplices.
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In the group ring Zp[G] there are two important elements that will play a special role.

σ = 1 + g + · · ·+ gp−1, the sum element

and
δ = 1− g, the difference element

More generally we will consider the elements δj, j = 1, . . . , p− 1.

We may view σ and δ as homomorphisms Zp[G]→ Zp[G] (by multiplication).

Lemma 10.5. ker δ = im σ and ker σ = im δ.

The preceding lemma actually holds with coefficients in Z rather than in Zp, with the same
proof in this case.

Lemma 10.6. In Zp[G] we have δp = 0 and δp−1 = σ.

Proof. Expand the powers of δ = 1− g using the binomial formula, noting that(
p
j

)
≡ 0 mod p, 0 ≤ j ≤ p− 1

and (
p− 1

j

)
≡ (−1)j mod p, 1 ≤ j ≤ p− 1

�

Corollary 10.7. For j = 1, . . . , p− 1, the sequence

0→ σZp[G] i−→ δj−1Zp[G] δ−→ δjZp[G]→ 0

in which i denotes inclusion is exact.

The key observation is that since σ = δp−1 = δj−1δp−j, im σ ⊆ im δj−1.

Now σZp[G] is generated over Zp by the single element σ, since σ ∑ aigi = (∑ ai) σ. Thus
dimZp σZp[G] = 1. Since dimZp Zp[G] = p, it follows that dimZp δZp[G] = p− 1, and, by induc-
tion, that dimZp δjZp[G] = p− j. Then the following result follows by dimension considerations,
since we are working over the field Zp.

Corollary 10.8. For j = 1, . . . , p− 1, the sequence

0→ δp−jZp[G] i−→ Zp[G] δj
−→ δjZp[G]→ 0

is exact.

Now consider the chain groups C∗(K) = C∗(K; Zp). Each element ρ = δj determines a sub-
chaincomplex (over the group ring Zp[G])

ρC∗(K) ⊆ C∗(K)

Indeed we obtain a filtration of C∗(K)

C∗(K) ⊃ δC∗(K) ⊃ δ2C∗(K) ⊃ · · · ⊃ δp−1C∗(K) = σC∗(K)

Such a filtered chain complex cries out to be turned into a spectral sequence. But for now we’ll
avoid that by following a more direct, hands-on approach.

Definition 1 (Smith Special Homology Groups). Hρ
∗(K) := H∗(ρC∗(K))
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One of these special homology groups has a concrete interpretation in terms of more familiar
objects. For simplicity of notation identify KG with its isomorphic copy KG/G in K/G.

Proposition 10.9. Hσ
∗ (K) ≈ H∗(K/G, KG).

Proof. The chain map π∗C∗(K)→ C∗(K/G) induces a chain isomorphism

σC∗(K)→ C∗(K/G, KG) = C∗(K/G)/C∗(KG)

and the result follows upon passage to homology groups. �

The other special homology groups are useful mainly for interpolating among H∗(K), H∗(KG),
and H∗(K/G). Toward that end we have the following result. Here ρ = δj and ρ = δp−j.

Theorem 10.10. For each ρ = δj, j = 1, . . . , p− 1,

0→ ρC(K)⊕ C(KG) i−→ C(K)
ρ−→ ρC(K)→ 0

is an exact sequence of chain complexes of Zp-vector spaces and of Zp[G]-modules.

Proof. Each of the chain complexes splits into the portions arising from orbits of single simplices of
K or KG. Note that ρC(K) involves no fixed simplices. It follows that i is injective. In addition we
note that ρ is certainly onto and ρi = 0. It remains to prove exactness at C(K), in particular that
ker ρ ⊂ im i.

Now there are two kinds of orbits of simplices: G(s) = {s} (s ∈ KG) and G(s) = {s1, . . . , sp},
where s1 = s and g(si) = si+1 (where subscripts are understood mod p).

In the case G(s) = {s}, the sequence in question reduces to

0→ Zp → Zp → 0→ 0

which is clearly exact. In the case G(s) = {s1, . . . , sp} the sequence becomes

0→ ρZp[G]→ Zp[G]→ ρZp[G]→ 0

and this we proved is exact above in Corollary 10.8. �

As a consequence of the fact that any short exact sequence of chain complexes determines a
long exact sequence of homology groups, we obtain long exact sequences involving special Smith
groups.

There are also short exact sequences

0→ σC(K)→ δjC(K)→ δj+1C(K)→ 0

yielding long exact sequences

· · ·Hδj

n (K)→ Hδj+1

n (K)→ Hσ
n (K)→ Hδj

n−1(K)→ · · ·

We also mention a few other remarks about this construction:

• The Smith groups and the Smith sequences are natural in the sense that simplicial G-maps
induce homomorphisms of the Smith groups and of the Smith exact sequences.
• Moreover, the homomorphisms induced by “contiguous” G-maps are equal.
• There is an analogous construction of Smith cohomology groups with similar properties.
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10.3. Ranks. Here we prove the fundamental fact that the total dimension of the homology of the
fixed point set is bounded above by the total dimension of the homology of the space.

Theorem 10.11. If G = Cp is a cyclic group of prime order p and K is a finite-dimensional, regular,
G-simplicial complex, then

∑
i≥n

dim Hi(KG; Zp) ≤ ∑
i≥n

dim Hi(K; Zp)

Proof. We consider the dimensions (over Zp) of the groups in the long exact sequence

· · · → Hρ
i+1(K; Zp)→ Hρ

i (K; Zp)⊕ Hi(KG; Zp)→ Hi(K; Zp)→ Hρ
i (K; Zp)→ · · ·

Let bi = dim Hi(K; Zp), let fi = dim Hi(K; Zp), and let ri = dim Hρ
i (K; Zp) and ri = dim Hρ

i (K; Zp).
Then the exact sequence implies that

rn + fn ≤ rn+1 + bn

rn+1 + fn+1 ≤ rn+2 + bn+1

rn+2 + fn+2 ≤ rn+3 + bn+2

rn+3 + fn+3 ≤ rn+4 + bn+3

etc.

We would like to add up these inqualities. But we must arrange more cancellation. We can reverse
the roles of ρ and ρ in the long exact sequence and still have a long exact sequence. We therefore
reverse the roles of ρ and ρ in every other one of these inequalities, yielding

rn + fn ≤ rn+1 + bn

rn+1 + fn+1 ≤ rn+2 + bn+1

rn+2 + fn+2 ≤ rn+3 + bn+2

rn+3 + fn+3 ≤ rn+4 + bn+3

etc.

Only finitely many of these inqualities are nonzero. Therefore, adding them up we obtain

rn + ∑
i≥n

fi ≤ ∑
i≥n

bi

Again we may reverse the roles of ρ and ρ, so that we obtain

rn + ∑
i≥n

fi ≤ ∑
i≥n

bi

which yields the required inequality. �

Inspection of the end of the proof shows that we actually obtain the inequality

dimZp Hρ
n(K; Zp) + ∑

i≥n
dim Hi(KG; Zp) ≤ ∑

i≥n
dim Hi(K; Zp)

and the case where ρ = σ = δp−1 yields

dimZp Hn(K/G, KG; Zp) + ∑
i≥n

dim Hi(KG; Zp) ≤ ∑
i≥n

dim Hi(K; Zp)

Theorem 10.12. If a p-group G acts on a finite-dimensional G-simplicial complex K, then

∑
i≥n

dim Hi(KG; Zp) ≤ ∑
i≥n

dim Hi(K; Zp)



INTRODUCTION TO TRANSFORMATION GROUPS 21

Proof. For G = Cp, this follows immediately from the preceding theorem. For more general groups
we proceed inductively. Assume H is a proper normal subgroup of G and that the result is true for
p-groups of order less than |G|. Then G/H acts on KH with fixed point set

(
KH)G/H = KG. The

result follows. �

10.4. Euler characteristics. Using Smith homology groups we can extend our Euler characteris-
tic formula, derived by completely elementary means for finite complexes, to the case of finite-
dimensional, but not necessarily finite, complexes.

Theorem 10.13. If G = Cp is a cyclic group of prime order p and K is a finite-dimensional, regular,
G-simplicial complex, for which χ(K; Zp) is defined, then χ(KG; Zp) and χ(K/G; Zp) are defined, and

χ(K) = pχ(K/G; Zp)− (p− 1)χ(KG; Zp).

Proof. The preceding inequality shows that χ(KG; Zp) and χ(K/G; Zp) are defined. Standard facts
about Euler characteristics and long exact sequences, setting ρ = δ, show that

χ(K; Zp) = χ(KG; Zp) + χ(Hσ
∗ ) + χ(Hδ

∗)

The long exact sequences

· · ·Hδj

n (K)→ Hδj+1

n (K)→ Hσ
n (K)→ Hδj

n−1(K)→ · · ·

imply (using the obvious abbreviation χ(δj) = χ(Hδj
∗ (K)) that

χ(δ) = χ(δ2) + χ(σ)

χ(δ2) = χ(δ3) + χ(σ)
...

χ(δp−2) = χ(δp−1) + χ(σ)

χ(δp−1) = χ(σ)

Adding up all of these equalitties and canceling yields

χ(K) = pχ(σ) + χ(KG)

The long exact sequence of the pair (K/G, KG) shows that χ(K/G) = χ(KG) + χ(K/G, KG), and
Proposition 10.9 shows that χ(Hσ

∗ (K)) = χ(K/G, KG) = χ(K/G)− χ(KG). The result follows. �

Theorem 10.14. If a p-group G acts on a finite-dimensional G-simplicial complex K forwhich χ(K) is
defined, then χ(KG) is defined, and χ(KG) ≡ χ(K) mod p.

Proof. For G = Cp, this follows immediately from the preceding theorem. For more general groups
we proceed inductively. Assume H is a proper normal subgroup of G and that the result is true for
p-groups of order less than |G|. Then G/H acts on KH with fixed point set

(
KH)G/H = KG. The

result follows. �

10.5. Actions on disks and spheres.

Theorem 10.15. Let G = Cp be a p-group, p prime, acting simplicially and regularly on a finite Z/p-
acyclic simplicial complex K. Then the fixed point set KG is also Z/p-acyclic. In particular KG 6= ∅.
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Proof. We know
dim H∗(KG) ≤ dim H∗(K) = 1

and
χ(KG) ≡ χ(K) = 1 mod p

The first condition says that either KG is empty or has the homology of a point. The second condi-
tion guarantees that KG 6= ∅. �

Theorem 10.16. Let G = Cp be a p-group, p prime, acting simplicially and regularly on a finite simplicial
complex K with the Z/p-homology of an n-sphere. Then the fixed point set XG has the Z/p-homology of a
k-sphere, for some k ≤ n. If p is odd, then n− k is even.

Proof. We know
dim H∗(KG) ≤ dim H∗(K) = 2

and
χ(KG) ≡ χ(K) = 1 + (−1)n mod p

Thus KG has Zp homology of rank 1 in degrees 0 and k ≤ n (It is possible that k = 0, in which case
we understand that H0(KG) = Z2

p. It is also possible that k = −1, in which case we understand
that KG = ∅, which requires that χ(K) = 0 mod p.) In any case KG is a Zp-homology k-sphere,
k ≤ n, and 1 + (−1)k ≡ 1 + (−1)n mod p. Thus if p is odd, then k and n have the same parity, as
required. �

Theorem 10.17. Let G = Cp be a cyclic group of prime order p acting freely and simplicially on a finite
dimensional, regular G-simplicial complex K with the Z/p-homology of an n-sphere. Then

Hi(K/G; Zp) =

{
Zp, 0 ≤ i ≤ n
0, otherwise

Proof. This generalizes the familiar computation of the mod p homology of a lens space. In that
case one often proceeds by finding an explicit cell structure and analyzing the boundary (attaching)
maps. In this case we try not to make such explicit assumptions about the cell structure.

If n = 0, then K consists of two Zp-acyclic components, which must be interchanged by G.
We conclude that p = 2 and that the orbit space can be identified with one of the two acyclic
components. The result follows. Henceforth we assume n > 0.

Then our basic inequality (with ρ = σ) shows that for m ≥ 0

dim Hσ
m(K) = dim Hm(K/G) ≤ ∑

i≥m
dim Hi(K; Zp)

Thus H0(K/G) = Zp (since K/G is connected), Hi(K/G) ⊂ Zp (i = 1, . . . , n), and Hi(K/G) = 0
(i > n).

Since KG = ∅, we have the following two short exact sequences of chain groups.

0→ σC → C → δC → 0

and
0→ δC → C → σC → 0

where C = C∗(K; Zp). Consider the long exact sequence

0→ Hσ
n → Hn → Hδ

n → Hσ
n−1 → Hn−1 → · · ·

Now Hn → Hδ
n is induced by multiplication by δ = 1− g, and g acts trivially on Hn = Zp (since

aut Zp ≈ Zp−1), hence Hn → Hδ
n is the zero homomorphism.
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Since we know Hσ
n ⊂ Zp, it follows that Hσ

n ≈ Hn = Zp, and that Hδ
q ≈ Hσ

q−1, for q = n, n−
1, . . . , 1. In particular Hδ

q ⊂ Zp.

We also have the long exact sequence

0→ Hδ
n → Hn → Hσ

n → Hδ
n−1 → Hn−1 → · · ·

Now Hn → Hσ
n is induced by multiplication by σ = 1 + g + g2 + · · ·+ gp−1, and g acts trivially

on Hn = Zp, hence Hn → Hσ
n is the zero homomorphism (multiplication by p). It follows that

Hσ
q ≈ Hδ

q−1, for q = n, n− 1, . . . , 1. Moreover, Hσ
n ≈ Hn.

Alternately combining these two sets of equalities (with their shifts in opposite directions) yields

Hσ
n ≈ Hδ

n−1 ≈ Hσ
n−2 ≈ Hδ

n−3 · · · and Hδ
n ≈ Hσ

n−1 ≈ Hδ
n−2 ≈ Hσ

n−3 · · ·

But at the top we have

Hσ
n ≈ Hn ≈ Hδ

n

So all these groups are isomorphic to Zp, as needed. �

A somewhat similar proof yields the following extension in which the model is a (k + 1)-fold
suspension of a free action on Sn−k−1, the computation yields what would correspond to the (k +
1)-fold suspension of an (n− k− 1)-dimensional lens space

Theorem 10.18. Let G = Cp be a cyclic group of prime order p acting simplicially on a finite dimensional,
regular G-simplicial complex K with the Z/p-homology of an n-sphere, and with KG having the Z/p-
homology of a k-sphere, k ≤ n. Then

Hi(K/G; Zp) =

{
Zp, i = 0, or k + 1 ≤ i ≤ n
0, otherwise

10.6. Comments on extensions to more general spaces. The question here is one of how important
it is that we used finite dimensional simplicial complexes with simplicial maps. Certainly not all
interesting and important group actions are piecewise linear, although finite smooth actions on
smooth manifolds are equivalent to PL actions. Even if the space is polyhedral, the fixed point
sets and/or orbits spaces might not be polyhedral. One would like a theory that would be strong
enough to say that an arbitrary action of Cp on the a sphere, or even on a space with the homology
of a sphere, has fixed point set with the mod p homology of a sphere, for example. It turns out that
for more general spaces and general group actions a less familiar homology theory than simplicial
or singular theory is required.

One needs a sense in which arbitrary spaces are “approximated by simplicial complexes” and a
homology theory that “commutes with limits of spaces.” Of course any such theory ought to agree
with the simplicial theory when applied to simplicial actions on simplicial complexes.

We may return to these issues later. . . or we may not.

10.7. Prime power order is necessary. In general the hypotheses of prime power order and finite-
dimensionality are necessary for Smith theory, and a compact polyhedron the Lefschetz fixed point
theorem.

Let G = Cpq, a cyclic group of order pq where p and q are distinct primes (or more generally
relatively prime).
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We construct a contractible (infinite, locally finite, 4-dimensional) complex on which G acts with-
out fixed points. This construction also leads to such actions on Rn for n sufficiently large, like
n ≥ 8. See Bredon [4], chapter 1, section 8, for more information.

We will at the same time construct an action of G without fixed points on a compact, 3-dimensional
acyclic space.

Both constructions start with a certain standard linear action on S3 and a not-so-standard G-map
of degree 0.

View S3 as the unit sphere in C2 and let a generator T ∈ G act on S3 by T(z, w) = (ωpz, ωqw),
where in general ωr = exp(2πi/r).

Proposition 10.19. There is a G-map h : S3 → S3 of degree 0.

Let X denote the infinite mapping telescope associated with h : S3 → S3.

Proposition 10.20. The space X is the topological realization of a contractible, four-dimensional, locally
finite Cpq-simplicial complex with empty fixed point set.

One can in fact replace the complex X by a euclidean space of suitably high dimension, by
embedding X equivariantly and piecewise linearly in Rn and taking the interior of an invariant
regular neighborhood, and perhaps crossing with R.

Such actions exist for any group that is not a p-group. One can pass to one-point compactification
to obtain one-fixed point actions on spheres. These actions are not nice near the fixed point. It
is harder to construct smooth actions on spheres having just one fixed point, or piecewise linear
actions on compact disks with no fixed points. These constructions exist, however, for sufficiently
complicated groups in sufficiently high dimensions.

Alternatively, let Y denote the inverse limit space associated with h : S3 → S3.

Proposition 10.21. The space Y is a 3-dimensional, compact Cpq-space with the Cech cohomology of a point,
but with empty fixed point set.
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EXERCISES

Feel free to assume all spaces with group actions discussed here are triangulable as regular G-
simplicial complexes.

Exercise 3. If χ(K; Zp) is defined and finite for a finite-dimensional simplicial complex K, using Zp
coefficients, then χ(K; Q) is defined with Q coefficients, and χ(K; Q) = χ(K; Zp). Give an example
for which χ(K; Q) is defined, but χ(K; Zp) is not.

Exercise 4. Let G be a finite group. Suppose K is a finite-dimensional regular G-simplicial complex
with H∗(K; Z) finitely generated (i.e. all Hi(K) are f.g. and there is an n such that Hi(K) = 0 for
i > n). Prove that H∗(K/G; Z) is finitely generated.

Exercise 5. If a finite group G acts on RP2n, then the action is not free. Find a free action on RP2n+1.

Exercise 6. If a finite group G acts on a regular G-simplicial complex K and induces a trivial action
on H∗(K; R), where R is a field of characteristic 0 or prime to |G|, then χ(K/G) = χ(K), provided
χ(K) is defined.

Exercise 7. Let G = Cp be a finite cyclic group of prime order p. Suppose K is a finite-dimensional
regular G-simplicial complex with the integral homology of Sn. Suppose also that KG is a mod p
homology r-sphere, with n− r even. Prove that

Hi(K/G; Z) =


Z for i = 0 and i = n
Zp for i = r + 2, r + 4, . . . , n− 2
0 otherwise

Exercise 8. If a nontrivial finite group G acts freely on a finite G-simplicial complex K, inducing the
trivial action on H∗(K; Q), then χ(K) = 0. Find an example where G = C2 acts freely on K, but
χ(K) 6= 0. Find a similar action with G = Cp, p odd.

Exercise 9. Can you find a free Cp action on CPn?

Exercise 10. Consider the action of C3 action on CP2 coming from cyclically permuting the homo-
geneous coordinates. Compute χ(CP2/C3).

Exercise 11. Consider the action of C2 on CP2 coming from complex conjugation. Compute χ(CP2/C2).

Exercise 12. Consider an arbitrary action of C2 on CP2 acting by (−1) on H2 = Z. What are the
possibilities for the fixed point set?
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11. LIFTING IN COVERINGS

We discuss the process, where possible, of lifting a group action from the base space to the total
space of a covering map. These results are especially useful for applications to group actions on
spaces covered by spheres or euclidean spaces, where one can lift the group action, apply basic
Smith theory in the covering space, and then interpret what that implies about the fixed point
set of the original group action on the base. The spaces considered here are assumed to be path
connected, locally path connected, and semi-locally one-connected, so that covering space theory
applies, and to be paracompact Hausdorff and compact or finitistic, so that Smith theory applies,
using appropriate Cech cohomology, as required. For most purposes one may safely assume the
spaces are realizations of finite dimensional regular G-simplicial complexes.

Theorem 11.1. Let a finite group G act on a (nice) space X with a fixed point x0. Let pr : X̃ → X be the
universal covering space and let x̃0 ∈ pr−1(x0). Then there is an action of G on X̃ such that the action fixes
x̃0 and pr : X̃ → X is a G-map.

Example 3. Consider the action of G = C2 on the circle S1 by complex conjugation, aka reflection
in the equator, with two fixed points. The universal covering is the exponential map R → S1. The
action lifts to a C2 action on R given by reflection in any chosen point lying over either of the two
fixed points in R.

Proof. Let φ : G × X → X be the given action. Recall that φ̂ : G → Homeo(X) denotes the cor-
responding homomorphism into the homeomorphism group. Apply the standard lifting criterion
of basic covering space theory to define an action ψ : G × X̃ → X̃ as follows. For g ∈ G, let
ψ̂(g) : X̃ → X̃ be the unique lift of φ̂(g) : X → X that fixes x̃0. The identity ψ(g)ψ(h) = ψ(gh)
follows from uniqueness of liftings and shows that the lifting defines the required action. Alterna-
tively one can use path lifting to define the action, as follows: For y ∈ X̃, choose a path λ from x̃0
to y. Project λ to µ in X, apply g ∈ G and lift gµ to X̃, starting at x̃0. Then gy is the other end of this
(projected, transformed, and) lifted path. �

Note that the argument does not require that G be finite. More generally we have the following
result about lifting group actions to other covering spaces.

Theorem 11.2. Let a finite group G act on a (nice) space X with a fixed point x0. Let pr : Y → X be
a covering space and let y0 ∈ pr−1(x0). Then there is a (unique) action of G on Y such that the action
fixes y0 and pr : Y → X is a G-map if and only if the induced action on π1(X, x0) preserves the subgroup
pr∗π1(Y, y0).

We now examine the relationship between the fixed point set of the action downstairs on X and
the fixed point set of the action upstairs on Y. If Z is any space with G-action and z ∈ ZG, we let
ZG

z denote the path component of the fixed point set ZG containing z.

Theorem 11.3. Let a finite group G act on a (nice) space X with a fixed point x0. Let pr : Y → X be a
covering space projection of degree d ≤ ∞ and let y0 ∈ pr−1(x0). Suppose there is an action of G on Y such
that the action fixes y0 and pr : Y → X is a G-map. Then the restriction YG

y0
→ XG

x0
is a covering projection

of degree at most d.

Proof. First observe that YG
y0
→ XG

x0
is surjective. This follows by consideration of the lifts of a

path lying entirely in XG
x0

. Now consider of a G-invariant evenly covered neighborhood U of any
point w ∈ XG

x0
(obtained by intersecting the G-translates of any evenly covered neighborhood). Let

pr−1(U) = ∪Vi, where each Vi maps homeomorphically to U. For any Vi, either g(Vi) ∩ Vi = ∅
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for some g ∈ G, whence Vi ∩ YG = ∅, or G leaves Vi invariant and pr maps VG
i → U homeo-

morphically. It follows that YG
y0
→ XG

x0
is a covering projection. The statement about the degree is

immediate. �

Theorem 11.4. Let a finite group G act on a (nice) space X with a fixed point x0. Let pr : Y → X be
the universal covering space projection and let y0 ∈ pr−1(x0). Consider the action of G on Y such that
the action fixes y0 and pr : Y → X is a G-map. Then pr−1(x0) ⊂ YG if and only if G acts trivially on
π1(X, x0).

Proof. The idea is simply that with the choice of base point y0 the fiber pr−1(x0) is identified with
π1(x, x0) (standard) and the action of G on π1(X, x0) gets identified with the action on the fiber
pr−1(x0). Here are a few more details.

First assume that G acts trivially on π1(X, x0) and show that pr−1(x0) ⊂ YG.

Let z ∈ pr−1(x0), and g ∈ G. Choose a path λ : (I, 0, 1) → (Y, y0, z). Let µ = pr ◦ λ : (I, 0, 1) →
(X, x0). Then g(z) = g̃µ(1), where putting a tilde over a loop at x0 indicates the unique lift of the
loop to a path starting at y0. But since gµ ' µ rel {0, 1}, homotopy lifting implies that gz = g̃µ(1) =
µ̃(1) = λ(1) = z, as required.

For the converse, we assume that pr−1(x0) ⊂ YG. and show that G acts trivially on π1(X, x0).
Let µ be a loop based at x0 in X. Then µ̃(1) = gµ̃(1) = g̃µ(1). since Y → X is the universal
covering, we conclude that gµ ' µ rel {0, 1}, as needed. �

Example 4. Consider the action of G = C2 on the real projective plane RP2 given in homogeneous
coordinates by

T[x, y, z] = [−x, y, z]
This involution fixes a point and a circle, which we should think of as RP0 ∪RP1. There are two
very different lifts of the action to S2, one fixing a circle and the other fixing two points. Explicitly
we have T1(x, y, z) = (−x, y, z) or T2(x, y, z) = (x,−y,−z).

Theorem 11.5. Let p be a prime and G = Cp act on a lens space L with π1(L) = Zp (or a real projective
space when p = 2). Then each path component of the fixed point set LG has the Zp homology of a lens space
with π1 = Zp of dimension at most that of L.

Proof. The universal covering of L is a sphere S, with deck transformation group π ≈ Cp. The action
of G on L lifts to an action of G on S, fixing a given point y over any chosen fixed point x ∈ LG.
Then SG

y → LG
x is a covering. If SG is discrete, then LG

x is a single point, which is a homology lens
space, of course. Otherwise, by regular Smith Theory SG is a connected Zp-homology k-sphere
and SG → LG

x is the quotient map for the free π-action on SG. Smith theory applied to the action
of π on SG shows that SG/π = LG

x has the Zp homology of a lens space, with homology groups
Hi(LG

x ; Zp) ≈ Zp for i = 0, . . . , k and 0 otherwise. �

The space L can be replaced with any finitistic space with the mod p homology of a Zp lens
space, whose Zp-cover has the Zp homology of a sphere.

Theorem 11.6. Let p be a prime and G = Cp act on the n-torus Tn. Then each path component of the fixed
point set TnG has the Zp homology of a torus of dimension at most n.

Proof. The universal covering of Tn is Rn. Choose a point x ∈ TnG. and a point y ∈ Rn lying over
x. Lift the G action to an action on Rn fixing y. By basic Smith theory the fixed point set RnG is
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Zp-acyclic. In particular it is nonempty and path-connected. Then RnG → TnG
x is a covering map.

The group of deck transformations π is a subgroup of Zn, hence isomorphic to Zk for some k ≤ n.
The situation is that we have a free action of a group π = Zk on a Zp-acyclic space Z = RnG.
The standard model of that situation is Zk acting on Rk with quotient Tk. By standard algebraic
topology (comparison theorem for spectral sequences with Zp coefficients) we can conclude that
H∗(TnG

x ; Zp) ≈ H∗(Tk; Zp). �

Exercise 13. Construct as many interesting examples of actions on lens spaces and on tori as you
can.

Problem 9. Show that if a group G acts on the torus Tn with a fixed point x and induces the trivial action
on π1(Tn, x), then the action is trivial.

It suffices to assume G = Cp. Show that in this case the covering F̃ → Fx has the property that
F̃ = pr−1(Fx), with full deck transformation group Zn. Cohomology considerations then show
that Hn(Fx; Zp) 6= 0. The result then follows from basic standard facts about the homology of
manifolds, since no proper subset of a connected n-manifold has nontrivial nth homology.

Problem 10. What happens when you try to lift a group action without fixed points (or without attention
to fixed points) to the universal covering?

Answer (or at least the beginning of an answer): Considering all possible lifts of all elements
of G acting on X to homeomorphisms of the universal covering X̃ yields a short exact sequence of
groups

1→ π → E→ G → 1
If the action of G on X has a fixed point x0 then a choice of a fixed point x̃0 over x0 yields a splitting
of this sequence. Question: If the sequence splits abstractly is there a fixed point?

Problem 11. What can you say about the fixed point set in the universal covering when the action on
π1(X, x0) is nontrivial? What about the case of other (regular?) coverings?

12. MORE GROUP ACTIONS ON SURFACES

It can be proved that a group action on a surface is equivalent to a PL or smooth action. There
are no “wild” actions in dimension 2. For convenience, we often assume actions are PL or smooth,
or at least locally linear. In dimension 2 this is no loss of generality.

Proposition 12.1. Any finite group acts effectively, even freely, on some surface.

Proof. Let G be a finite group and let g1, . . . , gr ∈ G be a set of generators. Let F be a surface of
genus r, with standard presentation for the fundamental group with generators a1, b1, . . . , ar, br.
Define a surjective homomorphism π1(F, x) → G by ai → gi, bi → 1. Then the corresponding
regular covering space F̃ → F with deck transformation group G gives the required action. �

Note that the Euler characteristic of F̃ satisfies χ(F̃) = |G|(2− 2r) so that F̃ has genus |G|(r −
1) + 1.

Exercise 14. One may define and explore the “genus” of a finite group G: the smallest g such that
G acts on the surface of genus g. Work out the genus of a few groups. As variations one can
investigate the “orientation-preserving” genus or the “free genus”, etc.

Proposition 12.2. A finite group acting effectively on a surface of genus≥ 2 must act faithfully on rational
homology.
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Proof. Let G be such a group acting on such a surface F and suppose it does not act faithfully on
H1(F; Q). Without loss of generality we may suppose that G = Cp, p prime, acting trivially on H1.
Then

χ(F) = pχ(F∗)− k(p− 1)
where k is the number of isolated fixed points. (If p = 2 and the action is orientation-reversing,
then one might have circles of fixed points, but they contribute 0 to the Euler characteristic calcula-
tion.) But since the action is trival on rational homology a standard transfer argument implies that
χ(F∗) = χ(F). Thus we may conclude that χ(F) = k. But χ(F) < 0 while k ≥ 0. This contradiction
completes the proof. �

It follows that if G is a finite group acting effectively on a closed orientable surface of genus n
greater than one, then G is isomorphic to a subgroup of GL(n, Z). One can argue that GL(n, Z)
contains only finitely many finite subgroups

Corollary 12.3. A compact group acting on a surface of genus ≥ 2 must be finite.

Alternatively we will derive this finiteness statement from the following.

Theorem 12.4 (Serre). If A ∈ SL(k, Z) has finite order m > 1 and A ≡ I mod n, then m = n = 2.

Proof. (Argument attributed to C. J. Earle, adapted from Farkas and Kra, pp. 275-276.) Let p be a
prime factor of n. Then A ≡ I mod pt for some largest t ≥ 1. It suffices to show that p = m = 2
with t = 1.

Step 1. If A 6= I, but A ≡ I mod pt, where t is as large as possible, then t = 1. Write the order
m = qr, where q is prime. Then B = Ar has prime order q and B ≡ I mod pt, Write B = I + psX
where X is integral and X 6≡ 0 mod p, and hence s ≥ t. Then

I = (I + psX)q = I + qpsX + p2sY

Therefore qX = −psY, from which it follows that q = p and X = −ps−1Y. Since p does not divide
X, we conclude that s = 1, and since s ≥ t ≥ 1, we also have t = 1. It also follows that A has order
pu for some u since all prime factors of m have to be p.

Step 2. A has order exactly p. Consider Ap, which we show must equal I. Clearly Ap has finite
order. Write A = I + pX. Then

Ap = (I + pX)p = I + p2X + p2Y = I + p2Z

so Ap ≡ I mod p2. This contradicts Step 1 unless Ap = I.

Step 3. p = 2. If not p is an odd prime, and

I = (I + pX)p = I + p2X +
p(p− 1)

2
p2X2 + p3Y

from which it follows that

−X =
p(p− 1)

2
X2 + pY

which would imply that X ≡ 0 mod p, since p is an odd prime, contradicting the choice of X 6≡ 0
mod p. �

Exercise 15. Identifying AutH1(Fg) = Sp2g(Z), find an element of order 2 in Sp2g(Z) that does not
come from a periodic homeomorphism of period 2 on Fg.

Project 2. How can one characterize which elements of Sp2g(Z) are realized by periodic homeo-
morphisms? (Recent work on this.)
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Question 9. Is a group action on a closed orientable surface of genus greater than or equal to two determined
up to equivalence by its action on homology?

I am pretty sure the answer is “no”, but I don’t have an example at hand.

12.1. Bounds on group order.

Theorem 12.5 (Hurwitz’s 84(g − 1) Theorem). Let a finite group G act effectively and orientation-
preservingly on a closed orientable surface S of genus g ≥ 2. Then |G| ≤ 84(g− 1).

We will content ourselves with proving a simpler statement, although the general case is not too
much harder, having just more cases to consider.

Theorem 12.6. Let a finite cyclic group G of prime order p act effectively and orientation-preservingly on a
closed orientable surface S of genus g ≥ 2. Then p ≤ 2g + 1.

Proof. Suppose that p ≥ 2g. We show that in this case p = 2g + 1. Let the orbit surface S∗ have
genus g∗ and suppose there are k ≥ 0 fixed points. Then the usual Euler characteristic formula says

2g− 2 = p(2g∗ − 2) + k(p− 1)

Suppose first that g∗ ≥ 2. Then 2g− 2 ≥ p(2) ≥ 4g, a contradiction.

If g∗ = 1, then 2g− 2 = k(p− 1) ≥ k(2g− 1) so (k− 1)(2g− 1) ≤ −1. This implies that k = 0, in
which case the orbit map S→ S∗ is a covering and g = 1, contradicting the assumption that g ≥ 2.

Finally, if g∗ = 0, then we have 2g− 2 = −2p + k(p− 1). It follows that 2g = (k − 2)(p− 1)
and, hence, that 2g ≥ (k− 2)(2g− 1). This implies k ≤ 3. the cases k < 2 contradicts the original
assumption that g ≥ 2. Thus k = 3, and hence 2g = p− 1, or p = 2g + 1, as required. �

12.2. Nielsen realization. The question is whether a “homotopy action” on a surface comes from
an “honest action.”

Theorem 12.7 (Nielsen Realization). If f : Fg → Fg such that f 6' id but f p ' id for some prime p, then
f ' f1 such that f p

1 = id.

This is moderately deep and can be generalized somewhat to finite solvable groups using some-
what the same methods. More generally, more recently, and more deeply, Steven Kerkhoff showed
that if G is any finite group of homotopy classes of homotopy equivalences of a surface, then G can
be realized as a finite group of homeomorphisms of the surface.

13. GROUPS ACTING FREELY ON SPHERES

What groups act freely on some sphere?

13.1. The p2 condition. We begin by looking at the case of finite groups acting freely on a space of
the homotopy or homology type of a sphere. It is crucial to assume some sort of finite-dimensionality.
After all, any group G acts freely on any homotopy type X by expressing it as X× EG, where EG is
a contractible space on which G acts freely (with orbit space of type K(G, 1)).

Theorem 13.1 (Smith). The group G = Cp × Cp does not act freely on a finitistic space with the Cech
cohomology of a sphere.



INTRODUCTION TO TRANSFORMATION GROUPS 31

Alternatively put, if a finite group G acts freely on a finitistic space with the Cech cohomology
of a sphere, then it contains no subgroup isomorphic to Cp × Cp.

Bredon gives a complete proof of Smith’s theorem in the spirit of basic Smith theory. We concen-
trate instead on special cases that convey the idea of what’s going on.

We say that a finite group satisfies the p2 conditions if every subgroup of order p2 is cyclic. Since
a group of order p2 is either Cp2 or Cp × Cp, a group satisfies the p2 condition if and only if it
contains no Cp × Cp.

Lemma 13.2. A finite group satisfies the p2 condition if and only if the Sylow p-subgroup is cyclic or (when
p = 2) generalized quaternion.

The ordinary quaternion group is Q8 = {±1,±i,±j,±k} inside the unit quaternions. Note that
−1 has order 2 and the other nontrivial elements all have order 4. More generally the generalized
quaternion group of order 2k (k ≥ 3) is the group with presentation〈

x, y : x2k−1
= 1, yxy−1 = x−1, y2 = x2k−2

〉
Lemma 13.3. A finite group G satisfies the p2 condition if and only if its (co)homology Hk(G; Zp) is
periodic in k. A finite group G satisfies the p2 conditions for all p if and only if its (co)homology Hk(G; Z)
is periodic in k.

Equivalently, the cohomology of G is periodic, or G contains no copy of Cp × Cp. It will become
clear here that periodic cohomology implies no Cp × Cp. For the converse, which we don’t really
need, consult Cohomology of Groups, by Ken Brown.

Now we give direct proofs of a couple of special cases of Smith’s theorem.

Proposition 13.4. The group G = Cp × Cp does not act freely on Sn (or any n-manifold with the mod p
homology of Sn).

Proof. If G did so act, then the space X = Sn/G has π1 = G and πi = 0 for 2 ≤ i ≤ n − 1. It

follows that Hi(G; Zp) = Hi(X; Zp) for i ≤ n− 1. But by the Künneth formula Hn−1(G) = Z
(n−1

2 )
p .

On the other hand X is an n-manifold, orientable if p is odd and orientable over Zp in any case.
Thus X satisfies Poincaré duality over Zp. In particular Hn−1(G; Zp) ≈ H1(G; Zp). It follows that
(n−1

2 ) = 2, or n = 4. But Cp does not act freely on S4 by the Lefschetz Fixed Point Theorem. And if
p = 2, we note that C2 acts freely on S4 only if it is orientation preserving. But if C2× C2 acts freely,
then it has two orientation reversing involutions, whose product is the third involution and would
then not act freely. QED �

Proposition 13.5. The group G = Cp × Cp does not act freely and cellularly on an n-dimensional CW
complex with the homology of Sn.

Proof. If G did so act, then the cellular chain complex would yield an exact sequence of the form

0→ Z→ Cn → Cn−1 → · · · → C1 → C0 → Z→ 0

where the Ci are free over Z[G]. One can formally splice together copies of such sequences to pro-
duce a periodic resolution of Z as a Z[G]-module. It follows that the cohomology of G is periodic,
while the size of the cohomology Hk of Cp × Cp grows quadratically in k. �



32 ALLAN L. EDMONDS

13.2. Swan’s theorem. The question then becomes whether a finite group with periodic cohomol-
ogy acts freely on some sphere. Swan answered that such a group acts freely and cellularly on a
finite CW complex of the homotopy type of a sphere.

Theorem 13.6. A finite group that satisfies the p2 conditions for all primes p acts freely on a finite CW
complex of the homotopy type of a sphere (of some dimension).

The main challenge in the proof of Swan’s theorem is to show that there is a finitely generated
free, partial resolution of Z as a(trivial) Z[G]-modules, i.e. an exact sequence

0→ Z→ Cn → Cn−1 → · · · → C1 → C0 → Z→ 0

where the Ci are free over Z[G]. The possible values of n are of the form dk − 1, where k is the
period of the cohomology of G. In general it is not possible to choose d = 1, but Swan does show
that d = gcd(k, ϕ(k)) does suffice. It turns out that one can always find such a sequence where
the Ci are projective over Z[G]. There is an obstruction then found in the projective class group
K̃0(Z[G]) (isomorphism classes of projectives modulo summing with frees, under direct sum). A
finiteness theorem shows that one can kill the obstruction by passing to higher multiples of the
periodicity degree.

The second smaller challenge is to be sure that one can realize the chain complex as the cellular
chain complex of the universal covering of a CW complex with fundamental group G. One needs
to take a little care to be sure that the part in degrees ≤ 2 corresponds to the chain complex of the
canonical 2-complex associated with a presentation of the group. That can be done.

It is an interesting problem known as “Steenrod’s Problem” to realize any finitely generated
chain complex of free Z[G]-modules as the cellular chain complex of the universal covering of a
CW complex with π1 = G. There are counterexamples for so-called “Moore spaces,” i.e., chain
complexes whose homology in positive dimensions consists of a single torsion module, such as Zk.

Instead of proving Swan’s theorem, we concentrate on the simplest nontrivial case, that of the
dihedral group G = D3 of order 6, isomorphic to the symmetric group S3 of degree 3. In this case
Swan’s obstruction vanishes because it lies in a zero group. We avoid all that theory by a direct
construction. The discussion is an elaboration of the last section of Swan’s fundamental paper [11].

Theorem 13.7. The group D3 acts freely and cellularly on a finite 3-dimensional CW complex X ' S3.

The group G has a standard presentation as a dihedral group〈
x, y : x3, y2, yxy = x2

〉
In this case the x3 = 1 relation is redundant: x = yx2y = (yxy)2 = x4, from which it follows that
x3 = 1. Therefore we work with the presentation〈

x, y : y2, yxyx−2
〉

In what follows we let R = Z[D3], the group ring of the dihedral group. A typical element of R can
be written as a polynomial in x and y, and, because of the special relations, can be written in the
form f (x) + g(x)y.

In what follows we will need the following two identities in the group ring Z[D3]:

(1 + x− y)(1 + yx) = (1 + yx)

(y + 1)x(y + 1)(x− 1) = −(y + 1)(x− 1)

Now let
Y2 = e0

a ∪ e1
b ∪ e1

b′ ∪ e2
b ∪ e2

b′
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be the 2-complex associated with the latter presentation above. The symbols b and b′ correspond
to x and y, respectively. The symbols c and c′ correspond to the two relations y2 and yxyx−2,
respectively. The cellular chain complex of the universal covering Ỹ2 has the form

C2
∂2→ C1

∂1→ C0
ε→ Z→ 0

We use the symbols a, b, b′, c, c′ for corresponding basis elements of these chain modules. In par-
ticular a prescribes a base point in Ỹ2 over the 0-cell of Y2. And b and b′ correspond to choices of
1-cells over the two 1-cells in Y2, emanating from a.

See Figure 1, where the 1-skeleton of Ỹ2 is depicted. The group element x is understood to ro-
tate 2π/3 in the counterclockwise direction. The group element y reflects in a vertical line through
vertex a and interchanges the inner and outer circles. Edges b and b′ are chosen emanating from
the chosen vertex a to represent the two attached 1-cells. They are to be oriented pointing coun-
terclockwise. All other vertices and edges are labelled and oriented by equivariance, as shown.

The homomorphisms in this chain complex may be described in terms of these bases as follows:

ε(a) = 1

∂1(b) = (x− 1)a

∂1(b′) = (y− 1)a

∂2(c) = −(1 + x− y)b + (1 + xy)b′

∂2(c′) = −(1 + y)b′

In particular, we understand that these are homomorphisms of left Z[D3]-modules. For example

∂2(s(x, y)c + s′(x, y)c′) = −s(x, y)(1 + x− y)b + s′(x, y)(1 + xy)b′

The plan is to describe ker ∂2 explicitly and show that it is generated over Z[D3] by a single element.
We will then extend the chain complex by adding C3 ≈ Z[D3] in such a way as to kill this single
generator. It will be done so that the new kernel is just Z! Then we will realize the extended chain
complex by attaching a single 3-cell to Y2.

Suppose, then, that u = sc + s′c′ ∈ ker ∂2 ⊂ C2(Ỹ2).

It follows that

s(x, y)(1 + x− y) = 0 and

s(x, y)(1 + xy) + s′(x, y)(1 + y) = 0

But if s(̇1 + x− y) = 0, then

s(̇1 + xy) = s(̇1 + x− y)(1 + xy) = 0(̇1 + xy) = 0

by one of the group ring identities mentioned above. Therefore the two conditions unlink to be-
come

s(x, y)(1 + x− y) = 0 and

s′(x, y)(1 + y) = 0

First analyze s′(x, y). Write s′(x, y) = f (x) + g(x)y. Then multiplying and collecting terms we find
that g(x) = − f (x) and s′(x, y) has the general form

s′(x, y) = f (x)(1− y)
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x^2b'

yxb'=x^2yb' xb'

xyb'

b'yb'

yb

b

yx^2b=xyb

yxb

x^2b

xb

yxa=x^2ya

x^2a

xya=yx^2a

xa

a

ya

FIGURE 1. The 1-skeleton of the universal covering

Now work on s(x, y). Again, set s(x, y) = f (x) + g(x)y, multiply terms out and collect, to find that

g(x) = f (x) + f (x)x and

f (x) = g(x) + g(x)x2

it follows that f (x)(1 + x + x2) = 0, hence that

f (x) = h(x)(1− x) and

g(x) = h(x)(1− x) + h(x)(1− x)x

Thus s(x) has the form h(x)(1− x) + h(x)(1− x) + h(x)(1− x)xy or

s(x, y) = h(x)(1 + y)(1− x)

then the typical element u = sc + s′c′ ∈ ker ∂2 has the form

u = h(x)(1 + y)(1− x)c + f (x)(1− y)c′
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In particular ker ∂2 is generated by the two elements

(1 + y)(1− x)c and (1− y)c′

Our next goal is to show that in fact ker ∂2 is generated by a single element. Indeed we claim that
the single element

v = x(y + 1)(x− 1)c + (y− 1)c′

generates ker ∂2. To see this we use the identity

(y + 1)x(y + 1)(x− 1) = (y + 1)(x− 1)

mentioned at the beginning of the proof.

We need to show that (1 + y)(1− x)c and (y− 1)c′ can be obtained as multiples of v.

Note that (1 + y)v = (1 + y)x(y + 1)(x− 1)c = (y + 1)(x− 1)c, by the identity, since (y + 1)(y +
1) = 0.

Finally, given v and (1 + y)(1− x)c, as above, we obtain (y − 1)c′ = v − (1 + y)v = −yv, as
required.

Now we define ∂3 : Z[D3]→ C2(Ỹ2) by

∂3(e) = x(y + 1)(x− 1)c + (y− 1)c′

First of all, we claim that ker ∂3 ≈ Z (with trivial D3 action). In fact, Σ = 1 + x + x2 + y + xy + x2y,
the sum of the group elements. We will show that ker ∂3 = 〈Σ〉. Certainly Σ has trivial D3 action.

Next, note that ∂3Σ = 0. For in general f (x, y)Σ = ε( f )Σ = f (x, y)Σ f (x, y). Therefore

∂3(Σ · e) = Σ · x(y + 1)(x− 1)c + Σ · (y− 1)c′

= Σ · c + Σ · c′ = 0

Finally, suppose ∂3 f (x, y)e = 0. We show that f (x, y) = mΣ for some integer m. Then the hypothe-
sis that ∂3 f (x, y)e = 0 implies that

f (x, y)x(y + 1)(x− 1) = 0 and f (x, y)(y− 1) = 0

As usual, let
f (x, y) = a(x) + b(x)y

The second condition becomes
(a(x) + b((x)y)(y− 1) = 0

or
b(x) + a(x)y = a(x) + b(x)y

Thus a(x) = b(x) and f (x, y) = a(x)(1 + y).

Now the first condition above says that

a(x)(y + 1)(x− 1) = 0

One of the group ring identities we mentioned before now implies that

−a(x)(y + 1)(x− 1) = 0

In particular,
a(x)(x2 − 1)(y + 1) = 0

Hence
a(x)(x2 − 1) = 0

which means that
a(x) = m(1 + x + x2) in the group ring Z[C3]
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Therefore
f (x, y) = m(1 + x + x2)(1 + y) = mΣ

as required.

Now attach a 3-cell also denoted by e = e3 to Y2 using this element ∂3(e)of π2(Y) = π2(Ỹ2) =
H2(Ỹ2) = ker ∂2, forming a 3-complex Y3 = Y2 ∪ e3

e . The universal covering is obtained from Ỹ2

by equivariantly attaching six 3-cells. The calculations above show that the CW complex Ỹ3 is a
simply connected homology 3-sphere, with free action of D3, as required. QED

13.3. The 2p condition. The question then becomes whether a group of periodic cohomology can
act freely on the actual sphere itself.

Theorem 13.8. If finite group G acts freely on a closed manifold with the mod 2 homology of a sphere then
every element of order 2 in G lies in the center of G.

Corollary 13.9. If a finite group G acts freely on Sn, then for all primes p every subgroup of order 2p is
abelian.

We will give a proof valid for actions on the actual sphere Sn. The general version stated above
requires slightly more sophisticated algebraic topology, for which we substitute a direct geometric
argument, following Bredon.

The theorem follows from the following result.

Theorem 13.10. Let g : Sn → Sn be an involution without fixed points and suppose f : Sn → Sn is a map
such that g f (x) 6= f g(x) for all x ∈ Sn. Then deg f is even.

Proof of Theorem 13.8 from Theorem 13.10. Let g ∈ G have order 2. And suppose we also have f ∈ G
such that f g 6= g f . Since G acts freely, it follows that f gx 6= g f x for all x ∈ Sn. ( f−1g−1 f g 6=
e implies f−1g−1 f gx 6= x for all x.) By Theorem 13.10 deg f is even, and hence f cannot be a
homeomorphism This contradiction completes the proof. �

Before plunging into the proof of Theorem 13.10 we recall a couple of facts about Smith theory
for actions of G = C2 on finitistic spaces, using Cech cohomology with Z2 coefficients.

First recall that σ = 1 + g = 1− g = δ in Z2[G]. Then Hn
σ(X) ≈ Hn(X/G, XG). Also the Smith

inequalities take the following relative form

dim Hn(X/G, XG) + ∑
i≥n

dim Hi(XG, XG) ≤ ∑
i≥n

dim Hi(X, XG)

so that
dim Hn(X/G, XG) ≤ ∑

i≥n
dim Hi(X, XG)

We also have the basic Smith sequence in the case when XG = ∅ and using σ = δ

Hn−1
σ (X)→ Hn

σ(X)→ Hn(X)→ Hn
σ(X)→ Hn+1

σ (X)

Proof of Theorem 13.10. Let G = {e, g}. We aim to factor the induced homomorphism f ∗ : Hn(Sn)→
Hn(Sn) through Hn(Sn/G), factoring f ∗ as π∗ψ, where π : Sn → Sn/G is the orbit map, and
ψ : Hn(Sn)→ Hn(Sn/G) is a homomorphism yet to be determined.

To find such a factorization we will use an auxiliary space withG action. Set M = Sn × Sn − ∆,
where ∆ denotes the diagonal subspace. Then G acts on M by the formula

g(̇x, y) = (gy, gx)
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and we can define a map φ : Sn → M by the formula

φ(x) = ( f (x), g f g(x))

It is completely straightforward to check that this defines a G-map.

We thus obtain the following commutative diagram

Sn/G
πS←−−−− Sn f−−−−→ Sn

φ

y φ

y ∥∥∥
M/G

πM←−−−− M
pr−−−−→ Sn

Applying (Cech) cohomology with Z2 coefficients, we have

Hn(Sn/G; Z2)
π∗S−−−−→ Hn(Sn; Z2)

f ∗←−−−− Hn(Sn; Z2)

φ
∗
x φ∗

x ∥∥∥
Hn(M/G; Z2)

π∗M−−−−→ Hn(M; Z2)
pr∗←−−−− Hn(Sn; Z2)

We will

(1) π∗M : Hn(M/G; Z2)→ Hn(M; Z2) is an isomorphism
(2) π∗S : Hn(Sn/G; Z2)→ Hn(Sn; Z2) is 0.

Since f ∗ = π∗φ
∗(π∗M)−1pr∗, we see that f ∗ = 0, and the proof is complete.

It remains to prove (1) and (2). We first discuss (1).

Recall that the action of G on M = Sn × Sn − ∆ is given by g(̇x, y) = (gy, gx). One easily sees
that the fixed point set

MG = {(x, gx) : x ∈ Sn} ∼= Sn

We claim that the inclusion MG ⊂ M is a homotopy equivalence. To see this it suffices to construct
an explicit strong deformation retraction of M onto MG. To this end define a homotopy

H : M× [0, 1]→ M

by
H((x, y), t) = (x, F(x, y, t))

where F(x, y, t) ∈ Sn is the point where the line from x to tgx + (1− t)y intersects Sn. It is straight-
forward now to verify that this defines the required strong deformation retraction.

It now follows that H∗(M, MG; Z2) = 0. Then the Smith inequality mentioned above implies
that H∗(M/G, MG; Z2) = 0, hence that π∗M : H∗(M/G; Z2)→ H∗(MG; Z2) is an isomorphism.

Now we discuss (2). The basic Smith sequence briefly reviewed above yields

Hn−1
σ (Sn; Z2)→ Hn

σ(Sn; Z2)→ Hn(Sn; Z2)→ Hn
σ(Sn; Z2)→ Hn+1

σ (Sn; Z2)

A
π∗S→ Hn(Sn; Z2)→ A→ 0

where A = Hn
σ(Sn; Z2) = Hn(Sn/G; Z2). From this it follows immediately that A ≈ Z2 and that

π∗S = 0. �

Remark 1. Milnor shows that the theorem remains true for free involutions on an n-manifold Σn

with the mod 2 homology of Sn. The main difficulty is to offer a different proof of the analogue of
item (1) above.
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13.4. The linear case. What finite groups act freely and linearly on a sphere? Equivalently, what
groups G have an orthogonal representation so that no nontrivial element of the group has eigen-
value 1?

We say that a finite group satisfies the pq conditions if every subgroup of order pq is cyclic, for
any two primes, the same or different.

Theorem 13.11. A finite group G acts freely and orthogonally on a sphere if and only it satisfies the pq
conditions for all primes p and q.

13.5. Theorem of Madsen-Thomas-Wall. This is one striking culimination of a long series of in-
vestigations by numerous authors.

Theorem 13.12. If G is a finite group with periodic cohomology (i.e., satisfying the p2 for all primes p), and
the 2p conditions for all odd primes p, then G acts freely on some sphere Sn.

The action is topological, not smooth or PL, in general. The n + 1 is a multiple of the period
of H∗(G), but not necessarily equal to that period. The proof requires deep results from surgery
theory.

13.6. Actions on the 3-sphere. It follows from Perelman’s work on Ricci flow and the Poincaré
conjecture that a finite group acts freely on S3 if and only if it acts freely and linearly on S3 and,
moreover, any free action is equivalent to a linear action. This breakthrough trumps many years of
work on special cases going back to the late 1950’s.

13.7. Actions on Sn ×Rk. If follows easily from Swan’s theorem that

Theorem 13.13. A finite group acts freely on Sn × Rk for some n and k if and only if it has periodic
cohomology.

Recent work has focused on free and properly discontinuous (deck transformations) groups
acting on the non-compact manifolds Sn ×Rk.
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14. THE BOREL FIBERING

14.1. Principal bundles. (Free actions) A locally trivial fiber bundle ϕ : X → Y with fiber a topo-
logical group G is a principal G-bundle if there is a free action of G on X identifying ϕ with the
orbit map for the action. For compact Lie groups acting freely on nice spaces, the orbit map is auto-
matically a locally trivial fiber bundle by the existence of “slices,” which is of course almost trivial
in the case of finite groups.

14.2. Classifying spaces.

Proposition 14.1. For any compact group G there is a contractible CW complex X on which G acts freely
and cellularly.

For a canonical construction, one may let X = G ∗ G ∗ G ∗ · · · , the infinite join, topologized as
the direct limit of finite joins, which themselves are topologized with a suitable product/subspace
topology. Alternatively, for a discrete group G, one chooses a set of generators and defining rela-
tions for the group, and starts by constructing the canonical 2-complex realizing this presentation.
Then one simply attaches cells of ever higher dimensions to kill the homotopy groups πi, i ≥ 2

Proposition 14.2. If X and Y are contractible G-CW complexes on which the compact group G acts freely,
then X/G ' Y/G.

This is a basic application of elementary obstruction theory.

Let EG denote a contractible CW complex on which G acts freely. Then the orbit space BG =
EG/G is a classifying space for G. In particular it classifies equivalence classes of principal G-bundles
over a space Y by [Z; BG]. Up to equivalence any principal G-bundle over Y arises as the pullback
f ∗EG of the bundle EG → BG.

For technical reasons it is usually better to view EG as being a free right G-space.

14.3. Examples.

(1) If G = C2, then BG ' RP∞.
(2) If G = Cp, then BG ' L(p)∞, an “infinite lens space”.
(3) If G = (Cp)n, then BG ' (L(p)∞)n.
(4) If G = S1, then BG ' CP∞.

For nontrivial, finite or compact groups BG is always infinite dimensional, but well-approximated
by its finite skeleta.

14.4. The Borel construction. The Borel construction is a certain functor from G-spaces to spaces
defined as follows. If X is a G-space, the Borel construction is the space XG = EG ×G X = (EG ×
X)/G. A G-map f : X → Y induces a map fG : XG → YG by setting fG[e, x] = [e, f (x)].

The key point is that the map XG → BG given by [e, x] → [e] is a fiber bundle with fiber homo-
topy equivalent to X. This can be understood by reference to the following commutative diagram.

EG
pr1←−−−− EG × X

pr2−−−−→ X

πG

y πEG×X

y πX

y
BG

pr1←−−−− EG ×G X
pr2−−−−→ X/G
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Note that pr−1
1 (e) = {(e, x) : x ∈ X} ∼= X, so that pr−1

1 [e] = {[e, x] : x ∈ X} ∼= X, since G acts freely
on EG. With a little care one can check that this defines a locally trival fibering, known as the Borel
fibering: the equivariant fibration X → XG → BG.

On the other hand, pr−1
2 (x) = {(e, x) : e ∈ EG} ∼= EG. The subgroup of G that leaves the latter

subset of EG × X invariant, rather than mapped off of itself, is exactly the isotropy group Gx. We
find that pr−1

2 [x] = {(e, x) : e ∈ EG}/Gx ∼= BGx . Among other consequences, we see that if G acts
freely on X so that all isotropy groups Gx are trivial, then XG ' X/G.

If one has a G-map f : X → Y, then one obtains a map of the Borel constructions fG : XG → YG,
given by fG([e, x]) = [e, f (x)].

14.5. Equivariant cohomology. The Borel construction provides a way of associating using cohmo-
logical invariants to a G-space.

Definition 2. If X is a G-space, the equivariant cohomology of X with coefficients in a commutative
ring R is

H∗G(X; R) := H∗(XG; R)

There is a relative version for G pairs (X, A), and associated to the pair there is a long exact
sequence of equivariant cohomology groups. The construction is natural in the sense that a G-map
induces a homomorphism of equivariant cohomology groups. The construction is also natural
in the group variable: if K is a subgroup of G, then there is a restriction homomorphism resG

K :
H∗G(X; M)→ H∗K(X; M), where the G-module M is also viewed as a K-module by restriction.

Now H∗G(point) = H∗(BG; R) is a ring under cup product. Note that the G-map X → point
induces a homomorphism

H∗(BG; R)→ H∗G(X; R)
making H∗G(X; R) into a module over H∗(BG; R)

Suppose that F = XG. Then FG ∼= BG × F. If we use field coefficients, then by the Künneth
theorem H∗G(F) ≈ H∗(BG)⊗ H∗(F).

14.6. The Borel Spectral Sequence. Let G be a finite group acting on a finite-dimensional space X
(which we assume is a G-CW complex). The as above we have the associated Borel construction,
yielding a fibering

X → XG → BG

There is then Leray-Serre spectral sequence

Eij
2 (X) := Hi(BG; H j(X))⇒ Hi+j(XG)

converging to Eij
∞, the graded group associated with a filtration of H∗(XG).

The different is dr : Ei,j
r → Ei+r,j+1−r

r , such that Er+1 = H(Er, dr).

The convergence statement means that there is an decreasing filtration

· · · ⊃ F i ⊃ F i+1 ⊃ · · ·
of H∗(XG) such that if we set F ij = F i ∩ Hi+j(XG), then

Eij
∞ = F i,i+j/F i+1,i+j−1

We sometimes refer to i above as the filtration degree and i + j as the (co)homology degree.
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The spectral sequence is natural for G-maps. In particular there is a restriction Eij
2 (X)→ Eij

2 (XG).

For a G-invariant subspace A ⊂ X there is also a relative spectral sequence Eij
2 (X, A).

One can use the spectral sequence approach to reprove the basic results of Smith Theory , as
well as to prove far-reaching extensions of the basic theory. To connect the abutment of the spectral
sequence with the cohomology of the fixed point set we use the following result.

Lemma 14.3. Let X be a finite-dimensional G-CW complex, and let S denote the invariant subcomplex of
points with nontrivial isotropy group. Then Hi(XG, SG) = 0 for i > dim X

Proof. There is a natural map f : (XG, SG) → (X/G, S/G) induced by projection EG × X to X
such that the preimage of x∗ ∈ X/G is BGx . Therefore for x ∈ X/G − S/G it follows that f−1(x)
is contractible. Therefore H∗(X/G, S/G) → H∗(XG, SG) is an isomorphism. On the other hand
Hi(X/G, S/G) = 0 for i > dim X. �

Corollary 14.4. Let X be a finite-dimensional G-CW complex, and let S denote the invariant subcomplex
of points with nontrivial isotropy group. Then restriction Hi(XG) → Hi(SG) is an isomorphism for i >
dim X.

We will ordinarily apply this when the action is semifree (e.g. G = Cp, p prime), in which case
S = XG.

14.7. Applications of the spectral sequence.

Theorem 14.5 (Smith Theorems). If G = Cp acts on a finitistic space X that is mod p acyclic, then so is
XG. If G = Cp acts on a finitistic space X that has the mod p cohomology of an n-sphere, then XG has the
mod p cohomology of a k-sphere for some k ≤ n.

Theorem 14.6 (Smith Theorems). If G = Cp acts on a finitistic space X, then

dim H∗(XG; Zp) ≤ dim H∗(X; Zp)

with equality if and only if

(1) The spectral sequence (defined using Zp coefficients) collapses, and
(2) The group G acts trivially on H∗(X; Zp)

Theorem 14.7. If G = Cp acts on a compact simply connected 4-manifold X without boundary, and the
action has a nonempty fixed point set, then the spectral sequence collapses.

Proof. Because of the rows of zeroes in the spectral sequence one sees immediately that E2 = E3,
E4 = E5, and E6 = E∞. It remains to show that the differentials d3 and d5 must vanish if the fixed
point set is nonempty. Using naturality of the spectral sequence and the relative versions E(X, x)
and E(X− {x}) (where x ∈ F), each of which only has two non-vanishing rows, one can factor the
differentials d3 and d5 through 0 groups. �

Theorem 14.8. If G = Cp acts locally linearly on CP2, then the fixed point set is nonempty and satisfies
dim H∗(F; Zp) = 3. In particular, the fixed set consists of

(1) Three isolated points (only when p is odd) or
(2) An isolated point and a 2-sphere or
(3) RP2 (only when p = 2)
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Proof. First note that the action is orientation-preserving, even when p = 2. (Indeed CP2 admits no
orientation-reversing homeomorphism, since a cohomology top class v ∈ H4(X) can be expressed
as v = u ∪ u, where u ∈ H2(X) is a generator. Then t∗(v) = T∗(u ∪ u) = T∗(u) ∪ T∗(u) =
±u ∪±u = u ∪ u = v.)

By local linearity and the orientation preserving character of the action, the fixed point set F
must consist of points and surfaces.

If p is odd or if p = 2 and G acts trivially on integral cohomology, then χ(F) = 3 by the Lefschetz
Fixed Point Theorem.

If p = 2 and G acts nontrivially on H2 = Z̃, then χ(F) = 1, again by LFPT.

In particular, F 6= ∅.

In all cases the action on mod p cohomology is trivial. Because the spectral sequence collapses
and the action on the mod p cohomology must be trivial, we know that dimZp H∗(F; Zp) = 3.

It follows that if the action on cohomology is trivial, then F consists of 3 points or of 1 point and
a 2-sphere.

In the remaining case we have p = 2 and nontrivial action on cohomology. The only combination
of points and surfaces with total mod 2 homology of rank 3 and Euler characteristic 1 is F =
RP2. �

Addendum 1. When p = 2 the fixed set F cannot consist of exactly 3 points, as we show in the next
theorem.

Question 10. Is there such an action on a finite CW complex of the homotopy type of CP2?

Theorem 14.9. A locally linear C2 action on a closed connected n-manifold with finite fixed point has an
even number of fixed points.

Proof. Let D1, D2, . . . , Dr be small invariant disk neighborhoods of the fixed points. Set Y = X−∪Di
and Z = Y/C2. Then Z is an n-manifold with boundary consisting of an odd number r of copies
of RPn−1. And the orbit map Y → Z is a regular 2-fold covering map. Over the boundary one
sees r copies of the standard covering Sn−1 → RPn−1. Each of these coverings is classified by a
map f : Z → K(C2, 1) = RP∞. This shows that r f∗[RPn−1] = 0 in Hn−1(RP∞; Z2). But f on each
boundary can be viewed up to homotopy as the inclusion RPn−1 ⊂ RP∞. And we know that such
a map is injective on mod 2 homology. If r is odd this gives a contradiction. �

Remark 2. A similar argument shows that a locally linear Cp action on a closed connected n-
manifold cannot have exactly one fixed point.

Theorem 14.10. If G = Cp, p odd, acts locally linearly on S2 × S2, then the fixed point set is nonempty
and satisfies dim H∗(F; Zp) = 4. In particular, the fixed set consists of

(1) Four isolated points or
(2) Two 2-spheres or, possibly,
(3) Two isolated points and a single 2-sphere or
(4) A single 2-torus

Proof. Since p is odd one can see that the action on homology is trivial. (There is a little bit more
to say about the special case p = 3.) Assuming the fixed point set is nonempty, then the spectral
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sequence collapses, and we have dim H∗(F; Zp) = 4. Since the action is locally liinear, and orien-
tation preserving (since p is odd), the fixed point set, if nonempty, consists of isolated points and
orientable surfaces. The list gives all possibilities. �

Question 11. The first two cases are standard. Can the third or fourth cases actually happen? Perhaps on a
space of the homotopy type of S2 × S2, but not on the actual manifold? What about the analogous question
for Sn × Sn, n > 2?

Below we attempt to describe the situation for actions of C2 on S2 × S2. there are more possibil-
ities for nontrivial actions on H2, for some of which the action is orientation-reversing, with fixed
set empty or of dimension one or three.

Theorem 14.11. If G = C2 acts on S2 × S2, then the fixed point set is one of the following, where we
organize the case according to the action on homology and the Lefschetz number of the generator

Orientation preserving cases:

(1) Four isolated points, where H2 = Z⊕Z, Λ = 4
(2) Two 2-spheres, where H2 = Z⊕Z, Λ = 4
(3) A single 2-spheres, where H2 = Z[C2], Λ = 2
(4) A 2-torus, where H2 = Z̃⊕ Z̃, Λ = 0
(5) ∅, where Z̃⊕ Z̃, Λ = 0

Orientation reversing cases:

(1) ∅, where H2 = Z⊕ Z̃ or
(2) Two circles, where H2 = Z⊕ Z̃, Λ = 0
(3) S2× S1, where H2 = Z⊕ Z̃, Λ = 0 (perhaps also other 3-manifolds with the homology of S2× S1)

Overall we know that dim H∗(F; Z2) ≤ 4. The Lefschetz number calculations show that the
Euler characteristic, hence dim H∗(F; Z2) is even, hence 0, 2, or 4.

Something that takes extra justification: The fixed point set can’t have both points and surfaces,
and can’t have a nonorientable surface or 3-manifold.

15. OTHER TOPICS THAT MIGHT HAVE BEEN DISCUSSED

15.1. The G-signature theorem.

15.1.1. The g-signature. We give a brief definition of this generalized Lefschets number. Suppose
that the cyclic group Cm, with chosen generator g, acts by orientation preserving homeomorphisms
on a closed oriented 2n-manifold M. The middle homology V = Hn(M) admits a (−1)n-symmetric
bilinear form

· : V ×V → Z

induced by intersection of n-cycles. Then H = Hn(M; C) = V⊗C admits a corresponding Hermit-
ian form

ϕ : H × H → C

where

ϕ(x⊗ α, y⊗ β) =

{
αβ̄(x · y) n even
iαβ̄(x · y) n odd
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Now by averaging the g-module H can be split as H+ ⊕ H−, where ϕ is positive definite on H+

and negative definite on H−, and each of H+ and H− is invariant under g∗. We define

sign(g, M) = trace (g∗|H+)− trace (g∗|H−)

If we think of H+ and H− as representations of G = Cm, then we may define Sign(G, M) to be the
virtual representation H+ − H−, whose character, then, is sign(g, M).

One can actually allow manifolds with boundary, with the only difference being that the decom-
position of H into positive and negative parts must also allow for an orthogonal summand H0 on
which the the Hermitian form vanishes.

This G-signature has formal properties very like similar properties of the ordinary signature.

• sign(G,−M) = −sign(G, M)
• sign(M× N) = sign(M) sign(G, N)
• If (G, M) = (G, M1) sup(G, M2), possibly identified along some components of the bound-

aries of M1 and M2, then sign(G, M) = sign(G, M1) + sign(G, M2)
• If (G, M) = ∂(G, W) for some manifold W, then sign(G, M) = 0.

15.1.2. Dimension 2. Suppose that the cyclic group Cm, with chosen generator g, acts by orientation
preserving homeomorphisms on a closed oriented surface S with isolated fixed points P1, . . . , Pk.
Suppose that in a neighborhood of Pi g acts by rotation through an angle of 2πai/m.

Theorem 15.1.

sign(g, S) =
k

∑
i=1

ζai + 1
ζai − 1

= −i
k

∑
i=1

cot
πai
m

An equivalent trigonometric form is

sign(g, S) = −i
k

∑
i=1

cot
πai
m

15.1.3. Dimension 4. Suppose that the cyclic group Cm, with chosen generator g, acts by orienta-
tion preserving homeomorphisms on a closed oriented 4-manifold M with isolated fixed points
P1, . . . , Pk and 2-dimensional fixed components F1, . . . F`. Suppose that in a neighborhood of Pi g
acts by rotation through angles of 2πai/m and 2πbi/m. Suppose that in the normal bundle to Fj g
acts by rotation by 2πcj/m.

Theorem 15.2.

sign(g, M) =
k

∑
i=1

ζai + 1
ζai − 1

ζbi + 1
ζbi − 1

−
`

∑
j=1

e(Fj)
4ζcj

(ζcj − 1)2

An equivalent trigonometric form is

sign(g, M) =
k

∑
i=1

cot
πai
m

cot
πbi
m

+
`

∑
j=1

e(Fj)cosec2 πcj

m

15.1.4. Dimension n. There are similar results in higher dimensions, but the result is yet more com-
plicated. We omit further details.
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15.2. Localization. A tool especially useful for understanding actions of non-cyclic p-groups.

Suppose that S ⊂ H∗(BG) = H∗G(point) is a multiplicatively closed subset of homogeneous
elements. Let F (S) denote the family of subgroups of G given by

F (S) = {H < G : S ∩ ker(H∗G(point)→ H∗G(G/H)) 6= ∅}

Theorem 15.3. If X is a finite-dimensional G-CW-complex and A ⊂ X be a G-invariant subcomplex. Let
S ⊂ H∗(BG) be a multiplicatively closed subset of homogeneous elements. Assume X − A has only finitely
many orbit types, all of the form G/H, H ∈ F (S). Then the inclusion A→ X induces an isomorphism

S−1H∗G(X)→ S−1H∗G(A)

15.3. Converse of Smith theory.

Theorem 15.4 (L.Jones). Let F be a compact polyhedron that is Z/p-acyclic. Then there is an action of Cp

on a compact contractible polyhedron X, with fixed point set XCp = F.

Theorem 15.5 (Edmonds-Lee). Let p and q be distinct odd primes. A closed manifold M is the fixed point
set of a Cpq action on some Euclidean space if and only if the tangent bundle of M stably admits a complex
structure.

15.4. Groups acting without fixed points on disks. Deep theorem of R. Oliver characterizing
groups that act on some compact disk without a fixed point. Easier result:

Theorem 15.6 (Edmonds-Lee). A compact Lie group acts smoothly on some Euclidean space without fixed
points if and only if it is not an extension of a torus group by a finite p-group.

15.5. Group actions on products of spheres.

15.6. Representations at fixed points.

15.6.1. Some elementary representation theory.

15.6.2. Isolated fixed points. How closely related must the representations of a group action on the
neighborhoods of isolated fixed points be, for example on a sphere?

15.7. Group actions on 3-manifolds.

15.7.1. The Smith Conjecture. The classical Smith Conjecture is that if the fixed point set K of a finite
group G acting smoothly (or piecewise linearly) on the 3-sphere is a simple closed curve, then it is
unknotted.

Ironically counterexamples to the analogous conjecture in higher dimensions were found earlier.
Gordon found nontrivial knotted 2-spheres in S4 fixed by a finite cyclic action.

15.7.2. Groups acting freely on S3. Milnor compiled the list of possible finite groups that might act
freely on the 3-sphere. The ones that do not correspond to linear actions have received a lot of
scrutiny. It is a consequence of the Geometrization Conjecture, claimed by Perelman, that all free
actions on S3 are equivalent to linear actions.

15.7.3. Periodic Knots. A knot is periodic if it is invariant under (not fixed by) a cyclic group action.
Many papers have been written on the subject, finding invariants of periodic knots, calculating the
possible periods, etc.
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15.7.4. Circle actions. Raymond. Classification of circle actions on 3-manifolds via their weighted
orbit spaces (surfaces).

15.8. Group actions on 4-manifolds.

15.8.1. Torus actions. Raymond. Classification of torus actions on 4-manifolds via their weighted
orbit spaces (surfaces).

15.8.2. Circle actions. Pao, Fintushel. Classification of circle actions on 4-manifolds via their weighted
orbit spaces (3-manifolds).

15.8.3. Applications of gauge theory and Seiberg-Witten invariants.

15.8.4. Finite group actions. Edmonds, Ewing, Hambleton, Lee, Wilczynski, McCooey, Tanase.

15.9. Group actions on aspherical manifolds.

15.9.1. Work of Conner and Raymond.

15.9.2. Totally Asymmetric Manifolds. We survey the results of a search for manifolds that admit no
effective action whatsoever. This first such examples were connected sums of aspherical manifolds;
then isolated examples of asymmetric aspherical manifolds in various higher dimensions; then
aspherical 3-manifolds; then geometric examples in higher dimensions.

15.10. Simply connected asymmetric manifolds.

15.10.1. Work of Volker Puppe. Simply connected 6-manifolds with no nontrivial orientation pre-
serving periodic maps.

15.10.2. Work of Matthias Kreck. Simply connected 6-manifolds with no nontrivial periodic maps at
all.
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APPENDIX A. TOPOLOGY OF MANIFOLDS

An n-manifold is a (Hausdorff, second countable, paracompact) topological space M such that
each point x ∈ M has a neighborhood U ⊂ M such that U is homeomorphic to an open subset of
Rn.

An n-manifold with (possible) boundary is a (Hausdorff, second countable, paracompact) topo-
logical space M such that each point x ∈ M has a neighborhood U ⊂ M such that U is homeo-
morphic to an open subset of Rn

+ = {x ∈ Rn : xn ≥ 0}. Sometimes for emphasis we include an
exponent, as in Mn, to indicate the dimension of the manifold.

The boundary of an n-manifold M with boundary is

∂M = {x ∈ M : x has no neighborhood homeomorphic to an open set in Rn}
Then ∂Mn is an (n− 1)-manifold. The interior of M is M− ∂M.

Examples of manifolds:

(1) Any open subset of Rn

(2) The n-sphere Sn = {x ∈ Rn : |x| = 1}
(3) The product of two manifolds, e.g., the product of two spheres, is a manifold. (Dimension

adds.)
(4) Surfaces of higher genus.
(5) Projective spaces.
(6) Connected sum of two n-manifolds is an n-manifold: Remove the interior of a small disk

from each and identify the boundary spheres. E.g. a genus two surface is a connected sum
of two tori.

Examples of manifolds with boundary:

(1) Any open subset of Rn
+

(2) The n-disk Dn = {x ∈ Rn : |x| ≤ 1}
(3) The product of two manifolds, one with boundary and one without, e.g., the product of a

spheres and a disk, is a manifold with boundary. (Dimension adds.) More generally the
product of two manifolds with boundary.

(4) Annulus, Möbius band.
(5) Any n-manifold with the interior of a (nice) little n-ball removed.

Theorem A.1 (Classification of surfaces). A compact connected 2-manifold (without boundary) is a
sphere, torus, projective plane, or connected sum of these. The only relations are generated by

(1) S2#M2 ∼= M2

(2) P2#T2 ∼= P2#P2#P2

Compact surfaces without boundary are determined up to homeomorphism by Euler character-
istic and orientability.

Fact: Every 2-manifold can be triangulated, that is, expressed as (the topological realization of)
a simplical complex. Massey gives the classification of surfaces, assuming they are triangulated.

In dimension 3 all manifolds can also be triangulated. But in higher dimensions there are mani-
folds that cannot be triangulated.

All differentiable manifolds admit compatible triangulations. But not all triangulable manifolds
have compatible (or any) differentiable structure.
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Theorem A.2 (Boundary collars). If M is an n-manifold with boundary, then there is an embedding of
∂M× [0, 1)→ M (identity on ∂M× {0} → ∂M) onto a neighborhood of ∂M in M.

Two homeomorphisms of a manifold are said to be isotopic if they are homotopic through home-
omorphisms. An isotopy of a submanifold Nn ⊂ Mm is a homotopy H : Nn × I → Mm such that
it is an embedding at each level. I.e. each map Ht : Nn → Mm defined by Ht(x) = H(x, t) is an
embedding, and H0 is the inclusion map. If Nn is a locally flat submanifold of Mm, then any such
isotopy extends to an ambient isotopy, that is an isotopy of the identity defined an all of Mm.

One important use of boundary collars is to show that the result of gluing two manifolds to-
gether via a homeomorphism of (parts of) their boundaries depends only on the gluing map up to
isotopy.

Theorem A.3 (Homogeneity). If M is a connected n-manifold and x, y ∈ M, then there exists a homeo-
morphism f : M → M such that y = f (x). The homeomorphism can be chosen to be the identity outside
any connected open set containing x and y. More generally, if n > 1, then any finite set of points can be
moved to any other set of the same number of points, under any given correspondence of the points, by a
homemorphism that is isotopic to the identity.

Theorem A.4 (Alexander Trick). Any homeomorphism f : Dn → Dn that is the identity on the boundary
Sn−1 is isotopic to the identity, rel Sn−1.

If M and N are n-manifolds with boundary and f : ∂M→ ∂N is a homemorphism, then M∪ f N
is an n-manifold without boundary. More generally one can identify suitable parts of the bound-
aries to produce a new manifold with boundary. We will content ourselves with the description of
adding a handle. Let M be an n-manifold with boundary. Consider the n-ball written as a product
Dk × Dn−k. consider an embedding f : Sk−1 × Dn−k → ∂M. (We require that the embedding be
“tame” or “flat.”) Then

M ∪ f Dk × Dn−k

is also an n-manifold with boundary.

An embedded submanifold Nn ⊂ Mm is locally flat if each point x ∈ Nn has a neighborhood U ⊂
Mm homeomorphic to V ×Rm−n, where V is a neighborhood of x in Nn and the homeomorphism
is the identity as a map V × {0} → V ⊂ Nn. smooth submanifolds are automatically locally flat.

If Dn → Mn is an embedding, we say it is locally flat, if the restriction Sn−1 → Mn is locally flat.
It is locally flat on the “inside,” of course. But the example of the Alexander Horned Sphere shows
that it need not be locally flat on the outside. The argument for the existence of boundary collars
shows that locally flat implies flat in codimension one.

Theorem A.5 (Annulus Conjecture, Hard, due to Kirby, 1969). If Dn
0 ⊂ Int Dn

1 is a locally flat embed-
ding of one n-disk in the interior of another (n 6= 4), then cl(Dn

1 − Dn
0 ) ∼= Sn−1 × [0, 1].

The Annulus Theorem is true and much easier in the differentiable or PL categories.

Corollary A.6. Two locally flat embedded n-disks (n 6= 4) in the interior of a connected n-manifold are
isotopic.

Sketch. By homogeneity we may assume the two disks have an interior point in common. Using an
exterior collar neighborhood we may shrink one disk by an isotopy so it lies wholly in the interior
of the other. The Annulus Theorem says the difference between the two is an annulus. Using an
exterior collar and the annulus coordinates we may isotope the interior disk until it coincides with
the bigger one. �



INTRODUCTION TO TRANSFORMATION GROUPS 49

APPENDIX B. GROUP ACTIONS ON SETS

We consider actions of a finite group G on a finite set X. Basic definitions are the same as we
had earlier, viewing X as a space with the discrete topology. The emphasis here is on counting sets,
orbits, and isotropy groups, etc. This technique arises in elementary group theory. The statements
here are quite standard; we adapted from Rotman [7], Section 2.7.

An action of G on X is transitive if there is only one orbit.

Proposition B.1. If G acts on a set X, then X is the disjoint union of the orbits and

|X| = ∑
i
|G(xi)|

where the sum extends over a set of orbit representatives, one from each orbit.

Proposition B.2. If G acts on a set X, and x ∈ X, then

|G(x)| = [G : Gx]

the index of the isotropy subgroup of x in G.

Corollary B.3. If G acts on a set X, then the cardinality of any orbit divides |G|, the order of G.

A particular example important in finite group theory is the action of G on itself by conjugation.
In this case, the isotropy group Gx = CG(x), the centralizer of x in G.

Corollary B.4 (Class Equation). If G is a finite group, then

|G| = |Z(G)|+ ∑
i
[G : CG(xi)]

where the sum extends over a set of conjugacy class representatives, one from each class having more than
just one element.

The class equation leads to a proof that p-groups have nontrivial center. And group action
considerations also provide a proof that the alternating groups An, n ≥ 5, are simple.

Theorem B.5 (“Burnside’s Lemma”). If a finite group G acts on a finite set X with exactly n orbits, then

n =
1
|G| ∑

g∈G
|Xg|

where Xg = {x ∈ X : gx = x}.

Note that this fixed point notation clashes a bit with traditional notation in group theory, where
if x, g ∈ G, then xg = gxg−1, and xG = {gxg−1 : g ∈ G}.

Burnside’s Lemma has applications in various combinatorial counting problems.

APPENDIX C. REPRESENTATION THEORY

We refer to Serre [9]
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C.1. Definitions. If G is a finite group and V is a vector space over a field k, let GL(V) denote
the group of automorphisms of V. Then any group homomorphism ρ : G → GL(V) is a (linear)
representation of G over k. For the most part we will restrict attention here to the case of k = C or R.

A useful way of thinking about representations is as k[G]-modules, where k[G] denotes the group
algebra of G with coefficients in k. A representation ρ : G → GL(V) makes V into a k[G]-module.

If we identify V with kn by choosing a basis, then each ρ(g) can be viewed as a matrix.

Two representations ρi : G → GL(Vi), i = 1, 2, are equivalent if there is a vector space isomor-
phism f : V1 → V2 such that ρ2(s)( f (v1)) = f (ρ1(s)(v1)) for all v1 ∈ V1 and s ∈ G.

The direct sum of two representations ρi : G → GL(Vi), i = 1, 2 is given by ρ1 ⊕ ρ2 : G → V1 ⊕V2
in the usual way.

A representation V is irreducible if it has no nontrivial submodule. One shows that any invariant
submodule W of a k[G]-module V has a G-invariant complement, that is reducible representations
are decomposable. For this the field k must have characteristic 0 or prime to the order of G. Then any
representation is equivalent to a direct sum of irreducible representations. As we will see, it turns
out that there are only finitely many irreducible representations for any finite group, and they are
all contained in the so-called regular representation k[G].

C.2. New representations from old. Let ρ : G → GL(V) is a representation.

C.2.1. Restriction to a subspace. Suppose W is a G-invariant subspace of V. Then there is a corre-
sponding representation ρ̄ : G → GL(W) called the restriction of ρ to W. Sometimes we denote
ρ̄ = ρ|W .

C.2.2. Restriction to a subgroup. If H is a subgroup of G we also have a representation ρH of H given
simply by restricting ρ to the subgroup. We might denote this as ResG

H(ρ).

C.2.3. Inflation. Suppose Q is a quotient group of G and ρ : Q → GL(V) is a representation of
Q. Then we can obtain a representation ρ̂ of G simply by composing ρ with the quotient map
π : G → Q.

C.2.4. Induction. Suppose that H is a subgroup of G of index n, and that ρ : H → GL(V) is
a given representation of H. Then we define the induced representation of G on the vector space
Maps(G/H, V) by the following: If φ : G/H → V and s ∈ G, define

(s · φ)(xH) = φ(xs−1H).

In terms of modules the induced representation can be written as V ⊗k[H] k[G/H]. We will some-
times denote this representation by IndG

H(ρ).

C.3. Examples. Here we give direct, explicit descriptions of some standard representations, espe-
cially of groups that arise as groups of symmetries of regular polyhedra. One can use the theory
of characters as described in the following two sections to see that we have described all the irre-
ducible complex representations of these groups.

C.3.1. Trivial representation. For any group G this is the constant map ρ0 : G → GL(V), where
ρ0(s) = idV for all s ∈ G. This is reducible unless dim V = 1.
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C.3.2. Regular representation. For any group G this is the module V = k[G]. It has dimension, or
degree, equal to g = |G|, the order of G. It turns out that all irreducible reresentations of G occur
inside k[G], with predictable multiplicity.

C.3.3. C2. The cyclic group of order 2, with generator T, has two representations of degree 1,
namely, the trivial representation, and the representation where T acts by multiplication by −1.
It is an elementary exercise to see that any representation of C2 is a sum of copies of these two
representations. In particular k[C2] is equivalent to the sum of these two representations, for any
field of characteristic different from 2. Over a field of characteristic 2, this is not true.

C.3.4. Cn. The cyclic group of order 2. Over the complex numbers we have exactly n 1-dimensional
representations, where a fixed generator T ∈ Cn goes to multiplication by any given nth root of
unity. One can see that these nontrivial representations define degree 2 irreducible real representa-
tions (unless n is even and the generator goes to ±1). Over the real numbers these representations
correspond to sending the generator T to(

cos θ − sin θ
sin θ cos θ

)
where θ = 2πk/n.

C.3.5. Dn. The dihedral group of order 2n, with presentation〈
S, T : Sn, T2, TSTS

〉
There will be two cases, depending whether n is even or odd.

• n even. In this case any combination of multiplication by ±1 can be assigned to S and T
independently, yielding 4 degree 1 representations. On the other hand if ω is any complex
nth root of unity and h is any integer, then the assignments

Sk →
(

ωhk 0
0 ω−hk

)
and TSk →

(
0 ω−hk

ωhk 0

)
define a degree 2 representation ρh. These are already covered by the preceding for h = 0
or h = n/2. But for 0 < h < n/2, we get n/2− 1 representations of degree 2, an addition to
the four of degree 1.
• n odd. In this case one only has two degree 1 representations defined by S→ 1 and T → ±1.

One still has the representations ρh, for 0 < h ≤ (n− 1)/2.

C.3.6. S3. The symmetric group of degree 3 and order 6. Of course this is the same as D3. We
describe the irreducible representations slightly differently as follows: We have the trivial repre-
sentation; we have the inflation of the nontrivial degree 1 representation of the quotient C2. and we
have a nontrivial representaiton of the normal C3 of degree 1, induced up to a degree 2 representa-
tion.

C.3.7. S4. The symmetric group of degree 4 and order 4! = 24. It can also be thought of as the full
group of symmetries of a regular tetrahedron, or the group of orientation-preserving symmetries
of the cube or octohedron. The latter description defines a degree 3 representation that can easily
be seen to have no invariant subspace, hence be irreducible. Also the permutation representation
defined on C4 by permuting coordinates, splits into a trivial representation (spanned by the sum of
the permuted basis vectors) and an irreducible degree 3 representation.
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C.3.8. A4. The alternating group of degree 4 and order 12, also the group of orientation preserving
symmetries of the tetrahedron. The action of A4 on the tetrahedron defines a degree 3 represen-
tation that can be seen to have no invariant subspace, hence be irreducible. The group A4 has
a normal subgroup isomorphic to C2 × C2, with quotient group C3. As such there are degree 2
representation obtained by inflation from representations of C3. Finally, there are degree 3 repre-
sentations induced from degree 1 representations of C2 × C2.

C.3.9. A5. The alternating group of degree 5 and order 60, the group of orientation preserving
symmetries of the regular icosahedron or dodecahedron, which describes an irreducible degree 3
complex representation (but defined over the reals). The permutations of 5 letters give a degree 5
representation containing a degree 1 trivial representation; its degree 4 complement is seen to have
no invariant subspaces, hence be irreducible. Character theory, as described below, points to an
irreducible degree 5 representation, which we need to describe explicitly.

C.4. Characters and their properties. If ρ : G → GL(V), then its character is defined to be the
function χρ : G → k given by χρ(s) = Tr(Mρ(s)), where Mρ(s) is the matrix of the automorphism
ρ(s) with respect to some basis of V.

Here are some immediate properties that follow from well-known aspects of elementary matrix
theory:

(1) χρ is well-defined, independent of choice of basis.
(2) χ(1) = dim(V) = deg(ρ).
(3) χ(tst−1) = χ(s) for all s, t ∈ G. That is, χ is a “class function” on G.
(4) Equivalent representations have the same character.
(5) The character of a direct sum of representations is the sum of the characters of the individual

representations.
(6) The character of a tensor product (not defined here) is the product of the characters.

Theorem C.1. Representations with the same character are equivalent.

Theorem C.2. Orthogonality Relations

(1) If χ1 and χ2 are two characters for diffferent irreducible representations, then

∑
s∈G

χ1(s)χ2(s)∗ = 0

(2) If χ is the character of any irreducible representation, then

∑
s∈G

χ(s)χ(s)∗ = |G|

(3) If χ1, . . . , χk is the full list of all characters of irreducible represenations of G and s ∈ G is fixed,
then

k

∑
i=1

χi(s)χi(s)∗ = |G|/|Conj(s)|

where Conj(s) denotes the conjugacy class of s.

A special case of the last statement above arises when one considers the characters evaluated on
the identity element of the group.
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Corollary C.3. If n1, . . . , nk denote the degrees of the irreducible representations of G, then

k

∑
i=1

n2
i = |G|

Remark 3. One can expand the idea of the orthogonality relations for characters to define an innner
product on the space of all class functions on G by setting

〈φ, ψ〉 =
1
|G| ∑

s∈G
φ(s)ψ(s)∗

It turns out that this defines a positive definite inner product and that the characters of the irre-
ducible representations form an orthonormal basis.

The point of all of these formulas is that with some partial knowledge of representations of G
one can often use this additional information to determine the rest of the characters of G.

C.5. Complex character tables. Here we record the character tables for some basic finite groups
associated with symmetries of regular polyhedra in three dimensions, as described in an earlier
section.

The top row of each table lists representatives of each conjugacy class. The second row lists the
number of elements in each of the conjugacy classes, conj(s) = |G|/|C(s)|, where C(s) denotes the
centralizer of s in G. Finally, each subsequent row lists the values on each conjugacy class of one of
the characters of irreducible representations. Note that the orthogonality relations imply that the
rows are orthonormal and the columns are also formally orthogonal with the column correspond-
ing to s ∈ G having norm 1/|C(s)|.

C.5.1. Cn.
Cn 1 Tk(1 ≤ k ≤ n− 1

conj(c) 1 1
χj (0 ≤ j ≤ n− 1) 1 ω jk

C.5.2. Dn. We must handle the cases when n is even and when n is odd separately.

Dn(n even) 1 Sk(1 ≤ k ≤ n/2 T TS
conj(c) 1 2 n/2 n/2

ψ1 1 1 1 1
ψ2 1 1 −1 −1
ψ3 1 (−1)k 1 −1
ψ4 1 (−1)k −1 1

χj (0 < j < n/2) 2 ω jk + ω−jk 0 0

Dn(n odd) 1 Sk(1 ≤ k ≤ (n− 1)/2 T
conj(c) 1 2 n

ψ1 1 1 1
ψ2 1 1 −1

χj (0 < j < n/2) 2 ω jk + ω−jk 0

C.5.3. S3. This is just D3, which is given above.
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C.5.4. A4.
A4 1 (12)(34) (123) (132)

conj(c) 1 3 4 4
χ1 1 1 1 1
χ2 1 1 ω ω2

χ3 1 1 ω2 ω
χ4 3 −1 0 0

C.5.5. S4.
S4 1 (12) (12)(34) (123) (1234)

conj(c) 1 6 3 6 6
χ1 1 1 1 1 1
χ2 1 −1 1 1 −1
χ3 2 0 2 −1 0
χ4 3 1 −1 0 −1
χ5 3 −1 −1 0 1

C.5.6. A5.
A5 1 (12)(34) (123) (12345) (12354)

conj(c) 1 15 20 12 12
χ1 1 1 1 1 1
χ2 3 −1 0 −α −β
χ3 3 −1 0 −β −α
χ4 4 0 1 −1 −1
χ5 5 1 −1 0 0

C.6. Orthogonal and unitary groups. The canonical Gram-Schmidt orthogonalization process de-
fines a strong deformation retraction of the general linear group GL(Rn) into its compact subgroup
O(n). Alternatively put, if V is an R[G]-module, then a standard (but not equivariant) positive
definite inner product on V can be averaged out over the group to yield a G-invariant positive def-
inite inner product. But any positive definite inner product is equivalent to the standard one. This
shows that the given G action on V is equivalent to an orthogonal action. Similarly a complex rep-
resentation G → GL(Cn) is equivalent to one taking values in the unitary group U(n) of matrices
preserving a standard hermitian form.

Here are several well-known facts about the orthogonal groups, especially those in low dimen-
sions:

(1) The group SO(n) acts transitively on the sphere Sn−1 with isotropy group (conjugate to)
SO(n− 1).

(2) The group SO(n) has dimension n(n− 1)/2
(3) The group SO(2) is isomorphic to the multiplicative group S1 of unit length complex num-

bers.
(4) The group SO(3) is homeomorphic to the real projective 3-space RP3. Its universal covering

group Spin(3) is isomorphic to the group S3 of unit quaternions. Define an action of S3 on
quaternions by conjugation. This preserve the purely imaginary 3-plane and defines the
required 2 to 1 map S3 → SO(3).

(5) The quotient SO(4)/{±I} is isomorphic to SO(3) × SO(3). The action of SO(4) on R4

extends to one on Λ2R4. The latter splits into eigenspaces for the Hodge star operator into
two orthogonal 3-planes of self-dual and anti-self-dual 2-forms, preserved by the action of
SO(4), and thus defining the required 2-to-1 map SO(4)→ SO(3)× SO(3).
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Here are a few observations relevant to finding the lowest dimensional sphere on which a particular
group acts:

(1) The group Cn
2 embeds in SO(n + 1), but not in SO(n).

(2) If p is odd, then the group Cn
p embeds in SO(2n), but not in SO(2n− 1).

(3) The group A6 embeds in SO(5), but not in SO(4).

C.7. Real representations from complex representations. Here we will explain how to determine
all irreducible real representations of a finite group, given knowledge of the complex representa-
tions.

APPENDIX D. COHOMOLOGY OF GROUPS

A nice reference is [5] We generally restrict attention to finite groups, however.

We take a topological point of view and proceed as follows. Given a group G there is a connected
space K(G, 1) with π1 = G and πk = 0 for k ≥ 2. If M is any Z[G]-module, then we define

Hk(G; M) := Hk(K(G, 1); M)

where on the right singular cohomology and local coefficients are understood. Homology is simi-
larly defined.

Alternatively one bypasses the topology and directly constructs a free or projective resolution
P∗ of Z as a Z[G]-module, (that would correspond to the cellular chain complex of the universal
covering of a K(G, 1)-space):

· · · → P3 → P2 → P1 → Z→ 0

and defines

Hk(G; M) := Hk(HomZ[G](P∗, M)) and Hk(G; M) := Hk(P∗ ⊗Z[G] M)

The space K(G, 1) is determined up to (based) homotopy equivalence. More generally, the resolu-
tion is well-defined up to chain homotopy equivalence. It follows that the homology and cohomol-
ogy groups are well-defined.

In the case G = Cn, with generator T ∈ G, there is a simple and explicit resolution

· · · N→ Z[G] D→ Z[G] N→ Z[G] D→ Z[G] ε→ Z→ 0

where N = ∑ Ti (i.e., multiplication by this element of the group ring), D = 1− T, and ε(aiTi) =
∑ ai is the augmentation map. To compute H∗(Cn; Z), just tensor with Z, yielding the complex
(after dropping the right hand Z)

· · · N→ Z
D→ Z

N→ Z
D→ Z

ε→ Z→ 0

It follows that

Hk(Cn; Z) =


Z if k = 0
Zn if k > 0, odd
0 if k > 0, even

This provides the prototype for a finite group of periodic (co)homology. The groups of periodic
cohomology of period 2 are precisely the cyclic groups.
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APPENDIX E. TOPOLOGICAL GROUPS

A topological group is a group G that is endowed with a Hausdorff topology such that the group
operations

multiplication µ : G× G → G and inversion ι : G → G

are continuous. The Hausdorff assumption implies that a finite topological group is always dis-
crete.

The main examples for us are GLn(R), topologized as a subspace of Rn2
in the usual way, and

its closed subgroups (with the induced topology).

Hilbert’s Fifth Problem was a long-standing question in the area, asking for a characterization of
Lie groups via transformation groups, where a group acting on a manifold must be a Lie group.

Gleason proved that a finite-dimensional, locally Euclidean group is a Lie group. Montgomery
and Zippin showed that a locally compact, locally connected, finite-dimensional topological group
is a Lie group.

An important step was to show that there is a neighborhood of the identity in G which contains
no entire non-trivial subgroup of G.

There is a remaining open problem in this area, now known as the Hilbert-Smith Conjecture.
There are several formulations. One is that no p-adic group can act effectively on a manifold.
Another equivalent version is that no compact manifold Mm admits a homeomorphism h : Mm →
Mm such that (1) Each orbit {hn(z)} is “small”, and (2) {hn : n ∈ Z} is relatively compact in
the compact-open topology on Homeo(Mm). The question is can one of these compact, locally
disconnected groups act effectively on a manifold.

It is a long standing conjecture in topology that if a compact group acts effectively on a manifold,
then the group must be a Lie group–that is, the group itself must be locally euclidean. A version of
this was proved by Montgomery-Zippin, but the most general statement still seems to be open. It
comes down to a question whether certain weird groups like p-adic numbers or solenoids, or other
inverse limit groups can act on a (finite-dimensional) manifold.

APPENDIX F. COMPACT LIE GROUPS

A nice reference is Adams, [1]. We satisfy ourselves with a few basic definitions and fundamental
facts.

A Lie group is a smooth (C∞) n-manifold G that is also a group, with multiplication map µ :
G× G → G and inverse map ι : G → G such that both µ and ι are smooth.

We are mainly interested in compact Lie groups. Examples:

(1) Tori Tn = S1 × S1 × · · · × S1

(2) The orthogonal group O(n) and its connected component of the identity the special orthog-
onal group SO(n). The orthogonal group consists of all real n × n matrices A such that
AAT = I. These are the matrices that preserve the standard inner product on Rn. Such
matrices have determinant ±1.The special orthogonal group is the subgroup consisting of
orthogonal matrices of determinant +1.

(3) The unitary group U(n) and the special unitary group SU(n), the complex analogs of the
orthogonal groups. The unitary group consists of complex n × n matrices A such that
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AA∗ = I, where A∗ is the conjugate transpose of A. The special unitary group is the
subgroup consisting of matrices of determinant 1, not just norm 1.

(4) The spinor group Spin(n), the 2-fold covering group of SO(n), simply connected for n ≥ 3.
(5) Some exceptional Lie groups, including G2 and E8.

Every compact Lie group G contains a maximal torus subgroup T ⊂ G, which plays a role some-
what analogous to that of the Sylow subgroups in finite group theory. Any two maximal tori are
conjugate; and a compact connected Lie group is the union of its maximal tori.

If T ⊂ G is a maximal torus in a compact connected Lie group G, then the group W = NG(T)/T
is a finite group called the Weyl group of G. Note that W acts on T by conjugation in G, and hence
acts on H∗(T).

It turns out that H∗(G) = H∗(T)W , at least with rational coefficients. One calculates H∗(T) from
the Künneth formula as an exterior algebra in k variables of degree 1, where k = dim T. Then one
needs to understand the action of W.

Similarly for complex representation rings: R(G) = R(T)W . One understands R(T) as being a
polynomial algebra generated by basic 1-dimensional representations corresponding to the indi-
vidual circle factors. Again one needs to understand the action of the Weyl group.
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