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P R E FAC E 

In topology, one studies such objects as topological spaces, topological 
manifolds, differentiable manifolds, polyhedra, and so on. In the theory of 
transformation groups, one studies the symmetries of such objects, or 
generally subgroups of the full group of symmetries. Usually, the group of 
symmetries comes equipped with a naturally defined topology (such as the 
compact-open topology) and it is important to consider this topology as 
part of the structure studied. In some cases of importance, such as the group 
of isometries of a compact riemannian manifold, the group of symmetries 
is a compact Lie group. This should be sufficient reason for studying compact 
groups of transformations of a space or of a manifold. An even more com- 
pelling reason for singling out the case of compact groups is the fact that one 
can obtain many strong results and tools in this case that are not available 
for the case of noncompact groups. Indeed, the theory of compact trans- 
formation groups has a completely different flavor from that of noncompact 
transformation groups. 

There has been a good deal of research done on this subject in recent 
years. as a glance at the bibliography will show. This has convinced us of the 
need for a reasonably extensive introduction to the subject which would be 
comprehensible to a wide range of readers at  the graduate level. 

The main obstacle to the writing of a successful introduction to this 
subject is the fact that it draws on so many disparate parts of mathematics. 
This makes it difficult to write such an introducton which would be readable 
by most second-year graduate students, which would cover a large portion of 
the subject, and which would also touch on a good amount of interesting 
nontrivial mathematics of current interest. To overcome this obstacle, we 
have endeavored to keep the prerequisites to a minimum, especially in 
early parts of the book. (This does not apply to all of Chapter 0. For a 
reader with minimal background, we recommend the reading of the first 
three sections of that chapter, then skipping to Chapter I, with a return to 
parts of Chapter 0 when needed. Many readers would do well to skip Chap- 
ter 0 altogether.) 

An indispensable prerequisite for reading this book is a first course in 

ix 
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algebraic topology. The requirements in this direction are fairly minimal 
until the last half of Chapter 111, where some Cech theory is needed. PoincarC 
duality is not used until Chapter IV, and spectral sequences appear only in 
Chapter VII. A considerable saving in the algebraic topological demands on 
the reader results from the fact that we do not consider the theory of gen- 
eralized manifolds in this book. There is, of course, a resulting loss in the 
generality of some of the theorems, but we believe this is minimal. (Most 
current interest is in the case of smooth or locally smooth actions, and there 
the loss is practically nonexistent.) 

Although we are almost entirely concerned with actions of compact Lie 
groups in this book, there is really very little about Lie groups which the 
reader needs to know, outside of a few simple facts about maximal tori 
which we develop in Chapter 0, Section 6 .  This results from the fact that 
we concentrate on those theorems for which the classification theory of 
compact Lie groups, detailed case by case calculations in representation 
theory, and similar considerations are not needed. (This restriction on the 
subject matter is also made for purely esthetic reasons.) 

We have endeavored to minimize the prerequisite background in differ- 
ential geometry by not treating smooth actions until Chapter VI. (Actually, 
much of the earlier parts of the book concern actions which are smooth, 
and we occasionally comment on this aspect for the benefit of readers, 
probably a majority, who understand it.) A major part of the book (Chapters 
IV and V) is devoted to the study of what we call locally smooth actions. 
This is a category of actions which we feel is the correct analogue of the 
category TOP of topological manifolds. Roughly speaking, it lies between 
the category of smooth actions on differentiable manifolds and that of con- 
tinuous actions on topological manifolds, but avoids many of the patholog- 
ical aspects of both of these categories. The consideration of locally smooth 
actions was partially prompted by our desire to delay the discussion of 
smooth actions and, on the other hand, to disregard the theory of generalized 
manifolds. However, locally smooth actions should be regarded as a basic 
subject for study (second only, in interest, to smooth actions), and should 
lead to interesting results in the future. 

Since the theory of compact transformation groups can largely be re- 
garded as a generalization of the theory of fiber bundles, it is not surprising 
that we make use of some elementary bundle theory in this book. The 
necessary background material in this direction is developed as needed. 

The main activity in recent years on compact transformation groups 
has concerned smooth actions. Many of the recent results in this direction 
fall outside our scope because of the background restrictions we have 
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placed on the book. It is also clear that many such results will be obsolete 
by publication time and we have ruled out their inclusion for this reason. 
A major area in the theory of smooth actions is occupied by the well- 
developed cobordism theory of group actions. We do not consider this 
theory here because of the prior existence of an excellent introduction to 
it in the pioneering monograph of Conner and Floyd [8]. 

The background demands on the reader are gradually increased through- 
out the book. This is especially true of the last four sections of Chapter 
VI and of parts of Chapter VII. 
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CHAPTER 0 

BACKGROUND ON TOPOLOGICAL GROUPS AND LIE GROUPS 

In this chapter, we present some background material on topological 
groups, the classical groups, and compact Lie groups. Much of the material 
in this chapter is used only rarely in later chapters, so that it is not at all 
necessary for the reader to be familiar with all of the results presented 
here. In fact, readers with a scant background would probably be wise to 
read the first three sections of this chapter and then pass directly to Chapter 
I, returning to this chapter only when needed. Several of the proofs are 
omitted, when giving them would take us too far afield, but all the results 
are readily available in a number of standard sources on Lie groups, such 
as Chevalley [l], Hochschild [l], and Pontriagin [l]. 

1. ELEMENTARY PROPERTIES OF TOPOLOGICAL GROUPS 

A topological group is a Hausdorff space G together with a continuous 
multiplication G x G + G [usually denoted by juxtaposition (g ,  h )  H gh] 
which makes G into a group, and such that the map g - g - l  of G +  G 
is continuous. The identity element of G will usually be denoted by e. 

For g E G there is the left translation map L,: G + G defined by Lo@) 
= gh. Clearly L,h = L,  o Lh and LS-' = (L,)-l and it follows that each 
L ,  is a homeomorphism of G onto itself. Similarly, right translation R,: 
G --f G defined by R,(h) = hg-l satisfies R ,  o Rh = Rgh and R,-I = (RU)-l, 
and each R ,  is a homeomorphism. 

For subsets A and B of G, we denote by AB, the subset {ab I a E A ,  b E B }  
of G ;  that is, the image of A x B under multiplication G x G + G. Simi- 
larly, A-l = {a-l I a E A } ,  and An = {alas . . . a, I ai E A } .  

Since L,  is a homeomorphism we see that gU is a neighborhood of g iff 
U is a neighborhood of e. Moreover, if U is a neighborhood of e, then so 
are U-l and U n U-I. A neighborhood U of e is called symmetric if U 
= U F ,  and it follows that the symmetric neighborhoods of e form a neigh- 
borhood basis at e and this basis completely describes the topology of G. 

1 



2 0. BACKGROUND ON TOPOLOGICAL GROUPS AND LIE GROUPS 

From continuity of the multiplication map G x G x G +  G at the 
point (e, g,  e) ,  we obtain the following lemma. 

1 .I. Lemma 
borhood V of e with VgV c U. ! 

Given g E G and a neighborhood U of g, there exists a neigh- 

Similarly, from multiplication G x - - . x G + G we have the following 
lemma. 

1.2. Lemma 
a neighborhood V of e with Vn  c U. 

Given a neighborhood U of e and an integer n there exists 

1.3. Proposition If H is a subgroup of a topological group G, then R 
is also a subgroup. f l  H is normal, then so is R. 

Proof Let p :  G x G + G be p(g,  h )  = gh-l. Then 

p(R X R) = p ( H  x H )  c p ( H  x H )  = R 

so that B is a subgroup. If H is normal, then, since L,R,: G ---f G taking 
h F+ ghg-l is a homeomorphism, we have 

gRg-' = L,R,(R) = L,R,(H) = B 

so that R is normal. 

1.4. Proposition Let H be a closed subgroup of G. Then the space GIH 
of left cosets gH of W in G, with the quotient topology induced by the ca- 
nonical map p : G + G/H, is a Hausdorff space and p is continuous and open. 

Proof The map p is continuous by definition and it is open since q-lq(U) 
= UH = UIEH Uh is open for all open U c G. To show that G / H  is Haus- 
dorff, suppose that g,H # g,H; that is gy1g2 @ H. Since H is closed, 1.1 
implies that there is a symmetric neighborhood U of e with (Ug;lgZU) n H 
= 0. Thus g;'g,U n UH = 0 which implies that g,U n g,UH = 0 
and hence that g,UH n g,UH = 0. However, p(giU) = giUH are then 
disjoint open sets in GIH containing g,H and g,H. 

1.5. Proposition 
G, then GIH is a topological group. 

I f  H is a closed normal subgroup of a topological group 
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Proof Consider the commutative diagram 

G x G d G  

I 9  + 
(G/H)  x (GIH) 5 G/H 

where y = p X p, p(g,H2 g,H) = g;lgzH, and q(gl, gz) = g;lg,. It suf- 
fices to show that p is continuous. However, for W c GIH open, we have 

p-y W )  = yy-'p-1( W )  = yq-1p-1( W )  

which is open since p and q are continuous and y = p x p is open. I 

1.6. Proposition 
G containing the identity e, then Go is a closed normal subgroup of G. 

If  G is a topological group and Go is the component of 

Proof Since components are closed it suffices to show that Go is a sub- 
group and is normal. However, Go x Go is connected and hence G0G;' 
(its continuous image) is connected and contains e. Thus G0GG1 c Go 
which means that Go is a subgroup of G. If cc): G -+ G is any automorphism 
of G which is also a homeomorphism, then cc)(Go) is a component of G and 
contains e,  whence w(Go) = Go. In particular, this holds for the inner 
automorphisms L,R,, and hence Go is normal. I 

If G and G' are topological groups, then by a homomorphism p: G + G' 
we mean a homomorphism of groups which is also continuous. The reader 
may supply the easy details of the following result. 

1.7. Proposition If p: G + H is a surjective homomorphism of topolog- 
ical groups, then K = ker p is a closed normal subgroup of G and the in- 
duced map p': G/K + H is continuous and bijective. r f  G is compact, then 
p' is open, and hence is an isomorphism of topological groups. I 

We now turn to some special facts for compact groups. 

1.8. Proposition Let G be a compact group and let g E G. Let A = 

{g" 1 n = 0, I ,  2, . . .}. Then A is a subgroup of G. 
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Proof Put B = {gn I n E Z} which is a subgroup of G. Then B is also a 
subgroup of G by 1.3. If e is isolated in B, then B is compact and discrete 
and hence finite and we must then have g" = e for some n > 0. Thus sup- 
pose that e is not isolated in B. Then for any symmetric neighborhood 
U of e in G there is an integer n # 0 with gn E U. Since U is symmetric 
we may suppose that n > 0. Then gn-l E (g-'U) n A. Since the g-lU 
form a neighborhood basis at g-l it follows that g-1 E A and this clearly 
implies that A = B. I 

If H is a subgroup of G, then the normalizer N ( H )  of H in G is the subset 
of G consisting of those elements g E G such that gHg-l = H. This is 
clearly a subgroup of G and is closed when H is closed. 

1.9. Proposition I f  G is a compact group and H c G is a closed sub- 
group, then gHg-l = H [i.e., g E N(H)]  z j -  gHg-l c H. 

Proof Let v: G x G-+ G be q(g, k )  = gkg-'. Suppose that g E G is 
such that gHg-' c H and let A = {g" I n = 0, 1,2, . . . }  as in 1.8. Then 
v ( A  x H )  c H and continuity of  ~1 implies that p(A x H )  c H. By 1.8 
we have that g-1 E A and hence the latter inclusion implies that g-IHg c H. 
Thus H c gHg-'. 

1 .lo. Proposition If G is a compact group, then every neighborhood U 
of e in G contains a neighborhood V of e which is invariant under conjugation. 

Proof Let 9: G x G -+ G be y(g,  k )  = gkg-I. If U i s  an open neigh- 
borhood of e,  then G - U is compact and q(G x (G - U ) )  is a compact 
set whose complement V c U is open, invariant, and contains e. I 

We remark that 1.9 and 1.10 would be false in general without the com- 
pactness assumption (or some other assumption). 

1.11. Proposition If N is a totally disconnected normal subgroup of a 
connected topological group G, then N is central in G. 

Proof For k E N the map yk: G -+ N, defined by yk(g) = gkg-', is con- 
tinuous. Since G is connected, yk(G)  is connected. Since N is totally discon- 
nected, yk(G)  must consist of exactly one point {k}. Thus gkg-' = k for 
all g E G and k E N. I 
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The following fact is an elementary exercise that we leave to the reader. 

1.12. Proposition Let G be a topological group and H c G a closed 
subgroup. If H and GIH are connected, then so is G. I 

2. THE CLASSICAL GROUPS 

Let K stand for either the field R of real numbers or the field C of com- 
plex numbers. For an n x n matrix A over K we denote by A‘ its transpose, 
by A its complex conjugate, and let A* = A’. Let M J K )  denote the al- 
gebra of all n x n matrices over K and note that this is a K-vector space 
of dimension n2. The group, under multiplication, of nonsingular n x n 
matrices over K is called the general linear group Gl(n, K )  and the sub- 
group of matrices of determinant 1 is called the special linear group Sl(n, K). 
The orthogonal group O(n, K )  consists of those A E Gl(n, K )  with AA’ = I 
and SO(n, K )  = O(n, K )  n Sl(n, K). We put O(n) = O(n, R) and SO(n)  
= SO(n, R). The unitary group U(n) consists of those A E Gl(n, C )  with 
AA* = I and SU(n) = U(n) n Sl(n, C). Since A’, A*, and det A are 
continuous functions of A and multiplication K ( K )  x M&C)-+M&C) 
is continuous, it is clear that these are all closed subgroups of Gl(n,K). 
Since Gl(n, K )  is defined by the inequality det A # 0, it is an open subset 
of M#). The formula for A-l in terms of the coefficients of A shows 
that A H A-l is continuous on Gl(n, K ) ;  and in fact that it is analytic. 
(This also follows from the Implicit Function Theorem since multiplication 
W ( K )  x m(K)-tm(K) is analytic.) It follows that all of the above 
groups are topological groups with the relative topology from MJK).  

Since A* is a continuous function of A the equation AA* = I defining 
U(n) shows that U(n) is closed in W(C) - Cna. It also shows that the 
coefficients of A are bounded by one in absolute value, so that U(n) is 
bounded in m(C). Thus U(n) is compact. Since SU(n), O(n), and SO@) 
are closed subgroups of U(n), they are also compact groups. 

Let A be any n x n matrix over K. If the absolute values of the coeffi- 
cients of A are bounded by c, then those of Ak are bounded by (nc)k as is 
easily seen by induction on k. Thus the series of coefficients of the matrix 
series 
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are all absolutely dominated by the convergent series 

( n ~ ) ~  ( n ~ ) ~  
2! 3! 

1 + n c + - + - +  

Thus this series of matrices converges to a matrix 

A2 A3 
2! 3! 

eA = Z +  A +-+-+ e - 0  

and the convergence is uniform in any compact subset of &(K). Thus 
the coefficients of eA are analytic functions of the coefficients of A .  That is, 
the map exp: &(K) + M J K ) ,  taking A to exp(A) = eA, is analytic. Note 
that e0 = I. To compute the Jacobian of exp at  0 we use the usual matrix 
coordinates xi j  and note that, for X = [xij], 

1 
ex = I + [xij] + 2! [x$ + . . 

= [d, 4- xij + higher degree terms]. 

Thus the Jacobian is the n2 x n2 matrix with entries 

+ xaj + higher degree terms) 1 if ( i , j )  = (k,  I), 
d X k  I I x = o  = (0 otherwise, 

and hence is the identity n2 x n2 matrix. From the Implicit Function Theo- 
rem it follows that exp is one-one on some neighborhood of 0 E m(K) 
to some neighborhood of I E Gl(n, K )  and has an analytic inverse there. 

Note that 

A2 
= B(Z+ A + 2! + . .)B-l = BeAB-l. 

Also exp over R is just the restriction of exp over C to M%(R) c Ik&(C). 
For any A E m(C) there is a B E Gl(n, C )  such that BAB-I has super 
diagonal form 

BAB-' = 
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where the Li are the eigenvalues of A .  From this it is trivial to calculate 
that 

and thus the eLi are the eigenvalues of eA with the correct multiplicities. 
In particular, their product shows that 

det eA = etrace(A) 

[where trace(A) = ll + - .  . + An]. In particular, det eA # 0 for all A ,  
and hence the image of exp is in Gl(n, K ) .  

2.1. Lemma If A and B commute, then eA+B = eAeB. 

Proof For A and B fixed, let s and t be real variables and consider the 
analytic functions esA+tB and esAetB of s and t .  We have 

where the last product is to be regarded as a formal product of matrices 
of power series in s and t and the last equality means an equality of matrices 
of formal power series in s and t .  However, the last term is just the power 
series expansion of eSAetB, as is seen by computation of the partial deriva- 
tives in s and t .  Since and esAetB are analytic functions of s and t 

it follows that they coincide for all s and t. 1 

It follows that for any given A E m(K) the map 

given by 

K -  Gl(n, K )  

t H etA 
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is a homomorphism of topological groups (with the additive group structure 
on K ) .  In particular, e-A = (d)". 

Since Gl(n, K) is open in the K-vector space I&(K), the tangent vector 
to a curve in Gl(n, K), or in I&@), can be regarded as an element of 
I&(K). In particular, for the curve t w e t A  of R +  Gl(n, K) [for fixed 
A E w ( K ) ]  we compute that its tangent vector at t = 0 is 

etA - I A2 
lim ~ - - lim ( A  + t -  + - a * )  = A .  
t+O t t+O 2! 

Thus the real tangent space at Z in Gl(n, K) coincides with the space of tan- 
gent vectors at t = 0 to the real one-parameter groups t H etA. 

In the same way, for the operation of Gl(n, K )  on Kn, the tangent vector 
to the curve t w etA - v in Kn, where A E M J K )  and v E Kn are fixed, is 

= Av. 
etA - v - v 

lim 
t+O t t+O 

If etA - v = v for all t, then it follows that Av = 0. Conversely, if Av = 0, 
then etA - v = ( I  + tA + - - )v = v.  Thus we have the following propo- 
sition. 

2.2. Proposition For v E Kn and A E W ( K ) ,  the tangent vector to the 
curve t H eta v at t = 0 is 0 zfletA - v = v for all t. I 

2.3. Theorem For A E I&(C) we have the following facts: 

(1) Zf A is real, then eA is real. 
(2)  Zf A is skew symmetric (A' = - A ) ,  then eA E O(n, C ) .  
( 3 )  Zf A is skew Hermitian (A* = - A ) ,  then eA E U(n). 
(4) If A has trace 0, then eA E Sl(n, C). 

Moreover, for A in a suitable neighborhood of 0 E w(C), the reverse implica- 
tions all hold. 

Proof For example, suppose that A' = -A. Then (eA)' = eA' = e-A 
= (d)-l so that eA E O(n, C). Conversely, if (&)' = (eA)-l, then eA' = e-A 
which implies that A' = - A  provided that A is sufficiently near 0, since 
exp is one-one near 0. The proof of the other implications are all similar 
to this and will be omitted. I 
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Note the various combinations of the conditions in 2.3. It is also important 
to note that the conditions of 2.3 are all real linear and define real vector 
subspaces of m(C) whose dimensions are easy to  calculate. Thus we have 
the following easy consequence of 2.3. 

2.4. Corollary Let G c Gl(n, C) be one of the groups Gl(n, C), Gl(n, R), 
Sl(n, C>, Sl(n, R), U(n>, SU(n), O(n, C), SO(n, C), O(n, R), or SO(n, R). 
Then there is a real vector subspace T G  of w(C) such that exp: w(C) 
+. Gl(n, C) maps a neighborhood of 0 in T G  homeomorphically onto a neigh- 
borhood of Z in G. The dimensions of these subspaces are, respectively, 
2n2, n2, 2n2 - 2, n2 - 1,  n2, n2 - 1, n(n - I), n(n - l), &n(n - I), and 
Bn(n-- 1). 

Let U c Gl(n, C) be a symmetric open neighborhood of Z on which the 
inverse, log: U +  m(C), of exp is defined and analytic. Let V be a sym- 
metric open neighborhood of Z with Y2 c U and put W = log(V). Then 
the composition 

exp x exp 9 

is real analytic, where p(gh) = gh-I, and takes 

This is just the expression of the multiplication map p in terms of the co- 
ordinates about Z in G given by log. Thus each of the above groups has 
coordinates about Z in which multiplication and inversion are expressed 
as real analytic functions of the coordinates. 

We now turn to the discussion of one family of classical groups that we 
have thus far omitted, the symplectic groups Sp(n). The group Sp(n) is 
defined to be the group of all n x n quaternionic matrices A with AA* = Z. 
Here A* = A', where A is the quaternionic conjugate of A ;  that is A = 

[Zij] when A = [aij] and where q = a + bi + cj + dk has conjugate 
4 = a - bi - cj - dk. For a quaternionic n x n matrix P we can write 

P = A + Bj, 

where A, B E m(C). Note that j B  = Bj and thus multiplication is given 

( A  + Bj)(C + Dj)  = (AC-  BD) + (AD + Bc)j .  
by 
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For P = A + Bj we define 

A short calculation shows that pl is an isomorphism of the algebra of all 
n x n quaternionic matrices into that of 2n x 2n complex matrices, and 
that pl(P*) = p(P)*. Thus P is symplectic (PP* = I )  iff I = q(Z) = pl(PP*) 
= p(P)pl(P*) = p(P)p(P)* which holds iff p(P) is unitary. It is easy to 
calculate that a 2n x 2n complex matrix Q has the form 

iff 
JQJ-' = Q, 

where 
o r  

J =  [-I 01. 

For Q unitary, this equation becomes 

Q'JQ = J. 

Thus the symplectic group Sp(n) is isomorphic via pl to the subgroup of 
U(2n) consisting of those unitary matrices preserving the bilinear form 
J (i.e., Q'JQ = J ) .  

As in 2.3 one sees that if A E M,,(C) and if A* = - A  and J A  + A'J = 0, 
then eA E p(Sp(n)), and the converse holds for A sufficiently close to 0. 
Thus 2.4 also holds for G = p(Sp(n)) e Sp(n) and the dimension of TG 
can be computed to be 2n2 + n. 

We conclude this section by defining the notion of a representation. If 
G is a topological group, then a real representation of G is just a (contin- 
uous) homomorphism of G into Gl(n, R). This can be thought of as an 
action of G on R" by linear transformations. Similarly, a complex representa- 
tion of G is a homomorphism G + Gl(n, C). Since Gl(n, R) c Gl(n, C) 
each real representation gives rise to a complex one called its complexifica- 
tion. By a unitary or an orthogonal representation of G we mean a homo- 
morphism of G into U(n) or O(n), respectively. 

Two representations p, y: G + Gl(n) are said to be equivalent if there 
is an A E Gl(n) with y(g) = A-lp(g)A for all g E G. They are orthogonally, 
or unitarily, equivalent if A E O(n) or A E U(n), respectively. 
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- 
Since A :  Rn -7 Rn can be thought of as a change of basis, the equiva- 

lence of two representations p, y :  G + Gl(n) simply means that they have 
identical matrix form with respect to suitable nonstandard bases (different 
for p and y )  of R”. In particular, a representation p: G -+ Gl(n, R) is equiv- 
alent to an orthogonal representation iff there exists a (positive definite) 
inner product ( . , ) on Rn preserved by Q? (that is, (q (g )v ,  p (g )w)  = ( v ,  w) 
for all g E G and v ,  w E Rn), for then each p ( g )  would have an orthogonal 
matrix form with respect to an orthonormal basis on Rn for this inner 
product. 

3. INTEGRATION O N  COMPACT GROUPS 

Let G be a topological group and f :  G + R a real-valued function. For 
h E G, define functions Rh f and Lh f by ( R h f ) ( g )  = f (gh)  and (Lh f ) ( g )  
= f(h-’g). 

3.1. ’Theorem Let G be a compact group. Then there is a unique real- 
valued function I (called the Haar integral) defined for  continuous real- 
valued functions f on G, such that 

(a) Z ( f 1  t f J  = Z ( f i >  + U). 
(b) 
(c) 

(e) 

I ( c f )  = c l ( f ) ,  where c E R. 
Jf f ( g )  2 0 for  all g E G, then I( f )  2 0. 

Z ( R h f )  = I( f )  = Z ( L h f )  for  all h E G.  
(d) Z(l)  = 1. 

We shall not give the proof of this theorem here. A simple elementary 
proof for compact groups was given by von Neumann and this proof can 
be found in Pontriagin 111. There is a generalization of this integral for 10- 
cally compact groups, proved by Haar, with weaker properties. This can 
be found in many places, including Loomis [l] and Montgomery and 
Zippin [4]. (These references give versions of Haar’s original proof. A to- 
tally different proof can be found in Bredon 191.) 

We shall often use the notation J f ( g )  dg for Z( f ), so that (e) can be 
written 

Note that iff is nonnegative and not identically 0 then, by compactness of 
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G, we can find elements h,, . . . , h,, in G with C Rhif everywhere positive. 
Then C Rhl f 2 c for some constant c > 0 and we have 

nz( f )  - C = z((CRhi f )  - C )  >_ 0. 

Thus I( f )  > 0. 

I sup{l f (g)  I I g GI. 
Similarly, if f i ( g )  >f , (g)  for all g, then Z(fi) 2 Z( f i ) .  Also I Z( f )  I 

3.2. Proposition Let f: G x A - + R  be continuous, where A is any 
topological space and G is a compact group. Then the function F:  A -+ R 
defined by 

is continuous. 

Proof Let E > 0 and a E A be given. By continuity off and compactness 
of G there is a neighborhood U of a such that 

I f (& b)  -fk a) I < & 

for all b E U. Then 

I m) - F(a) I = I J fk  b )  dg - J fk ,  a) dgl 

for all b E U. I 

3.3. Theorem Let f: G x R + R be continuous, where G is a compact 
group, and suppose that f ( g ,  t )  is diFerentiable in t with a derivative df(g, t) /dt  
which is continuous on G x R. Then F(t)  = s f ( g ,  t )  dg is also differentiable 
and 

for some 0 5 q~ 5 1. Since df(g, t)/dt is uniformly continuous on compact 
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subsets of G x R, it follows that, for fixed t E R, this difference quotient 
converges to df(g, t) /dt  uniformly in g E G as s ---f 0. Therefore, given E > 0, 
there is a 6 > 0 such that if I s I < 6, then 

for all g E G. Then also 

that is, 

which implies the desired conclusion. I 

Note that an inductive use of 3.3 shows that i f f :  G x Rn -+ R is a 
function such that f ( g ,  t,, . . . , t,) is Cm in the ti for fixed g E G and such 
that the partial derivatives of all orders are continuous on G x Rn, then 
F(t, , . . . , t,) = J f ( g ,  t, , . . . , t,) dg is also C“. 

3.4. Proposition Iff: G x G + R is continuous, then J J f ( g ,  h )  dg dh 

= JJf(g9 h) dh dg. 

Proof Each of these satisfies the conditions for the integral on G x G 
so that uniqueness of the integral implies this fact. 

By simply integrating componentwise, the integral can be extended to 
an integral on vector-valued continuous functions f: G -+ Rn giving 
s f ( g )  dg E Rn. The linearity conditions (a) and (b) of 3.1 imply immediately 
that if T :  Rn ---f Rk is any linear transformation, then 

If V is a vector space, then Gl(V) denotes the group of linear automor- 
phisms of V and a representation of G on Vis a homomorphism G + G1( V). 
For a real vector space V of finite dimension n, each such representation 
is clearly equivalent, in the obvious sense, to a representation G -+ Gl(n, R) 
on euclidean space, and we require continuity of this. 
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The major use for the Haar integral is in constructing invariant things 
by integrating noninvariant things. An illustration of this is the proof of 
the following theorem : 

3.5. Theorem Each representation of a compact group G on an n-di- 
mensional real vector space V is equivalent to an orthogonal representation of 
G on Rn. 

Proof We can assume that V = Rn. Let us denote the action of G on Rn 
via the given representation by (g ,  v )  H gu. As pointed out in Section 2, 
it suffices to find a positive definite inner product (., .) on Rn which is 
invariant under G, i.e., (gu, gw)  = ( v ,  w) for all g E G and v ,  w E Rn. 
Let us denote the usual euclidean inner product by v - w ;  that is, v ' w 
= Cviwi, where v = (vl , . . . , v,) and w = ( w l ,  . . . , w,). Define 

This is clearly bilinear and symmetric. It is positive definite since, for u # 0, 

( v ,  v> = 1 (gv) * (gv) dg > 0 

since the integrand is positive. This inner product is also invariant since 

(hv, hw) = (ghv) - (ghw) dg = (gv) * (gw) dg = (u,  W )  s s 
by property (e) of the integral. 

The same proof shows that every complex representation of a compact 
group is equivalent to a unitary representation. 

If p: G -+ Gl(V) and y :  G -+ GI( W )  are representations, then p @ y 
denotes the representation G -+ GI(V @ W )  given by (p @ y ) ( g )  - (u,  w )  

A (finite-dimensional) representation p: G + Gl(V) is said to be redu- 
cible if there is a subspace 0 # W # V of V such that v ( g ) (  W )  = W for 
all g E G. Otherwise it is called irreducible. It is called completely reducible 
if it is equivalent to the direct sum p) = yl @ y2 @ - - @ y k  of irreducible 
representations yi. It  is not hard to see, in this case, that the yi are unique 
up to order and equivalence. 

= (v(g>v, y (g )w) .  
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3.6. Proposition every finite-dimensional real representation G + G1( V )  
of a compact group is completely reducible. 

Proof By 3.5 we can assume that V = R” and the representation is ortho- 
gonal cp: G -+ O(n). If W c Rn is invariant, then we claim that Wl 
= {v  c: V = Rn I v - w = 0 for all w E W }  is also invariant. This follows 
from the equation 

(cp(g)o) - w = u * p,(g)’w = v p,(g-’)w. 

Thus p (p, I W )  @ (p, I W l )  and the result follows by an easy induction. 

4. CHARACTERISTIC FUNCTIONS ON COMPACT GROUPS 

Let G be a compact group. The letters x and y will be used for elements 
of G in this section. For a given positive integer n let V denote the (infinite- 
dimensional) real vector space of all continuous functions f: G -+ R”. 
(For most purposes n can be taken to be 1, but it will be convenient to 
allow the general case.) For f, g :  G+ Rn define 

where the integrand is the usual euclidean inner product. 
Suppose we are given a continuous function 

k :  G x G + R  

with k(x ,  y )  = k b ,  x), called a “kernel function.” Then we define an op- 
erator K :  V+ V by 

It is easily seen that K maps the unit sphere { f I (f, f )  = 1 } to a uniformly 
bounded and equicontinuous set of functions. Also K is symmetric, (Kf, g )  
= (f, Kg), by interchange of order of integration. 

A function 0 # cp E V is said to be a characteristic function (of K )  be- 
longing to the characteristic value A E R if Kp, = hp. 

Let us list, without proof, three well-known facts which are consequences 
of the above properties of K. The proofs can be found in many places, 
such as Hochschild [l ,  pp. 14-18] or Chevalley [I, pp. 204-2091. 
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(a) For any c > 0 there are finitely many characteristic values 3, with 

(b) For 1# 0 the characteristic functions belonging to 3, form a finite- 
> c .  

dimensional vector space. 

Note that from these facts we can find a sequence p l ,  v2, . . . of charac- 
teristic functions belonging to the nonzero characteristic values c l ,  c2, . . . 
such that the I ci I converge monotonically to zero, such that (pi, p?i) 

= S i , i ,  and such that each characteristic function belonging to 1 # 0 is 
a linear combination of those cpi with ci = 1. Then another basic property 
is : 

(c) If g = Kf for some f E V, then the “Fourier series” C ( g ,  pi)pi 
converges uniformly to g .  

Recall that for f E V the right translate R, f E V is defined by ( R , f ) ( x )  
= f ( x y )  and the left translate L, f E V by (L, f ) (x )  =fof-’x). Since 
R d ,  = R,, and L,L, = L,, these both represent G by linear transforma- 
tions on the infinite-dimensional vector space V. 

We shall assume from now on that the kernel function k has the form 

where h:  G + R satisfies h(x)  = h(x-l). 
For any linear map A : Rn + Rn, composition with f: G + Rn defines 

Af: G + Rn a n d f w  Af defines a linear transformation A :  V +  I/ denoted 
by the same symbol. 

4.1. Lemma In the above situation we have R, 0 K = K 0 R ,  for all y ,  
and A o K = K o A. If h also satisjies hofxy-l) = h(x)  for all x ,  then L, 0 K 
= K O  L,. 
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For the last statement we compute 

K(L,f ) ( x )  = h(xz-') f b - l z )  dz 

h ( y y - l x ~ - l z ) - l y - l )  f b - l z )  dz = s  
= j h(yy-lxz-'y-l)f(z) dz 

= j h(y-lxz-') f ( z )  dz 

= ( w x J - ' x )  = (L,(Kf ) )<x> .  I 

It follows from 4.1 that each R ,  and each A (as above) transforms the 
space of characteristic functions belonging to 2 into itself. For c > 0 we 
let V, denote the subspace of V spanned by those characteristic functions 
belonging to characteristic values I with I I I 2 c. Then V, is finite-dimen- 
sional by (a) and (b), and is preserved by each R, and each A.  Put Vcl 
= { g  EI V I ( g , f )  = 0 for all f E Vc}. Now V, is spanned by some of the 
q ~ i ,  say y1, . . . , pr. Then f E V can be written 

which shows that V = V, @ V&. 

we see that A preserves Vcl.  Also computation gives 
Since (Ag,  f) = ( g ,  A ' f ) ,  for A :  Rn + Rn linear and A' its transpose, 

which shows that R ,  preserves Vcl.  
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Let P,: V - t  V, be the orthogonal projection Pcf = EL, (f, qi> qi 
taking VcL to 0. Then we see that 

PcoR,=RvoPc and P c o A = A o P c  

in the above situation. In the same way, if h(yxy-') = h(x)  for all x E G, 
then Lu commutes with K by 4.1 and hence also commutes with P,. 

4.2. Theorem Let G be a compact group and H a closed subgroup. Let 
p: H -  Gl(n, R) be a representation of H. Then there exists a representation 
r ] :  G -+ Gl(m, R) for some m ,  such that p is contained in the restriction of q 
to H ;  that is, r] I H = p @ ,u for some representation ,u of H. 

Proof It clearly suffices to prove this for the case in which e is irreducible. 
As above, let V be the space of continuous functions G -+ R". Let h:  G + R 
be a given map satisfying h(x)  = h(x-l) and h(yxy-l)  = h(x) for all x ,  
y E G. Define (Kf ) ( x )  = f h(xy- ' ) f (y )  dy as above. We shall make an 
appropriate choice of h later. 

Let W c V be the subspace consisting of those functions f: G -+ Rn 
such that 

f b x )  = pb)f(x) for all y E H and x E G. 

That is, 
L,-l f = p b )  of for all y E H. 

With A = p(y) in the above remarks, we see that for any c > 0 (to be 
chosen later) the projection P, preserves W and K also preserves W, since 
both of these commute with each and each A = e(y).  Also note that 
each R ,  preserves W for x E G (but the L, do not). 

Put W, = P,W c W. Then the R, ,  for x E G,  define a finite-dimen- 
sional representation 7 of G on W,. Consider the linear map 

J :  W, -+ R" 

given by J ( f )  = f ( e ) .  For y E H we have 

which means that J carries the representation r] I H to p. The kernel of 
J is a representation ,u of H which has a complement t by 3.6, since H is 
compact. Thus r ]  I H = ,u @ t and J takes z monomorphically to e. If 
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Jf 0, then J :  t -+ e would be an equivalence of representations of H, 
since Q is irreducible, and we would be done. Thus it suffices to show that 
we can pick the function h (and hence the operator K )  and c > 0 so that 
there is a function f~ W, with f ( e )  = J ( f )  # 0. 

To this end let v = (1,0, . . . , 0) E R" and define g :  H+ Rn by g b )  
= &) . v. This extends to a map g :  G +  Rn by the Tietze Theorem 
since G is compact and hence normal. Put 

g*(x)  = J e(y-1)g(Yx) dv. 

For x ,  y E H we have g b x )  = e(yx)v  = e(y)e(x)v  and thus g* I H = g. 
For all x E G and z E H we have 

H 

and thus g* E W. Since g* extends g we shall now drop the star, giving 
g E W with g(e)  = v = (1,0, . . . , 0). 

Let g , (x )  be the first component of g(x ) ,  so that g l (e )  = 1. By conti- 
nuity there is a neighborhood U of e in G on which g ,  is positive. We may 
assume that U is symmetric and invariant under conjugation by 1.10. Let 
q :  G -+ R be a nonnegative map vanishing outside U and with q(e) = 1. 
Put 

h(x)  = 4 j (q(YXY-l) + q(Yx-lY-l)) dv. 

(Kg)(e)  = J h(e.I-')g(y) dY # 0, 

G 

Then h is nonnegative, vanishes outside U, has h(e) = 1, and satisfies 
h(x) =: h(x-') and h b x y - l )  = h(x).  Then, for this choice of h, we have 

G 

since its first component sG h(y-l)g,(y) dy is positive. Recall that by prop- 
erty (c) above, P,Kg converges uniformly to Kg as c + 0. Thus we can 
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choose c > 0 sufficiently small so that (P,Kg)(e) # 0. Then f = P,Kg E W, 
is our desired function. I 

If e: G + Gl(V) is a representation and if v E V, we put 

GtJ = k E G I e ( g k  = .> 
which is called the isotropy subgroup of G at v. (Also see Chapter I, Section 
2.) It is clearly a closed subgroup of G. 

4.3. Theorem Let G be a compact group and H a closed subgroup. Let 
U be a neighborhood of e in G. Then there exists a representation Q: G 
+ Gl(n, R) for some n, and a point v E Rn with H c G, c UH. 

Proof Let W be a symmetric neighborhood of e in G with W 2  c U and 
let h:  G -+ R be a nonnegative continuous function satisfying h(e) = 1, 
h(x)  = h(x-'), and h(x)  = 0 for x 6 W. Let the operator K be defined by 

Since G/H is compact Hausdorff, and hence normal, there is a continuous 
nonnegative function f ': GIN+ R with f ' ( e H )  = 1 and f ' ( x H )  = 0 for 
x 6 WH. Let f: G --+ R be f ( x )  = f ' ( x H ) .  Then f ( e )  = 1, f ( x )  = 0 for 
x 6 W H  and Ruf = f for all y E H. Put g = KJ Since R, commutes with 
K we have Rug = g for y E H. 

Now if 

0 # g ( r )  = j h(xr-l)f'Cv) dY, 

then for some y E G we must have xy-l E Wand y E WH, so that x E W2H 
c UH. Thus 

g(x)  = 0 for x 6 UH. 

On the other hand, 

g(e)  = j h(Y-')f(r> dY > 0. 

Since Pcg converges uniformly to g as c --f 0, by property (c) above, we 
can take c so small that (R,P,g)(e) = (P,g)(x) < (P,g)(e) for all x E G 
- UH. For this value of c, let y~ = Peg. Then G acts on the finite-dimensional 
vector space V, via the R,, and we have the vector p E Vc with 

RXV z V for x 4 UH 



5 .  LIE GROUPS 21 

(since they differ at  e )  and 

R,p = 9 for all y E H ,  

since R ,  commutes with Po.  
Thus the isotropy group G, contains H and is contained in UH. I 
By 3.5 and 4.3 applied to H = { e } ,  we have the following corollary. 

4.4. Corollary Let G be a compact group and U a neighborhood of e 
in G .  Then there is a homomorphism y :  G -+ O ( n )  with ker y c U. I 

We say that a group G has no small subgroups if there is a neighborhood 
U of e in G containing no subgroup of G other than { e } .  

4.5. Corollary 
morphic to a closed subgroup of O(n). 

A compact group G has no small subgroups ifSit  is iso- 

Proof By 4.4 there is a monomorphism y :  C + O(n) .  Since y is one-one, 
O(n) is Hausdorff, and G is compact, y is a homeomorphism (and an iso- 
morphism of groups) to its image. 

For the converse it suffices to show that Gl(n, R) has no small subgroups. 
For this, consider a convex neighborhood U of 0 in K ( R )  = Rn2 for 
which exp: 2U + Gl(n, R) is a homeomorphism to some neighborhood 
of Z in Gl(n, R); see Section 2. Suppose that H c exp(U) is a subgroup of 
Gl(n, R) and that Z f  B E H.  Let 0 # A E U be such that eA = B. Then 
2'A E 2U - U for some integer r 2 1 and B2' = eZrA E exp(2U) - exp(U) 
by 2.1. This contradicts the assumption that B2' E H c exp(U). I 

Remarks Theorem 4.2 is well known, as is the case with all the results of 
this chapter. The author is indebted to Wallach for the idea of the present 
proof. Theorem 4.3 (and 5.2 of the next section) is due independently to 
Mostow [l] and Palais [2], while the special case 4.4 (and 4.5) was previously 
proved by von Neumann. 

5. LIE GROUPS 

In this section we shall outline the elementary theory of Lie groups, 
omitting most of the standard proofs and discussing only those things of 
importance for later chapters. The discussion is intended for readers who 
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are not already familiar with Lie groups (and, possibly, not even with dif- 
ferentiable manifolds). It is designed simply to indicate what a Lie group 
is and to indicate a few elementary facts which we shall need. Those few 
things which we need are easily understood and believable, and we feel 
that the reader need not know how to prove these results. For the proofs, 
and indeed for much better expositions, of these facts, the reader may 
consult any number of readily available sources, such as Chevalley [l] or 
Hochschild [l]. 

Let G be a topological group. Then G is called a Lie group if there is 
an open neighborhood U of e in G and a homeomorphism x: U + W onto 
an open set W c R", for some n and with x(e) = 0, such that the group 
operations are real analytic near e in these local coordinates. More precisely, 
let xi(g) denote the ith coordinate of x ( g )  E Rn for g E U. Then there are 
real analytic functions vi defined on some neighborhood of 0 E RZn such 
that 

x i @ )  = Pi(Xl(d > . . . 9 x,(g>, 9 . . ' 7 x m )  

for all g and h in some open neighborhood V c U of e. Similarly 

xi(g-') = Yi(xl(g) 7 . . . ¶  xn(g>) 

for g near e, where the yi are real analytic and defined near 0 E R". 
A one-parameter group y :  R -+ G [i.e., a continuous homomorphism, 

y(s + t )  = y(s)y(t)] is called analytic if each xi o y  is analytic near 0 E R. 
(We can give G the structure of an analytic manifold for which the group 
operations are analytic, and it follows that y is everywhere analytic.) The 
derivatives ai = dxi(y(t))/dt I t = O  are the coordinates of the "tangent vector" 
to y at t = 0 with respect to the given coordinate system x. From the 
elementary theory of differential equations it can be shown that y is corn- 
pletely determined by this vector X = (a,, . . . , a,) E R" and, moreover, 
that every X E  Rn arises in this way from some analytic one-parameter 
group yx. It also follows from this theory that the map 

exp: Rn+ G 

defined by exp X = yx(l) is analytic for Xnear 0. Since computation shows 
that t H y S x ( t )  and t ++ yx( s t )  are analytic one-parameter groups having 
the same tangent vector at t = 0 we have 

rsx(1) = yx(s> 

for all s E R. Then an easy calculation shows that the Jacobian matrix of 
x 0 exp at 0 is just the identity. The Inverse Function Theorem then shows 
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that, near 0, exp has an inverse function, called “log,” which is also analytic 
(i.e., log o x-1 is analytic). Note that log then defines a coordinate system 
near e (Le., we could take x = log). These coordinates are called “canonical 
coordinates of the first kind.” In these coordinates the analytic one-par- 
ameter groups are just the straight lines through the origin. It is easy to see 
from this that every continuous one-parameter group y :  R + G is auto- 
matically analytic, and hence has the form y ( t )  = exp(tX) for some X E Rn. 
This significant fact implies, in turn, that every continuous homomorphism 
G + H between two Lie groups is analytic near e.  Consequently, a coor- 
dinate system x near e on G, making G into a Lie group, is unique near e 
up to analytic change of coordinates. (This is the reason that a given such 
structure is not taken as part of the definition of a Lie group.) 

Just as in the proof of 4.5 it can be shown that a Lie group G has no small 
subgroups. 

Suppose that H is a closed subgroup of the Lie group G. By a careful 
investigation of the exponential map it can be shown that H coincides 
near e with the image under exp: Rn + G of a linear subspace V c Rn 
(and, in fact, of any neighborhood of 0 in V ) .  If V l  is the orthogonal 
complement (or any complement) of V in Rn, then the map p: R” = 

V l @  V -  G given by 

vtw,  v )  = (exp w)(exp v )  

has (with respect to local coordinates) the identity as its Jacobian matrix. 
Thus the local inverse of p gives a system x = (xl, . . . , x,) of local coor- 
dinates at  e in G, defined, for example, on U = { g  E G I I xi(g) I < l}, 
and having the property that each U n gH, for g E G, is given by the equa- 
tions 

x i = c i ,  i = l ,  . . . ,  k 

(where the ci are constants depending on the choice of the coset gH,  and 
n - k is the dimension of H ) .  In particular, it follows that H is itself a 
Lie group. 

Applying this to G = O(n) ,  the next result follows from 4.5. 

5.1. Theorem 
closed subgroup of O(n) for some n. 

A compact group is a Lie group i f f  it is isomorphic to a 

I 
Given H c G closed, and local coordinates x = (xl, . . . , x,) as above, 

let C be the set of points in the coordinate neighborhood with xk+l = 0 . .  

= x, = 0 (i.e., C = exp W, where W is a small neighborhood of 0 in 
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P). Then CH is open in G and the multiplication 

C X  H - t C H  

is a bijection. Put C' = exp +W. Suppose that K c G is a subgroup with 
H c K c C'H. If K #  H, then it follows that K contains an element 
e # k E C'. However, lines through the origin of C (in the given coordi- 
nates) are one-parameter groups. Thus it follows (as in the proof of 4.5) 
that some power of k is in C - C' and this contradicts the assumption that 
K c C'H. Since C'H is open in G this, together with 4.3 and 3.5, implies 
the following result. 

5.2. Theorem Let G be a compact Lie group and H c G a closed sub- 
group. Then there exists a representation e :  G -+ O(m),  for some my and 
a point v E Rm with G, = H. I 

With the above notation, note that the local cross section C of the left 
cosets of H in G at e maps homeomorphically to a neighborhood of eH 
in G/H. The inverse of this can be used to define local coordinates on G/H 
near eH. Suppose that H = G, for a given representation e :  G -+ O(m) 
as in 5.2 (with G compact Lie). Then gH H g(v) defines a map 8 :  G/H -+ Rm 
which is easily seen to be a homeomorphism into. In terms of the indicated 
local coordinates, the differential of 8 at eH can be thought of as the map 
taking w E W to the tangent vector 8,(w) at t = 0 to the curve t H 

,o(exp tw)(v) in Rm. Since e(exp tw) is a one-parameter group in O(m), it has 
the form etA for some m x m  matrix A .  By 2.2 it follows that O,(w) = 0 iff 
v = eLAv = e(exp tw)(v) for all t .  However, this holds iff exp(tw) E G, = H 
for all t ,  which holds only for w = 0 by the definition of W c P. 

Thus the differential of 8 :  G/H + Rm at eH is a monomorphism. In 
fact, coordinate systems can be defined near the other points of G/H by 
left translation of the given coordinates, and it follows that, with this ana- 
lytic structure on G/H, 8 embeds G/H as an analytic submanifold of Rm. 

We conclude this section with a discussion of the simply connected 
covering group of a Lie group G. Since the underlying topological space of 
a connected Lie group G has nice local properties, there is a simply connected 
covering space G of G. We select a point e" E G over e E G, once and for 
all. Since G x is a simply connected covering space of G x G, there 
is a unique map G x G --f G which takes (e", e") H e" and covers the multi- 
plication map G x G + G. We denote this map by (2, h") H gh". The two 
maps (g, h, &) H (gh")& and (8, h", &) H g(h"k) of G x G x -+ C? both 
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take (t?, t?, e") to t? and cover the same map G x G x G +  G. Thus they 
coincide. The map to g't? covers the identity on G and takes 
e" to E. Thus gt? = g for all g E e. Similarly, t?g = g for all g E G. There is 
also a unique map G + G taking t? to Z and covering g ~ g - l  on G. If 
we denote by g-l the image of g E G under this map, then the map g H&-' 
of --+ G" covers the constant map g H e and takes t? to t?. Thus g2-l = e" 
for all g E G. 

These remarks show that, with the given choice of e" E G, there is a unique 
topological group structure on such that the projection G + G is a 
homomorphism. Since t? has a neighborhood 0 in G mapping homeomor- 
phically onto a neighborhood U of e in G, it follows that G is a Lie group. 
I t  is called the universal covering group of G. The kernel K of the projection 
e + G is a discrete normal subgroup of G and hence is central in G' by 1.1 1 .  
Thus every connected Lie group G can be obtained from some simply con- 
nected Lie group e by factoring out by a discrete subgroup K i n  the center 
of G". Two connected Lie groups are said to be locally isomorphic if they 
have isomorphic universal covering groups. 

+ G taking 

Let us now consider the case in which G is connected and abelian. 

5.3. Lemma Let G be a connected abelian n-dimensional Lie group. 
Then exp: Rn + G is a homomorphism (where Rn has its additive group 
structure) and identijies Rn with the universal covering group of G. 

Proof For u, v E Rn and t E R the map 9: R + G given by cp(t) = exp(tu) 
exp(tv) clearly defines a one-parameter group, since G is abelian. The 
tangent vector to this at  t = 0 is just p*(u, v ) ,  where p*: Rn x Rn + Rn 
is the differential at  (e, e )  of the multiplication map p :  G x G -+ G.  
However, p* is linear and p,(u, 0) = u and p*(O, v )  = v ,  since p(g ,  e )  = g 
and p(e ,  g )  = g .  Thus p*(u, v )  = u + v and we conclude that 9 is just 
the one-parameter group ~ ( t )  = exp(t(u + v ) )  with tangent vector u + v. 
Putting t = 1, we have 

exp(u + v )  = exp(u) exp(v), 

so that exp is a homomorphism. The image of exp is then clearly an open 
subgroup of G. It is also closed since its complement is a union of cosets, 
which must also be open. Thus exp: Rn + G is a covering. I 

It follows, for a connected abelian Lie group G, that G - Rn/N, where 
N is a discrete subgroup of Rn. It is not very difficult to show that there is 
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a basis v l ,  . . . , v, of Rn such that N is just the subgroup generated by 
v l ,  . . . , v k  for some k. Thus G = Tk x Rn-k, where Tk is the k-dimensional 
torus (i.e., the product of k copies of the circle group S1 = U(1) - R/Z). 
Thus we have the following characterization of connected abelian Lie 
groups : 

5.4. Theorem A connected abelian Lie group G is isomorphic to T k x  
Rn-k for  some n, k. I 

6. THE STRUCTURE OF COMPACT LIE GROUPS 

In this section we shall first develop the properties of maximal tori in 
compact Lie groups. We shall do this is some detail since it will frequently 
be important to us in later chapters. Then we shall outline the classification 
theory of compact connected Lie groups. Since we will not make use of the 
latter material in this book, we shall make no attempt at  indicating the 
proofs of most of the results on classification. 

A toral group is a compact, connected, abelian, Lie group, and hence a 
product of circle groups. A maximal torus T in a compact Lie group G 
is a toral subgroup of G which is not properly contained in any larger toral 
subgroup of G. 

6.1. Lemma 
the compact-open topology. 

The automorphism group Aut T of a torus T is discrete in 

Proof Regard Rn as the universal covering group of T = Rn/Zn. Each 
automorphism of T clearly lifts to an automorphism of Rn preserving Zn, 
and conversely. Thus Aut T may be regarded as the subgroup of Aut Rn 
= Gl(n, R) preserving the integer lattice Zn. That is, these are matrices with 
integer coefficients and determinant f l ,  and these form a discrete sub- 
group of Gl(n, R). I 

6.2. Corollary ZfT is a maximal torus of G, then N(T)/T isjinite, where 
N(T) is the normalizer of T in G. 

Proof The normalizer N(T) is closed and hence is a Lie group. Its connected 
component N,(T) of the identity operates trivially on T (by conjugation) 
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by 6.1. If dim N,(T) > dim T,  let S be the image of a one-parameter group 
in N,,(T) which is not in T .  Then S and T generate a connected abelian 
group whose closure T‘ is also abelian, connected, and compact. This con- 
tradicts maximality of T, and hence N,(T) = T .  Since N(T)  is a Lie group, 
this implies that T is open in N ( T )  and hence that N(T)/T is finite. 

We remark that N(T)/T is called the Weyl group of G. 
We use 

x ( M )  = C (-l)i rank Hi(M)  

to denote the euler characteristic of a space M.  

6.3. Proposition 
G and put N = N(T). Then z ( G / N )  = 1 and x(G/T) = ord(N/T). 

Let T be a maximal torus in the compact Lie group 

Proof Consider the action of T on GIN by left translation (see Chapter 
I). The point eN of GIN is clearly fixed by this action, since T c N.  The 
differential of this action at  the fixed point eN (with respect to local coordi- 
nates about this point) is a representation of T. By 3.5, this representation 
is equivalent to an orthogonal representation, and this means that local 
coordinates may be taken in GIN about the point eN in terms of which T 
acts orthogonally in the coordinate patch. In particular, there is a disk 
Dm c GIN about eN as origin which is preserved by the action of T. Thus 
Dm, dom, int Dm, and M = ( G / N )  - int Dm are preserved by this action 
of T .  

It is not hard to see that there is an element t E T whose powers are dense 
in T. (Such an element is called a “generator” of T . )  Now gN is fixed by 
t iff rgN = gN. This holds iff g-ltg E N and hence iff g-lTg c N since 
the powers of t are dense in T .  However, this holds iff g-lTg = T (i.e., 
g E N )  since T is the identity component of N.  Thus eN is the only fixed 
point o f t  on GIN. Since t has no fixed points on dDm = Sm-l and is homo- 
topic to the identity (since it is contained in the action of the connected 
group T ) ,  the Lefschetz Fixed Point Theorem implies that m is even [i.e., 
x(Sm-”> = 01. Similarly, t has no fixed points on M = ( G / N )  - int Dm 
and is homotopic to the identity there, so that z ( M )  = 0 by the Lefschetz 
Fixed Point Theorem. From the exact homology sequence 

* * * -+ Hi(M) -+ Hi(G/N) -+ Hi(G/N, M )  -+ HiPl(M) -+ * * * 

and the fact that 
Hi(G/N, M )  =5 Hi(Dm, d o m )  
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we see that 

X(G/N) = + (- 1)'" = 1 

since m is even. Now G/T is a covering space of GIN with ord(N/T) sheets. 
By counting simplices in a triangulation of GIN and those in the induced 
triangulation of G/T over it, we see that 

X(G/T) = ord(N/T)X(G/N) = ord(N/T). I 

6.4. Theorem Let T be a maximal torus of the compact connected Lie 
group G and let g E G. Then there exists an element k E G such that k-lgk E T. 

Proof Consider the transformation G/T-  G/T taking hT to ghT. This 
is homotopic to the identity since G is connected. Thus the Lefschetz number 
of this map is X(G/T) # 0, and it follows that there is a fixed point kT. 
Then gkT = kT, so that k-lgk E T. I 

6.5. Corollary Any two maximal tori of a compact Lie group G are 
conjugate in G. 

Proof If T and T' are maximal tori, let t E T' generate T' (i.e., its powers 
are dense in T'). Then g-ltg E T for some g E G and it follows that g-IT'g 
c T. Thus gTg-l =I T' and they must be equal by maximality. I 

6.6. Corollary Let T be a maximal torus of a compact Lie group G and 
let A c T be any subset. Suppose that g E G is such that gAg-' c T. Then 
there exists an element k E N ( T )  such that kak-l = gag-l for  all a E A. 

Proof Let H be the identity component of the subgroup {h E G I hah-l 
= a for all a E A}. (This is closed in G and hence a Lie group.) Then T c H 
and, since A c g-lTg, we also have g-lTg c H. Thus these are both maximal 
tori of H and 6.5 implies that there is an element h E H with hTh-l = g-lTg. 
Put k = gh E N(T).  Then kak-l = ghah-lg-l = gag-' for all a E A. I 

6.7. Corollary Let T be an arbitrary torus in the compact connected Lie 
group G and let g E G be an element that commutes with each element o,f T. 
Then there is a maximal torus of G containing both g and T.  

Proof Let g E To, a maximal torus of G. Let H be the identity component 
of the subgroup {h E GI hg = gh}. Then T c H and To c H, so that 
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hToh--' 3 T for some h E H by 6.5 applied to H. However, hgh-' = g ,  so 
that hT&-l is the required maximal torus. I 

6.8. Corollary Let T be an arbitrary torus in the compact connected Lie 
group G.  Then the centralizer Z ( T )  of T in G is connected and is precisely 
the identity component of N(T).  

Proof From 6.7 we see that Z(T)  is the union of the maximal tori con- 
taining T,  and hence it is connected. Thus Z(T)  c No(T). Conversely, 
No(T) c Z ( T )  by 6.1. I 

As promised, we now turn to the classification theory of compact con- 
nected Lie groups G, omitting most of the proofs. 

Consider the action of G on itself by conjugation. If n = dim G,  then the 
differential of this action at  e E G gives a representation Ad: G + Gl(n, R) 
called the adjoint representation. Since G is compact, this is an orthogonal 
representation with respect to a suitable basis. By 3.6 this representation 
is the direct sum of irreducible representations. Let Vo denote the subspace 
of fixed vectors and let Vl, . . . , Vk denote the nontrivial irreducible com- 
ponents of the adjoint representation. Thus Rn- = Vo @ V, @ . - e @ Vk 
as a representation space of G.  If 1, E Vo then exp(to) is fixed under conjuga- 
tion, so that this is a one-parameter group in the center of G. From this 
it is clear that exp(Vo) is precisely the identity component To (a torus) 
of the center of G .  If i 2 1, then it can be shown that exp(Vi) is a com- 
pact connected subgroup Gi c G and has exp(Ui) as a neighborhood of 
e ,  where Ui is a small neighborhood of 0 in Vi. (This is difficult.) It is clear 
that G, is a normal subgroup of G. 

Moreover, it is clear that the Gi are simple, by which we mean that they 
are nonabelian and have no nontrivial, proper, connected normal subgroups 
(since the Vi are irreducible). Conversely, it can be seen that each simple 
normal subgroup of G is one of the Gi. Thus this decomposition is unique. 
If g E Gi and h E Gi for i # j ,  then ghg-lh-' E Gi n Gi.  For g and h 
both near e,  this implies that gh = hg. Since the Gi are connected, we con- 
clude that Gi commutes with G3 for i # j .  The inclusions then induce a 
homomorphism of Lie groups 

To X GI X * * *  X G k + G  

which is a homeomorphism in the neighborhood of e. Thus the kernel of 
this is a finite normal (hence central) subgroup of the left-hand side. This 
shows the following basic fact. 
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6.9. Theorem Every compact connected Lie group G has the form 

G (To X GI x * * *  x G,) /K,  

where K is a finite subgroup of the center of the product, To is the identity 
component of the center of G,  and the Gi are the simple normal subgroups of 

G .  I 

We remark that if To is trivial, then G is called semisimple; that is, it is 
locally isomorphic to a product of simple compact Lie groups. The follow- 
ing fact shows that the Gi may be replaced by their simply connected cov- 
ering groups in 6.9 without losing compactness. 

6.10. Theorem 
group G is also compact. 

The universal covering group of a semisimple compact Lie 

Proof We shall only indicate the argument for this. It suffices to show 
that n,(G) is finite. Since it is abelian, we need only show that H,(G) is 
finite. By the Universal Coefficient Theorem it suffices to show that H1(G;  R) 
= 0. By the de Rham Theorem and an integration argument, it suffices 
to show that there are no nonzero differential one-forms w on G which 
are invariant under both right and left translation (and hence under con- 
jugation). However such a one-form w #O annihilates an (n - 1)- 
dimensional subspace V of Rn (the tangent space at  e in G )  and this subspace 
V is invariant under the adjoint representation. The orthogonal comple- 
ment V l  is then fixed under the adjoint representation (since it has dimension 
1 and G is connected and compact). Thus exp: V l  --f G defines a one- 
parameter group in the center of G ,  contrary to G being semisimple. I 

By 6.9 we know all compact connected Lie groups once we know the 
simply connected, simple, compact Lie groups and their centers. We shall 
simply state the well-known results on this. Let A, denote the local isomor- 
phism class of SU(k + 1); B,, that of SO(2k + 1 ) ;  C,, that of Sp(k ) ;  
and Dk , that of SO(2k) .  (The subscripts k represent the rank of the group, 
which is defined to be the dimension of its maximal torus.) 

There are five so-called “exceptional” simple Lie groups, whose local 
isomorphism classes are denoted by G, , F, , E, , E, , and E,. (The dimen- 
sions of these groups are, respectively, 14, 52, 78, 133, and 248.) 

It is known that the A,, k 2 1; B,, k 2 2 ;  C , ,  k 2 3; D,, k 2 4; 
G,;  F,; E,; E,; and E, form a complete list, without repetition, of the local 
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isomorphism classes of the compact simple Lie groups. For low values 
of the rank k,  there are the following local isomorphisms: D, c: S1 (not 
semisimple); C ,  = B, c: A,; C ,  = B,; D, = A, x A,; and D, - A,.  

By an inductive argument using fibrations over spheres [SU(k + l)/SU(k) - SZk+l, etc.] one sees that SU(k + 1) and Sp(k) are already simply con- 
nected, while SO(n) has fundamental group Z, for n 2 3. The universal 
(double) covering group of SO(n)  is called the “spinor group” and is 
denoted by Spin(n). The centers of the simply connected representatives of 
the simple groups are given by the following table. 

G :  Ak Bk Ck D2k D2k+l G, F4 E6 E7 E8 

center G“: Zk+l Z, Z, Z, 0 Z, Z, o o Z, Z, 0 



CHAPTER I 

TRANSFORMATION GROUPS 

In the first five sections of this chapter we shall give the definitions and a 
few simple properties of the basic notions which we shall deal with in this 
book. Thus a topological transformation group is defined in Section 1. 
Equivariant maps, equivalence of transformation groups, and the notion 
of an isotropy group are discussed in Section 2 and an equivariant version, 
due to Gleason, of the Tietze Extension Theorem is proved. Orbits and 
orbit spaces are discussed in Section 3 and the notion of orbit type is studied 
in Section 4. Section 5 contains a discussion of fixed point sets. 

In Section 6 we discuss three general constructions of new transforma- 
tion groups out of old ones, twisted products, fibered products or pullbacks, 
and equivariant attachings. 

In Sections 7 and 8 we construct several strange examples of transforma- 
tion groups, due to Conner, Floyd, Richardson, and the author. These 
will be of fundamental interest throughout the book. 

In Section 9 we study the problem of lifting a transformation group on 
a space X to one on a covering space of X. 

1. GROUP ACTIONS 

By a topological transformation group we mean a triple (G, X, 0), 
where G is a topological group, X is a Hausdorff topological space, and 
0: G x X - t X i s  a map such that: 

( 1 )  O(g, O(h, x ) )  = O(gh, x )  for all g, h E G and x E X; 
(2) O(e, x )  = x for all x E X, where e is the identity of G. 

The map 0 is called an action of G on X. The space X, together with a 
given action 0 of G, is called a G-space (or, more precisely, a left G-space; 
the obvious analogous notion of a right G-space will also be used on a few 
occasions). 

We shall often abuse precise terminology and use the same notation 
for a G-space as for the underlying Hausdorff topological space, regarding 

32 
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0 as understood. When 0 is understood from the context we shall often 
use the notation g(x )  or gx for O(g, x )  (or xg in the case of a right G-space) 
so that (1) and (2) become g(h(x) )  = (gh)(x) and e (x )  = x .  Similarly, for 
C c G and A c X we put C(A)  = {g (x )  I g E C, x E A } .  A set A is said 
to be invariant under G if G ( A )  = A .  

For g E G let 8, :  X +  X be the map defined by O,(x) = g(x )  = 0 ( g ,  x ) .  
Then 8,eh = Olh and Be = Ix, the identity map of X ,  by (1) and (2). Thus 

e,e,-, = ee = iX = e,+ e ,  
which shows that each 8, is a homeomorphism of X.  

phisms of X onto itself, then g H 8, defines a homomorphism 
If Homeo(X) denotes the group (under composition) of all homeomor- 

8 : G + Homeo(X). 

The kernel of this homomorphism 8 will be called the “kernel of the 
action 0.” Thus 

ker 0 = { g  E G I g ( x )  = x for all x E X }  

and is a normal subgroup of G. It is clearly closed in G.  
The action 0 is called effective if ker 0 is trivial (that is, if 8 is an injec- 

tion) and it is called almost effective if ker 0 is a discrete subgroup of G.  
For most purposes it suffices to consider only effective actions because 

of the following elementary proposition. It is, however, convenient for 
some purposes to allow some actions to be noneffective. 

1 .I. Proposition Let 0 be an action of G on X and let N = ker 0. 
Then there is a canonically induced effective action Olker 0 of GIN on X. 

Proof Define Olker 0: (GIN) x X +  X by (gN) (x )  = g(x) .  We must 
check continuity of this map. The projection 7 ~ :  G + GIN is open and thus 
from the diagram 

G x X - X  
8 

GIN x X 

the continuity of Olker 0 follows from the equation 

(Olker O)-l(U) = (16 x l ) (O-l(U))  

for U open in X .  Clearly, O/ker 0 is effective. I 
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Now we shall prove some basic facts which hold only for actions of 
compact groups. 

1.2. Theorem If 0:  G x X +  X is an action of a compact group G 
on X ,  then 0 is a closed map. 

Proof Recall our standing assumption that X is Hausdorff. Let C c 
G x X be closed and let y be in the closure of 0(C). Then there is a net 
(gay x,) in C such that O(ga ,  xu) = ga(x,) converges to y .  Passing to a 
subnet we may assume that g, converges to g ,  since G is compact. Then 
xu = O ( g 2 ,  ga(x,)) converges to O(g-l, y )  = g-’(y). Thus (g, ,  x,) con- 
verges to (g ,  g- l (y))  E C since Cis closed. Thus y = O(g ,  g-’(y)) E O(C). I 

1.3. Corollary If G is compact and X is a G-space, then G(A)  is closed 
in X for each closed A c X ,  and G(A)  is compact i f  A is compact. 1 

We shall now give some examples of actions. First there are some actions 
associated with any topological group G. Let H c G be a closed subgroup. 
Then G acts on G / H  through left translation L,(g’H) = gg‘H. The 
kernel of this action is clearly nBEcgHg-’.  If N ( H )  is the normalizer 
of H in G ,  then N ( H )  acts on G / H  by right translation R,(gH) = gn-lH 
and H i s  clearly the kernel of this action, so that there is an induced effective 
action of N(H) /H on G/H. Another example is the action of G on itself 
by conjugation C,(h) = ghg-’. The kernel of this is the center of G. The 
continuity of all of these actions is an immediate consequence of the con- 
tinuity of multiplication G x G + G and of the inverse G -+ G in G. 

The general linear group Gl(n, R) acts on Rn (similarly over the complex 
numbers or the quaternions). Thus any representation G + Gl(n, R) de- 
fines an action of G on Rn. Orthogonal representations G -+ O(n, R) also 
give actions of G on the unit disk Dn and on the unit sphere Sn-’ in Rn. 

If S’ denotes the group of complex numbers of norm 1, and we let T2 
be the torus S1 x S1, then there is an interesting action of the additive 
group R of real numbers on T2, called an “irrational flow,” defined by 

0,(e2n6z, e2niy) = (e2ni(z+r) 9 e2ni(y+a7) 1, 

where a is irrational. Of course this is just the homomorphism r I+ (e2nir, 
eZnb7) of R + T 2  followed by left translation of T 2  on itself. 

The examples given above are all important ones, but, of course, they 
are rather elementary. Later we shall give many examples of a deeper 
and more interesting nature. 
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2. EQUIVARIANT M A P S  A N D  ISOTROPY GROUPS 

For a fixed topological group G, the G-spaces form a category whose 
morphisms are called "equivariant maps." An equivariant map (or a G- 
map) v: X+ Y between G-spaces is a map which commutes with the 
group actions, that is, 

q(g (x ) )  = g(y (x ) )  for all g E G and x E X.  

An equivariant map v: X+ Y which is also a homeomorphism is called 
an equivalence of G-spaces. In this case we note that the inverse p-' of 9 
is also equivariant, for if y = ~(x), then 

Two actions which are equivalent cannot be topologically distinguished 
from one another. Thus they are regarded as essentially the same. It is also 
reasonable to regard two actions as essentially the same if they differ only 
by an automorphism of G.  Thus we say that two G-spaces X and Y are 
weakly equivalent if there is an automorphism a (continuous) of G and a 
homeomorphism v: X +  Y with 

q(g (x ) )  = a(g ) (v (x ) )  for all g E G and x E X .  

Example Let G be the cyclic group of order 5,  whose elements are the 
fifth roots of unity. Let X be the unit circle in the complex plane. Then the 
action given by (7, z )  ~ y z  is inequivalent to that given by (7, z)  H y2z. 
(Why?) However, these two actions are weakly equivalent since y I+ y2 
is an automorphism of G. 

Now suppose that X is a G-space and let x E X .  The set 

G, = {g  E G I g(x> = x> 

of elements of G leaving x fixed is clearly a closed subgroup of G. Thus G, 
is called the isotropy subgroup (or stability subgroup) of G a t  x. Since 
gG,g-l(g(x)) = gG,(x) = g ( x )  we have that gG,g-l c Gg(,). Conversely 
g-%,(,,g c Gg-lg(z. = G, so that 

(2.1 1 Gg(s) = gG,g-l. 

Thus the translates by G of a given point all have conjugate isotropy sub- 
groups, and all conjugates appear. 
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2.2. Proposition Zfpl: X+ Y is an equivariant map between G-spaces, 
then G, c Gq(,. for  all x E X. I 

Note that the kernel of an action is just n,,, G,. An action of G on X 
is said to be free if G, is trivial for each x E X.  We shall see later that free 
actions of compact Lie groups are particularly simple. An action is called 
semifree if, for each x E X ,  G, is either trivial or is all of G. 

We rephrase these definitions: An action of G on X is effective if each 
g # e in G moves at least one point. It is semifree if each point of X is either 
left fixed by all elements of G or is moved by all nontrivial elements of G. 
It is free if each nontrivial element of G moves every point of X.  

To conclude this section we shall prove the following important result 
concerning extension of equivariant maps. 

2.3. Tietze-Gleason Theoremt Let G be a compact group acting on 
a normal space X and let A c X be a closed invariant subspace. Let e: G 
+ Gl(n, R )  be a representation of G and let pl: A -+ Rn be equivariant; 
that is pl(g(a)) = e(g)  . pl(a). Then there exists an equivariant extension 
p: X + R n  of pl. 

Proof By the Tietze Extension Theorem pl extends to a map pl’: X + Rn. 
To produce an equivariant extension we simply “average” pl’ as follows. 
Define 

t See Gleason [l], Palais [3, 41. 
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by the linearity of integration and the invariance of the integral under 
right translation (by h).  Thus y is equivariant. Moreover, for a E A we 
have 

by the equivariance of p) and normalization of the integral. Thus y does 
extend p). Finally, y is continuous by 0.3.2. 

3. ORBITS AND ORBIT SPACES 

If X is a G-space and x E X ,  then the subspace 

is called the orbit of x (under G). Note that if g(x )  = h(y) for some g ,  h E G 
and x, y E X ,  then for any g’ E G, g’(x) = g’g-’g(x) = g’g-lh(y) E G g )  
so that G(x) c G(y); conversely G(y)  c G(x). Thus the orbits G ( x )  and 
G(y)  of any two points x, y in X are either equal or disjoint. 

We let X/G denote the set whose elements are the orbits X* = G(x) of 
G on X.  (Thus x* = y* iff x and y are in the same orbit.) Let az = ng: 
X + X/G denote the natural map taking x into its orbit x* = G(x). Then 
X/G endowed with the quotient topology ( U  c X/G is open iff n-’(U) 
is open in X )  is called the orbit space of X (with respect to G ) .  

If A c X ,  then n- l z (A)  = {g (a )  I g E G and a E A }  = G ( A )  is the 
union of the orbits of elements of A and is called the saturation of A .  

If U is open, then G ( U )  = U g G c g ( U )  is open since each g ( U )  = e , (U)  
is open (0, being a homeomorphism of X ) .  Thus n-ln(U) = G ( U )  is open 
for U open in X and, by definition, this means that n ( U )  is open in X/G. 
Thus az: X-+ X/G is a continuous open map. 

The reader may note that for the irrational flow on the torus, defined 
in Section 1, the orbit space has the trivial (indiscrete) topology and hence 
is not a very interesting space. However, for actions of compact groups G, 
the orbit space has reasonably pleasant properties, as we show below. 
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3.1. Theorem If X is a G-space with G compact, then 

(1) X/G is Hausdorff. 
( 2 )  n: X +  X/G is closed. 
( 3 )  n: X - t  X/G is proper [n-l(compact) is compact]. 
(4) X is compact i f f  X /G  is compact. 
( 5 )  X is locally compact iff X/G is locally compact. 

Proof To prove (2) let A c X be closed. Then G ( A )  is closed by 1.3. 
But G(A)  = n-ln(A) so that n ( A )  is closed by definition of the topology of 
X/G (look at  complements). 

To prove (1) suppose G ( x )  # G(y) .  Since G + G x { y }  + G ( y )  is con- 
tinuous, each orbit G(y) is compact. It is a standard fact that in a Haus- 
dorff space any two disjoint compact subsets can be separated by open 
sets. In particular, there is an open neighborhood U of x with u n G ( y )  
= 0. Since n(y) @ n ( D )  it follows that n ( U )  and X/G - n(u) are disjoint 
open sets separating x* and y* .  

Since the orbits are compact, (3) follows from the general fact that a 
closed map n: X - +  Y is proper if n-l(y) is compact for each y E Y. For 
completeness we shall prove this. Let C c Y be compact and let { U, 1 a E A }  
be an open covering of n-l(C). For each y E C there is a finite subset 
A ,  c A of indices such that the U,,  a E A , ,  cover n- l (y ) .  Put U, 
= U{ U, I a E A,} I> n-l(y) and let V, = Y - n(X - U,) which is open. 
Note that n-lV, c U,, and y E V y .  Let V W l ,  . . . , V,,, cover C. Then 

n-'(C) c n-lV,, u * * u n-1Vwn c UUl v * * u UWn 

= U{U,  I a E A,,; i = 1, . . . , n } ,  
a finite union. 

Part (4) is clear from (1) and (3). To prove (5) suppose that U c X 
is open, x E U, and 0 is compact. Then n(x)  E n ( U )  c n(u) so that n(u) 
is a compact neighborhood of n(x). Conversely, if C is a compact neigh- 
borhood of n(x), then n-'(C) is a compact neighborhood of x by (3). I 

We can now state a long-standing conjecture. 

Conjecture 
pact Lie group on euclidean space Rn, or on a disk Dn, is contractible. 

(Conner [9]) The orbit space of any action of a com- 

More general conjectures of the same type and some interesting partial 
information can be found in Conner [9], Conner and Floyd [l, 21, and 
Floyd [I]. 
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A cross section for n: X +  X/G is a continuous map a: X/G + X such 
that za is the identity on X/G. A local cross section defined on U c X/G 
is a cross section of nJn-l(U).  Local cross sections do not generally exist 
even for actions of compact Lie groups. For example, consider the action 
of the subgroup G = { I ,  -Z} of O(3) on R3. Then there is no local cross 
section defined in the neighborhood of n(0) in R3/G. However, there are 
many cases for which local cross sections do exist and they are useful. A 
closely related notion, called a “slice,’’ does exist under very general con- 
ditions for actions of compact Lie groups, and will be studied later. 

3.2. Proposition Let X be a G-space with G compact. Let C be a closed 
subset of X touching each orbit in exactly one point. Then the map a: X/G 
+ X defined by {a(.*)} = G(x) n C is a cross section. Conversely, the image 
of a cross section is closed in X.  

Proof We need to show that a is continuous. For this let A c C be 
closed. By 3.1, a-l(A) = n ( A )  is closed, as desired. For the converse, let 
C = o(X /G)  and let {x,} be a net in C converging to x E X .  We have 
lim n(xJ = n(x)  so that 

x = lim x, = lim an(x,) = on(x) E C 

and hence C is closed. 

Because of this result, we shall often use the term “cross section” for the 
closed set which is the image of a cross section. 

3.3. Theorem Let G be a compact group acting on the spaces X and Y. 
Let C c X be any closed set and let p: C + Y be a map such that whenever 
c and g(c) are both in C (for some g E C ) ,  then p(g(c)) = g(p?(c)). Then 
p? can be extended uniquely to an equivariant map p’ of G(C) into Y. 

Proof For g E G and c E C we put v’(g(c)) = g(q(c))  which is clearly 
the only possibility for an equivariant extension. To see that p’ is well 
defined let g(c) = g’(c’). Then c = g-’g’(c’) so that p(c) = p(g-lg’(c’)) 
= g-Ig’p(c’) by assumption. Thus gp(c) = g’p(c’) as desired. To see that 
p‘ is continuous, let {x,} be a net in G(C) converging to x E G(C). Put 
x, = g,(c,). By passing to a subnet we may assume that {g,} converges to g. 
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Then lim c, = lim g;'(x,) = g-'(x) E C since C is closed. Let c = g-'(x). 
Then 

lim ~ ' ( x , )  = lim ip'(ga(cu)) 

= lim guip(c,) 

= g m  = ip'(g<c>) = i p ' ( 4 -  I 

3.4. Corollary Let G be a compact group acting on the spaces X and Y 
and let C c X be a cross section of 7c:  X-. X/G. Let ip: C -+ Y be any 
map such that G, c Gqc,, for  all c E C. Then there is a unique extension of 

to an equivariant map i f :  X-. Y. 

4. HOMOGENEOUS SPACES AND ORBIT TYPES 

An action of G on Xis said to be transitive if there is precisely one orbit, 
X itself. An example is a left coset space GIH of a topological group G by a 
closed subgroup H together with the action of G by left translation: 
@(g, g'H) = gg'H. 

If x is a point in any G-space X ,  then there is the natural map 

a,: GIG, -+ G(x) 

defined by a,(gG,) = g(x). By the definition of the topology on GIG, 
and by the continuity of g H g(x) ,  a, is continuous. It is also clear that a, 
is one-one and onto. However, a, may not be a homeomorphism. For 
example, it is not a homeomorphism in the case of the irrational flow on 
the torus. Since, however, a one-one map of a compact space onto a Haus- 
dorff space is a homeomorphism, we have the following proposition. 

4.1. Proposition 
phism. 1 

I f G  is compact, then a,: GIG, -. G(x)  is a homeomor- 

Note also that a, is equivariant with respect to the left translation of G 
on G/G,  and the restricted action of G on G(x) c X .  Thus, for G com- 
pact, a, is an equivalence of transitive G-spaces. 
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We shall now restrict our attention in this section exclusively to actions 
of a given compact group G. The class of such G-spaces forms a category 
whose morphisms are the equivariant maps. The full subcategory of tran- 
sitive G-spaces will be called the category of G-orbits. Note that by 4.1 any 
object in this category is isomorphic to some coset space GIH. Thus we 
shall characterize the morphisms on the coset spaces of G. 

4.2. Theorem Let G be compact and H and K closed subgroups. Then: 

(1) There exists an equivariant map G/H+ GJK i f l  H is conjugate to 

(2)  I f a  E G and aHa-' c K let Rf": G/H --+ G/K be given by R f ,H(gH)  

(3)  Every equivariant map GIH + G/K has the form for some a E G 

(4) RfsH = RfsH ir ab-l E K. 

a subgroup of K. 

= ga-lK. Then RfsH is equivariant and well defined. 

with aHa-l c K. 

Proof Suppose f :  GJH --+ GJK is any map and put f ( H )  = a l K  for some 
a E G. Then f is equivariant iff f ( g H )  = ga-lK for all g E G. Conversely, 
the formula f ( g H )  = ga-lK defines a map (i.e., is well defined), necessarily 
equivariant, provided only that f (ghH)  = f ( g H )  for all h E H. That is, 
we must have gha-lK = ga-lK for all h E H. This holds iff aha-l E K 
for all h E H, that is, aHa-' c K. This establishes ( l t ( 3 ) .  Clearly 
= RE.H iff a-lK = b-'K, that is, ab-lK = K. I 

Note that if K = aHa-l, then RZ,H is right translation g H H g H a '  
= (ga-l)aHa-l = ga-lK. More generally for K 3 aHa-l, then Rf .H 
= Re K,aHa-' o R$Ha-',H which is the composition of right translation gH 
I+ gHa-l = (ga-l)aHa-' with the natural map GlaHa-l- GIK induced 
by the inclusion aHa-l c K. 

Also note that if aHa-l c H,  then aHa-' = H by 0.1.9 since G is com- 
pact. 

4.3. Corollary Every equivariant map GJH + GIH is right translation 
by an element of N ( H )  and is an equivalence of G-spaces. The map a I+ R f J  
induces an isomorphism of N(H)JH onto the group HomeoG(GIH) (under 
composition) of self-equivalences of the G-space GIH with the compact-open 
topology. 
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Proof The right translation action G/H x N(H) -+ G/H is clearly con- 
tinuous, and this implies the continuity of the map N(H) -+ Homeo@(G/H) 
taking a H RZsH (see Dugundji [l]). Thus N(H)/H-+ Homeo‘(G/H) is 
continuous, one-one, and onto, and hence it is a homeomorphism since 
N(H)/H is compact. I 

4.4. Corollary 
-+ G/H, then each is an equivalence and H is conjugate to K. I 

If there exist equivariant maps G/H+ GIK and G/K 

If we divide the category of G-orbits by equivalences, then we obtain 
the category of G-orbit types. This is the category of equivalence classes of 
transitive G-spaces (orbits). If X is a G-orbit, then we let type(X) denote 
its type, that is, its equivalence class under equivariant homeomorphisms. 
From the discussion above, type(X) contains a coset space GIH. Moreover, 
type(G/H) = type(G/K) iff H and K are conjugate in G. A morphism 
type(G/H) + type(G/K) exists iff there is an equivariant map GIH -+ G/K 
and this holds iff H i s  conjugate to a subgroup of K. If X and Y are G-orbits 
and a morphism type(X) +. type(Y) exists (i.e., if there is an equivariant 
map X +  Y), then we write 

This gives a partial ordering of the orbit types with type(*) = type(G/G) 
a minimum and type(G) a maximum. Note that this partially ordered set 
is not the same as the category of G-orbit types, but results from it by the 
identification of certain morphisms; see V.4.3. 

By (2.1) the isotropy groups which occur at points in an orbit form a 
complete conjugacy class of subgroups of G. Thus for an orbit X we let 
its G-isotropy type(H) be the conjugacy class of H in G, where X is equiv- 
alent to GIH. Then for H, K subgroups of G we have type(G/H) 2 type 
(G/K) iff H i s  conjugate to a subgroup of K ;  written (H) 5 ( K ) .  Thus the 
partially ordered set of G-orbit types is canonically antiisomorphic to that 
of G-isotropy types. 

[In the literature, an isotropy type is called an “orbit type” and the notion 
we have called “orbit type” has no name. We prefer the terminology in- 
troduced here as being more descriptive.] 

Example Let G be the rotation group SO(3).  Let X be the space of all 
symmetric 3 x 3 real matrices of trace 0. (Note that this is a real vector 
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space of dimension 5,  so that X - R5.) For g E G and x E X define 

e,(x) = gxg-l 

(using matrix multiplication). It is a well-known fact from linear algebra 
that x and y are in the same orbit of this action iff the eigenvalues of the 
matrices x and y are equal, counting multiplicities. Thus, let Y be the 
(topological) subspace of R3 consisting of triples (A,, A,, A3)  with 1, L 1, 
2 1, and 1, + 1, + A3 = 0. Then the map n: X+ Y, taking the matrix 
x into its eigenvalues in decreasing order, satisfies n(x)  = n(x') o G(x) 
= G(x'). 

This map has a right inverse u: Y -+ X ,  where 

t t  follows that Y - X/G with n corresponding to the orbit map and u cor- 
responding to a cross section. 

x, =x2=x,=o * 
FIGURE 1-1 

Now 1, + 1, + A3 = 0 defines a plane in R3 and the inequalities 1, 2 A, 
and 1, 2 1, show that Y is the region in the plane formed by two rays 
from the origin at an angle of 60°, together with the interior. It is illustrated 
in Figure 1-1. 

The isotropy group of the point a(&, A,, $) is 
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for 1, > 1, > 2,. This group is isomorphic to Z, @ Z, [since G = SO(3) ] .  
For 1, = 1, > A3 the isotropy group consists of matrices of the form 

* 

- 
0 0  

0 

0 

which is the normalizer of SO(2). Similarly for 1, > 1, = A3.  Such orbits 
are projective planes. Of course, for 1, = I ,  = 2, = 0 the isotropy group 
is SO(3)  itself and the orbit is a point. The orbit space together with rep- 
resentatives for the orbit types are illustrated on the right-hand side of 
Figure 1-1. 

5. FIXED POINTS 

A point x in a G-space X is said to be stationary if G(x) = {x}, that is, 
G, = G. A stationary point is also called a fixed point of G on X .  [In some 
contexts a point which is left fixed by some nontrivial element of G (i.e., 
G, # { e } )  is called a “fixed point.” However, it is a general practice (which 
we shall adhere to), in the theory of compact transformation groups, to 
regard the terms “stationary” and “fixed” as synonymous.] We denote the 
subspace of fixed points of G on X by 

XG = { x  E XI g(x) = x for all g E G }  

and also by 
F(G, X )  = XG.  

[Of course when H is a subgroup of G, the set of points fixed under H is 
denoted by F ( H , X )  or XH.] 

For a linear representation of G on Rn+l, F(G, Rn+l) is clearly a linear 
subspace of Rn+l. Thus for an orthogonal action of G on S” the fixed point 
set is a sphere Sr. Consequently, if a G-space X is equivalent to an ortho- 
gonal action on Sn, then X G  is homeomorphic to a sphere. It is natural to 
ask whether any action of a compact group on a sphere is equivalent to 
an orthogonal action. A weaker question is whether the fixed point set of an 
action on a sphere must be a sphere. The answer to this question was 
unknown for a long period of time. The first results concerning it were 
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the positive results of Smith. We shall consider these important classical 
results of Smith in Chapter 111. The first negative results in this direction 
were the examples of Floyd [2, 7,9]. Other counterexamples of this type 
were given in Bredon [12, 191, Conner and Floyd [3], Conner and Mont- 
gomery [2], Floyd and Richardson [l], and Kister [l]. In Sections 7 and 8 
we shall construct some of these counterexamples. 

In the study of transformation groups it is often useful to consider the 
fixed point sets of subgroups H of G.  In this regard we note that there is a 
natural action of the normalizer N ( H )  on X H ,  where X is a G-space; that 
is, the restriction of the G-action on X to N(X) on X H .  One need only note 
that N ( H )  leaves XH invariant since, for x E X H  and n E N ( H ) ,  we have 
Hn(x) = nH(x)  = n(x)  and thus n(x)  E X H .  

As an example consider F(H, G / H ) .  A coset gH is fixed under H iff 
HgH c gH,  which holds iff g-lHg c H. If H is a compact Lie group, 
then this implies that g-lHg = H since g-lHg has the same dimension and 
number of components as does H .  Thus, in this case, we have that g E N ( H )  
so that 

F(H, G/H) = N ( H ) / H .  

Similarly we see that, for K c G,  F(K, G / H )  # 0 iff K is conjugate to a 
subgroup of H .  

For another example let H be a closed subgroup of a compact Lie group 
G and let T be a maximal torus of H .  Consider F(T, GIH). As above we 
see that g H  E F(T, G/H) iff g-lTg c H .  Since g-lTg is also a maximal 
torus of H and all maximal tori are conjugate in H there exists an h E H 
with (gh)-lTgh = h-lg-lTgh = T ;  that is, gh E N(T) .  Thus g E N(T)H 
and 

The converse clearly holds and thus we have 

From the above two examples, one might expect that for any K c H ,  
F(K, G/H) is a coset space of N ( K )  (as an N(K)-space). We shall disabuse 
the reader of this expectation by the following example. 

Let G = U(3) act on complex projective space CP2 by the usual matrix 
action on homogeneous coordinates (zo: z l :  z2). Let x be the point with 
coordinates (0: 0: 1). Then G, = U(2) x U(1) c U(3) and by Section 4 
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this gives an equivalence of the G-spaces CP2 and U(3)/(U(2) x U(1)). 
Letting H = U(2) x U(l) and K the subgroup of order 2 generated by 

-1 0 0 
A = [  8 ; ;I7 

then the action of A on CP2 is just (zo: z l :  z2) tf (-z,,: zl: z2) and we see 
easily that its fixed point set is the disjoint union of the point (1 : 0: 0) 
and the two-sphere ( (0:  zl: z2)}. Since these components of F(K, CP2) 
have different dimensions, F(K, G/H) is not a coset space. 

6. ELEMENTARY CONSTRUCTIONS 

In this section we shall discuss three elementary methods of constructing 
new transformation groups out of old ones. 

(A) Twisted products Let H be a compact subgroup of G and let H 
act on a space A .  Then H acts on G x A by (h,  (g, a ) ) ~  (gh-l, ha). Let 
G x R  A denote the orbit space of this H-action. The H-orbit of (g, a) 
will be denoted by [g, a], so that [g, a] = [g', a'] iff there is an h E H with 
g' = gh-l and a' = ha. Define a G-action on G x H  A by putting 

Let i,: A -, G x H  A be i,(u) = [e, a]. Then i, is H-equivariant since 
[e, ha] = [h, a] = h[e, a]. It is clearly continuous and one-one. Also i ,  is 
closed since it is the composition A -, G x A --f G x H  A of closed maps. 
Thus i, is an embedding (homeomorphism onto its image). 

The projection G x A -+ G induces an equivariant map p :  G x H  A - G/H (given by [g ,  a] F+ g H ) .  Suppose that 7c:  G -+ G/H has local cross 
sections (this is the case when G is Lie). Let C c G / H  be a closed neigh- 
borhood of a point and let u: C - ,  G be a cross section, so that c x h 

t+ a(c)h is a product representation C x H 1 n-l(C). Consider the map 
C x A + G x H  A defined by c x a tf [u(c), a]. This is clearly one-one 
onto p-'(C). It is also continuous and is closed since it is the composition 
C x A -, G x A - G x H  A of closed maps. Thus, this map is a homeomor- 
phism, and shows that p :  G x H  A -, G/H is a locally trivial fiber map 

- 
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with fiber A. (It is, in fact, just the A-bundle which is associated with the 
principal H-bundle G + G/H. We shall study this in more detail and gen- 
erality in Chapter 11.) 

As we shall see in Chapter 11, twisted products are basic to the study of 
the structure of transformation groups. 

(B) Fibered products Let X ,  Y, and Z be G-spaces and let f: X -t Z 
and I z :  Y - t  Z be equivariant maps. The fibered product (or pull-back) 
X x Y is the subspace of X x Y consisting of pairs (x, y )  such that f ( x )  
= h b ) .  The diagonal G-action (g, (x, y))  E. (gx, g y )  clearly preserves 
X x z  Y and thus makes it into a G-space. The projections f ’: X x z  Y 
+ Y and h’: X x Z  Y+ X are clearly equivariant. 

Y satisfies the universal property of pull-backs. 
That is, if W is a G-space and a :  W + X and /3: W + Y are equivariant 
and such that f a  = h/3, then there is a unique map 8: W + X x Y such 
that the diagram 

The fibered product X x 

a 
W * x  *I 2 x z  y7h]f 

k Z  
h 

Y 

commutes. In fact 8 is given by O(w) = (a(w), ,8(w)). 
In the pull-back diagram 

h’ 
X X Z Y  -x 

we note that f is onto iff is. Also note that f is open iff is open (and 
similarly with h’ and h).  To see this, let (x,  y )  be in X x Y [that is, f ( x )  
= hcv)] and let U be an open neighborhood of x. Then f ( U )  is open and 
y E h- l ( fU) .  Let V c h-’(fU) be any open neighborhood of y .  Now 
( X  x z Y )  n (U x V )  clearly projects onto V via f I ,  which implies that 
f ‘  is open. 

An important special case is that for which Z = X/G, f = nx: X +  X/G 
is the orbit map, and Y has trivial G-action. In this case, the fibered product 
will be denoted by h*X and called the pull-back of X via h. We have the 
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diagram 
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h' 
h*X - X 

and n' is equivariant from the G-space h*X to the trivial G-space Y.  
Thus n' induces a map u: (h*X)/G -+ Y. Now n' is open and onto, since 
n is, and thus u is also open and onto. If ( x , y )  and ( x ' , y )  are both in 
h*X, then n(x) = h(y) = n(x'), so that x and x' are in the same orbit, 
whence ( x ; y )  and (x',  y )  are in the same orbit. 

This shows that u is one-one, and hence that 

u: (h*X)/GS Y 

is a homeomorphism. Since u is canonical, we may regard Y as the orbit 
space (h*X)/G. 

(C) Equivariant attachings Let X and Y be G-spaces and let A c X 
be a closed invariant subspace. If p: A + Y is equivariant, then the adjunc- 
tion space X up Y (when Hausdorff) inherits a natural G-action. In par- 
ticular, mapping cones and cylinders of equivariant maps between G- 
spaces are again G-spaces. 

Of particular interest is the case in which p is an equivariant homeomor- 
phism of A to its image. In this case, it is no loss of generality to suppose 
that A = X n Y is a subspace of both X and Y with the same G-action 
on A in both cases. (Thus X u Y is the adjunction by the identity on A . )  
We are interested in changing X u Y by cutting it apart and gluing it 
together again by means of some other equivariant homeomorphism 
p: A - P A  (precisely, we adjoin disjoint copies of X and Y by the map 
induced by p). If v: A + A extends to an equivariant homeomorphism 
of X -+ X (or of Y) ,  then X u, Y = X u Y as a G-space, the homeomor- 
phism being given by p on X and the identity on Y. However, if p does 
not extend to X or to Y, then X u, Y may be a new G-space. To construct 
such examples we must find such suitable equivariant self-homeomor- 
phisms of a G-space A .  We shall now discuss one method of finding such 
maps. 

Notice that the equivariant self-homeomorphisms of a G-space A form 
a group HomeoG(A) under composition. Now suppose that we are given 
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an equivariant map 8: A +  G taking a ~ 8 ,  (note this notation) where 
the action on G is by conjugation C,(h) = ghg-l. Such maps 8 form a 
group by (ee’), = e,e; since (ee’),, = e,,e;, = (ge,g-yge:g-l) = g e , 8 p  
= g(88’)d-l. We shall denote this group by MapG(A, G). 

We define a function MapG@, G) + HomeoG(A) by 8 H. 8*, where 
8*(a) = 8,(a). To prove the claimed properties we first note that 8* is 
equivariant since 8 y g a )  = e,,(ga) = (g8,g-l)(ga) = g(B,(a)) = g(O*(a)). 
Next we note that 8 H 8 *  is an antihomomorphism since (8* oA*)(a)  

= (M)*(a). In particular, this implies that (F)* = (8*)-l and hence that 
8* is indeed a homeomorphism. (It is worth noting that if A is a differen- 
tiable manifold and G is a Lie group acting differentiably on A ,  then dif- 
ferentiable maps 8 go into diffeomorphisms 8*. )  

Of course these remarks do not solve our problem of finding equivariant 
homeomorphisms, but it is generally easier to find equivariant maps than 
homeomorphisms, and, in fact, the construction given above will prove to 
be useful in the next section. We will also make use of the following remarks. 
Suppose that we are given an equivariant map 8: A -+ G as above, and 
let A x A have the diagonal G-action g(a, a‘) = (g(a), g(a‘)). Then the 
map A x A + G given by (a, a’) H 8, is obviously equivariant. By the 
remarks above, we deduce that (a, a’) H (8,(a), 8,(a’)) is an equivariant 
homeomorphism of A x A .  Now (a, a’) H (a’, a) is also equivariant so 
that (a, a’) H (8,(a’), 8,(a)) is an equivariant homeomorphism. 

In the next section we shall be interested in the case for which 8,(a) = a. 
Thus we note, in particular, that if a H 8, is an equivariant map A + G 
such that 8,(a) = a for all a, then the map A x A + A  x A defined by 

= e*(n*(a)) = e*(n,(a)) = q q a ) )  = n,(e,(a)) = (n,e,)(a) = (ne),(a) 

(x,  v) H. ( U Y ) ,  .) 

is an equivariant homeomorphism. (Of course, it is not hard to check this 
directly, and the reader is invited to do so.) 

7. SOME EXAMPLES OF O(n)-SPACES 

Using the remarks at the end of the last section, we shall construct some 
O(n)-spaces by attaching Sn-’ x Dn to Sn-l x Dn via an equivariant 
self-homeomorphism y on Sn-l x Sn-’; the O(n)-action on these spaces 
being the standard action on Sn-l and on Dn and the diagonal action on 
Sn-l x Dn. 
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To apply the remarks of the previous section, we wish to find an equiv- 
ariant map 

8 .  . sn-1 -O(n)  

(taking x into O x ) ,  where O(n) acts on itself by conjugation. It is easy to 
characterize such maps as follows. If x E Sn-l and g(x )  = x ,  then 8,  = Og2 
= g8,g-'. Thus 8, must commute with each element of the isotropy group 
O(n), [which is conjugate to O(n - l)]. It follows easily from this (con- 
sider the generic case for which x is a basis vector) that there are precisely 
four possibilities for 8,: either Z, -Z, the reflection through the hyperplane 
perpendicular to x, or the reflection through the line Rx (which is equal 
to minus the preceding case). The continuity of 8 implies that these cases 
cannot vary as one varies x.  Now it is clear that the first two cases will not 
yield any unfamiliar O(n)-spaces and it is fairly clear that the last two 
cases will give equivalent examples. Thus we consider only the last case in 
which 8,  is the reflection through Rx, that is, for x E Sn-' and y E R", 

e,b) = 2(x . y)x  - y.  

In this case note that 8,(x) = x. By the last section it follows that the map 

sn-I x s n - 1 -  sn-1 x sn-1 

given by 
v(xY v> = (ezwY x )  

is an equivariant homeomorphism (in fact, diffeomorphism) as are all of 
its powers (positive and negative). 

We shall define 
22"-1 = Sn-1 x D?Z uqk Sn-1 x D?Z 

k 

the O(n)-space resulting by attaching Sn-l x D" to itself by means of the 
kth power of v (k any integer) on Sn-l x 9 - l .  We shall now study these 
O(n)-spaces. 

Since p0 is the identity, Ztn-l - Sn-l x Sn with the diagonal O(n)- 
action [O(n) acting on Sn via the standard inclusion O(n) c O(n + I)]. 

Interchange of the roles of the two copies of Sn-l x Dn shows that 

Zin-1 - Zzz-1 as O(n)-spaces. 

Now Z;"-l may be described alternatively as the space obtained by at- 
taching S"-l x Dn to Dfl x Sn-l by means of 

91' : (x, v) ++ (x ,  e x w )  
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on Sn-l x S"-l (which is pl composed with interchange of factors). But 
pl' clearly makes sense for y E Dn and hence extends to an equivariant ho- 
meomorphism of Sn-l x Dn onto itself. Thus, as noted in the last section, 
.Z;n-l is equivalent to the union Sn-l x Dn u Dn x Sn-l - S2"-l c RZn 
= R" x R", where O(n) acts diagonally. Thus the case k = 1 gives only 
this familiar linear O(n) action on Z:n-l S2"-l. However, we shall soon 
see that the cases k 2 2 are much less familiar O(n)-spaces. 

To study the underlying manifold of .Zin-l (n 2 2) we shall compute its 
homology. Let * denote a base point in Sn-l and let 01 and B denote the 
classes in Hn-,(Sn-l x Sn--l) represented by S"-l x (*) and (*) x Sn--l, 
respectively. The homeomorphism 9 induces the automorphism p* of 
H,-l(Sn-l x S"-l) and, for example, pl*(a) = ala + a& where ai is the 

degree of the composition Sn-l x (*) c Sn-l x S"-' 2 S"-' x S " - l Z  S"-' 
where pi is the projection on the ith factor ( i  = 1, 2). Similarly for y,(B). 
Now 

plb, *I = (~,(*>, x), 

d*, v) = (e+0>7 *)7 

and from this it is not hard to see that 

so that 

0 .  1 1 + (-1)n (-1)n-l 
9 * = [  1 

By taking powers we easily compute that 

,p=[ 1 0  ] 

Gdd= 0] 

0 1  

0 1  

for n odd, 

for n odd 

Now from the Mayer-Vietoris sequence (i is the inclusion) 

. . . -+ Hj+'(,zp-1) -+ Hj(Sn-l x sn-1) 

(i*,p*k) 
Hj(Snp1 x D") @ Hj(Snp1 x D") -+ Hj(L'i"-') + * * * 
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we see that HP(L'im-l) = 0 for p # 0, n - 1, n, 2n - 1 (for n 2 2). For 
j = n - 1, (i* , q*k) is a homomorphism between two free abelian groups 
of rank 2 and, using the obvious bases, it is represented by the matrix 

for n even, 
1 

[ l + k  -k 

for n odd, k even, 

for n odd, k odd. 

Putting n = 2m or n = 2m + 1 it follows that (for m 2 1 and k # 0) 

Z for p = 0, 4m - 1, 

0 otherwise. 

Z for p =0 ,  2m, 2m+ 1, 4m+ 1, 

Hp(Zim-l) = Zk for p = 2m - 1, 

otherwise. 

{ 
Z for p = 0, 4m + 1, 
0 otherwise. 

Thus ,Z'$Y&l is a homology S2" x S2"+l and Z:gl is a homology S4m+1. 
For n 2 3, Sn-l x D" is simply connected and thus the Van Kampen 

Theorem implies that Zin-l is simply connected. 
In particular, Z$fZ1 is a homotopy sphere for all m. Since it is a differen- 

tiable manifold, it follows from Smale's proof of the generalized PoincarC 
conjecture (see Milnor [ 5 ] )  that 

.Z;?J1 is homeomorphic to S4"+l. 

(The differentiable structure on Z$rfl is not always standard. We shall 
discuss this in Chapter VI, Section 6. Of course Z2dd is diffeomorphic to S5 
since there is only one differentiable structure on the hphere ,  up to dif- 
feomorphism; see Kervaire and Milnor [l].) 

Now we shall show that the O(n)-actions on .Zjm+l (for odd k > 1) 
are not equivalent to orthogonal actions on S4"+l. For this we note that if 
Dy c Dn (in the standard way), then vk preserves Sr-' x Sr-l and restricts 
to the vk defined from this O(r)-action. (This is clear if one notes that the 
two components O,(y) and x of ~ ( x ,  y )  are obtained from x and y by ro- 
tating the plane containing x and y from y toward x through an angle equal 
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to that between x and y .  Thus yk(x,  y )  depends only on the linear span of 
x and y.) Thus if H is any subgroup of O(n) and if 

F(H, Dn) = Dry 

then 
F(H, Z"-') = Z2-l. 

This yields directly some unusual features of these examples. 
For instance, let n = 3 and let Z ,  - O(1) c O(3) be the standard 

inclusion. Then F ( O ( l ) ,  Zk5) = Zk3 whose first homology group is z k .  

This gives an involution (a homeomorphism of period 2) on S5 whose fixed 
point set F has H,(F) = Zk for any odd k .  

In fact, the space Zk3 is just the lens space L(k,  1). We see this by noting 
that if we lift y :  S1 x S1-+S1 x S1 to Q: R x R - t R  x R, then 

Q(s, t )  = (2s - t ,  s) 

(that is, Oeznis(eZnit) = e2*i(2s--t)). Thus @I is linear and is represented by the 
matrix 

2 -1 
@ I =  [ l  01. 

Clearly Qk covers y k  and is the linear map 

1 - k .  -k  1 q j k =  [ ' ik  
Now one of the standard definitions of the lens space L(k,  q )  is that it is 
the space obtained by attaching S1 x D2 to itself by the self-homeomor- 
phism of S1 x S1 covered by the map represented by the matrix 

where n and q' are integers such that 

44'- kn = fl. 

Moreover, L(k,  q )  depends only on I k I and on the congruence class of 
*q (mod k) .  Thus 

Z k 3  = L(k,  I - k )  L(k ,  I). 
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Remark We may also describe L(k, q )  as the orbit space of the free 
action of Z, on S3 c C2 generated by the matrix 

[ e2ni'k 0 e2niqIk O 1 , 
Thus Zk5 gives an O(3)-action on S5 such that P(O(l), S5)  - L(k, 1) 

for any odd k.  
More generally, for i 2 1, the O(2m + 1)-action on Ztc:l - S4m+1 

(homeomorphic, but not generally diffeomorphic) is not equivalent to an 
orthogonal action for m 2 1 and the restricted action to 0(1), and hence 
to O(r) for 1 5 r 5 2m + 1, is also nonorthogonal since F ( 0 ( 1 ) ,  Z$!$l) 
= ,Z"+;' has homology Z2i+l in degree 2m - 1. Similarly, the restriction 
to S0(3),  and hence to SO(r) for 3 5 r 5 2m + 1, is nonorthogonal 
provided that rn 2 2 since then F ( S 0 ( 3 ) ,  Zi2i1) = Z&5 has homology 
Z2i+l in degree 2m - 3. (However, we shall see later that the S0(3)-action 
on ZZi+l is equivalent to an orthogonal action! Note the interesting fact that 
the 0(3)-action on Z&+l has exactly the same orbits as does its restriction 
to S0(3), and yet it is nonorthogonal while the restriction is orthogonal.) 

Remark These examples were first constructed in Bredon [12] (also see 
Bredon [ l l ,  191) by essentially the same method used here. Subsequently, 
two other methods were developed (Brieskorn [l], Hirzebruch and Mayer 
[l], and Bredon [19]) which arrive at the same examples, generalize in other 
directions, and have certain advantages over the present construction. We 
shall discuss these later. The present method appears to be the simplest 
from the point of view of computing the homology of the spaces involved. 

For later reference we shall discuss the isotropy groups and orbit space 
of the O(n)-space Zin-l (n 2 2) .  Let G = O(n). Clearly the isotropy groups 
of G on .L'i"-l are just those of G on Sn-l x D". However, G(,,,) = G, n G, 
and this is just the subgroup of G = O(n) leaving the linear span of x and 
y stationary. Thus if x and y are dependent, we have that G(,,,) is conjugate 
to O(n - 1) and if x and y are independent, then G(%,,) is conjugate to 
O(n - 2) .  Thus O(n) /O(n - 1) =: S"-l and O(n)/O(n - 2) - Vn,2 are 
precisely the orbit types which occur in the O(n)-space Zi"-l. 

Next we investigate the orbit space of G = O(n) on S"-l x D" (n 2 2) .  
Let D2 c D" be the disk spanned by the first two coordinate axes, let 
* = ( 1 , O )  E S1 c D2 and let D2+ = {(a, b) E D2 I b 2 O}. Any point of 
S"-l x Dn can be moved by an element of O(n) to a point in (*) x D". 
Then moving this by an element of the isotropy group G, = O(n - 1) 
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we can bring this into a point (*, y )  E (*) x D2+. Since y is determined 
completely by its length and by the angle it makes with *, and since these 
numbers are unchanged under operation by G on (* ,y) ,  it follows that 
(*) x D2+ touches each orbit in S"-l x Dn exactly once. Thus (*) x D2+ 
is a cross section for the G-space S"-l x Dn. Consequently (S"-l x Dn)/O(n) 
= D2+ and we also see that (Sn--l x Sn-l)/O(n> corresponds to the arc 
D2+ n S1. Since qk must induce a homeomorphism of (Sn-l x S"-')/O(n) 
onto itself, if follows that Z$'-l/O(n) is the union of two 2-disks along an arc 
in their boundaries. Thus 

Z:"-l/O(n) - D2. 

(This can also be seen by some general facts which we shall discuss in a 
later chapter.) 

Recall that for n 2 2, and the subgroup O(n - 2) of O(n) we have 

P(O(n - 2), Zp) = Z k 3  = L(k, 1). 

We will also need to know about F(O(n - l ) ,  Z$'-l) = Zkl. Now Zkl 
results from adjoining So x D1 to itself by the map pk: So x So -+ So x So 
which is the restriction of the map R x R + R x R given by 

qeven = [i ;] and qodd = [; i]. 
Clearly this shows that 

Z;,,, = SO x S1 = two circles, 

8. TWO FURTHER EXAMPLES 

Even though we gave some examples, in the last section, of nonorthogonal 
actions, these actions had some points of similarity with certain orthogonal 
actions. In this section we shall discuss two examples which show that, in 
general, actions of compact groups on euclidean spaces or disks can differ 
very substantially from orthogonal actions. 

(A) The Floyd-Richardson Example For this example we must give 
some background material concerning the orthogonal group SO(3). Let 
Q denote the quaternions and let S3 stand for the group of quaternions 
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of norm 1. Then S3 acts on Q by conjugation: (q, q‘) H qq’q-I and this 
action is orthogonal, regarding Q as euclidean Cspace, since norms are 
preserved. The subspace R c Q spanned by 1 is clearly left fixed by this 
action, so that its orthogonal complement (that is, the subspace spanned 
by i, j, and k) is invariant under this action. This provides a 3-dimensional 
orthogonal representation of S3 and thus gives the well-known homomor- 
phism 

f: S3-+S0(3). 

The kernel off is just (1, - I }  - Z,, and, since S3 and SO(3) both have 
dimension 3, the invariance of domain implies that f is onto. Hence f is a 
covering map and identifies S3 with the universal covering group of SO(3). 

Now let Z denote the icosahedral subgroup of SO(3) (that is, the subgroup 
carrying a regular icosahedron, or equivalently the dual dodecahedron, 
centered at the origin into itself). A crucial fact that we will need is that the 
normalizer of Z is I itself. This follows from the explicit knowledge of the 
subgroups of SO(3) (see Wolf [I], for example) which shows that there 
are no groups between Z and SO(3). 

We will also need to know that Zis perfect (that is, that I abelianized is 
trivial, which means that Z = [I, I], its commutator subgroup). One way 
to see this is simply to write generators and relations for Z, and verify it; 
another way is to note that one can inscribe five regular tetrahedra in the 
dodecahedron and that the action of Z on these five objects represents Z 
isornorphically as the alternating group on five letters (Coxeter [l]) and then 
use the universally known fact that the latter group is simple. 

Also note that a cube may be inscribed in the dodecahedron, so that we 
may assume that Z contains the 180° rotations about the coordinate axes 
spanned by i, j ,  and k. 

We put Z‘ = f -l(Z), a subgroup of S3 of order 120. Note that since iii-l 
= I ,  y1-l = -j, and iki-l = -k we have that f(i) is the 180’ rotation 
about Ri. Similarly for f(j) and f(k). Thus i, j, and k are in I’ and 

. . .. 

-1 = iji-lj-1 is in [Z’, Z‘]. 

Consequently I’/[Z’, Z’] = Z/[Z, Z] is the trivial group. 

we have that 
Consider now the coset space Z3 = S0(3)/Z - S3/I‘. Since n,(Z3) - Z’ 

H1(Z3) - Z‘/[Z’, 1‘] = 0. 

Since Z3 is a 3-manifold, PoincarC duality implies that Z3 is a homology 
3-sphere over the integers. 
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We shall be concerned with the action of Z on Z3. It is clear that Z‘ (and 
hence Z) preserves the metric induced from that of S3 via the covering map 
S3 -+ S3/Z‘ = Z3. NOW 

F(Z, Z 3 )  = N(Z)/Z = z/z, 

by Section 5 ,  is precisely one point. Since Z preserves the metric, there is an 
open 3-disk U about this point invariant under I. Then Z acts without sta- 
tionary points on the acyclic 3-manifold Z3 - U with boundary. (Also note 
that the action is differentiable.) 

Now one can show that this action of Z on Z3 - U is simplicial in some 
simplicial structure on Z3 - U. For instance, there is a general theorem of 
Yang [4] about differentiable actions which implies this. It can also be seen 
from the fact that S3 may be given the structure of a regular polytope (Co- 
xeter [I]) such that the left and right translations by Z’ are all cellular (and 
simplicial in a subdivision), which clearly implies the desired fact. Possibly 
the simplest way, however, is to use the classical description of the “sphe- 
rical dodecahedra1 space” Z3 in Seifert and Threlfall [l] as the regular 
dodecahedron, with its interior, on which opposite faces are identified by 
a coherent twist of n /5  radians (and the reflection through the central 
plane parallel to them), and use the obvious action of Z on this (rather 
than the one we have described). (The last two methods are essentially 
equivalent since, in fact, the dodecahedron is the top dimensional cell of 
the polytope S3 and is a fundamental domain for the right translations by 
Z‘, resulting in the given identifications on its boundary.) 

Now consider the join A = Z * (Z3 - U )  with the induced diagonal 
action of Z (that is, the union of 60 cones over Z3 - U ) .  Since A is simply 
connected and acyclic, it is contractible. Also, the I-action on A has no 
fixed points. Let K be any finite complex with trivial Z-action ( K  may be 
empty.) Then Z acts on the contractible finite complex B = K * A with 
fixed set K. 

Any such example automatically induces a similar example of an action 
on a disk as follows. First embed B as a subcomplex of some simplicial 
structure on euclidean space or a sphere with a linear and simplicial action 
of I.  For example we can consider B as a subcomplex of the boundary of 
the full simplex d on the vertices of B. Let D be the second regular neigh- 
borhood of B in dd. Then, by a famous result of Whitehead [l], D is an 
n-disk for some n. Moreover, F(Z, D )  is a regular neighborhood of K in 
F(Z, ad) and hence has K as a deformation retract. Thus we have the fol- 
lowing theorem. 
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8.1. Theorem There are actions of the icosahedral group I on disks Dn 
(n large) such that F(I, Dn) has the homotopy type of any givenfinite complex, 
including the case F(I, D") = 0. I 

This example, in the case F = 0, is due to Floyd and Richardson [l]. 

Remark This, together with trivial modifications, is the only known 
example of an action of a compact group on a disk without stationary 
points. One might try to construct other such examples by using other 
coset spaces GIH, G compact, which are integral homology spheres. How- 
ever, it was proved in Bredon [4] that S 0 ( 3 ) / 1  is the only such space which 
is not a sphere, and it is also known, by Montgomery and Samelson [l], 
Bore1 [3], and Poncet [2], that when G/H is a sphere then the G-action is 
equivalent to an orthogonal one. (The proof consists of classifving the pairs 
G, H for which GIH is a sphere.) 

Remark One should note that even though the fixed point set has the 
hombtopy type of an arbitrary finite complex, its homeomorphism type is 
not so arbitrary. For example, each component of the fixed set in this 
example has the same dimension and one may well conjecture that this 
holds generally for compact group actions on disks, spheres, and euclidean 
spaces. In the case of differentiable actions, there is a tangential representa- 
tion of G at each fixed point, and it was conjectured by Smith [lo] that these 
representations are equivalent at any two fixed points. (The latter conjecture 
is known to hold for differentiable actions of connected compact groups.) 

(B) The Conner-Floyd Example We shall indicate how to construct 
an action of a cyclic group Z, on euclidean space without stationary points. 
(Note that the Brouwer Fixed Point Theorem shows that such examples 
cannot exist on disks.) Later we shall prove a theorem of Smith which 
implies that such actions do not exist when r is a prime power. Thus we 
only consider the case 

r = p q  where p > 1 and q > 1 are relatively prime. 

Let us digress briefly to discuss a construction on joins. Recall that the 
join A * B is defined as 

A x B x I  
9 2 '  

A * B =  
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where 9 is the relation which identifies A x B x (0 )  to A and A x B 
x (1) to B. Thus the points of A * B have “coordinates” (a, b, t )  where 
a E A, b E B, and t E I = [0, 11, and where a = (a, b, 0) is independent 
of b and b = (a, b, 1) is independent of a. 

Now there is a map 

a: A * B + A * B u ~ B * A u ~ A * B  

defined by 
(a, b, 3 0  for O < t < + ,  

for 
(a, b, 3t - 2 )  for $ 5 t 5 1. 
(b,  a, 3t - 1) 4 5 t 5 $, 

Iff: A + A and g:  B -+ B are any maps, then one may form the union 

where t: B * A  -+ A * B is the canonical map t (b ,  a, t )  = (a, b, 1 - t ) .  
Put 

f 0 g = (f* 1 u t u 1 * g )  o i l .  

Note that if A and B are spheres, then deg(f* 1) = deg(f) and deg(1 *g) 
= deg(g) so that 

deg(f 0 g) = deg(f) + deg(g) - 1. 

(The - 1 comes from the change in direction of t in the middle third; note 
that a, b are reversed twice there.) 

Now let A and B be copies of the unit circle in the complex plane and 
let T = wp * w,, where wp is multiplication by ezniip. Then T generates an 
action of Z,, on A * B i5: S3  without stationary points. 

Since p and q are relatively prime we can find n, m with 

np + mq = -1. 

Then let 
f: A - A  and g :  B + B  

be defined by 
f(z) = znP+l  and g(z) = zrnQ+l. 

Note that 
fwp = cup f and gw, = wqg, 
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which clearly implies that 

so that f 0 g: S3 + S3 is an equivariant map of degree (np + 1 )  +(mq + 1) 
- l = n p + m q + l = O .  L e t h = f O g .  

From the existence of such an equivariant map h: S3 + S3 of degree 
0 one may proceed in two directions. 

First, note that the inverse limit space of 

h h ... +s3.s3+s3 

inherits an action of Z,, without stationary points and is acyclic with 
respect to Cech homology or cohomology. Thus we have the following 
theorem. 

8.2. Theorem If r is not a prime power, then there is a compact, acyclic, 
finite-dimensional space which admits a self-homeomorphism of period r 
without fixed points. I 

Remark Note the consequence that the Lefschetz Fixed Point Theorem 
does not hold in this generality. 

Second, there is a Z,,-action on the union Y of the mapping cylinders 

s3+s3.s3+ .... 
of the maps 

h h h 

Since h is homotopically trivial, Y has the homotopy type of the union of 
mapping cylinders of a constant map and hence is contractible. 

We shall take a closer look at the latter example. If A and B are triangu- 
lated as regular polygons of p and q sides, respectively, and S3 = A * B 
is given the join triangulation, then T is simplicial. Moreover h can be as- 
sumed to be simplicia1 with respect to the nth barycentric subdivision of 
its domain, for some n. (This can be deduced from the Equivariant Simplicia1 
Approximation Theorem of Exercise 6 at the end of the chapter.) Then the 
mapping cylinder of h can be replaced with the “simplicial mapping cy- 
linder.” (We do not give the details of this, which can be found in Conner 
and Floyd [3].) If we then take the nth barycentric subdivision of this map- 
ping cylinder modulo the domain of h, then the mapping cylinder has the 
same triangulation on both ends. Thus if we let C, , C, ,  . . . be copies of 
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this mapping cylinder and if we let K be the infinite complex obtained by 
identifying the end of Ci with the beginning of Ci+l, then K is a 4-dimen- 
sional, locally finite, contractible complex on which Z, (r = p q )  acts without 
stationary points. 

To improve on this, we note that K admits an equivariant simplicial 
embedding in some euclidean space on which Z,. acts orthogonally. One 
such embedding of K can be obtained as follows. Let f: K - t  Rk be any 
embedding of K as a subcomplex of a triangulation of Rk. Let Z, act on 
Rkr by 

T(x, ,  * . . y  xr) = (xz . . . y  xr XI), 

where xi is in Rk, and let Rkr be triangulated as the barycentric subdivision 
of the product cellular structure on Rk x Rk x . e -  x Rk. Embed g :  
K -+ Rkr by putting 

g(x)  = (x, Tx, T2x, . . . , Tr-lx). 

Then g is equivariant and it is not hard to verify that g is simplicia1 on the 
first barycentric subdivision of K to Rkr (see Floyd [9] for the details of 
this). We let U be the second regular neighborhood of g ( K )  in Rkr and note 
that T(U)  = U. Then U is a contractible open subset of Rkr on which Z, 
acts (differentiably) without stationary points, and the same is true of 
U x Ri for any i, where the action on Ri is trivial. Now it is known that 
U x R is homeomorphic to euclidean space (see McMillan and Zeeman 
[l] and Stallings [l]). 

If L is an arbitrary finite complex, we could replace S3 by S3 * L in all 
the constructions and would end up with an action of Zr on euclidean space 
with fixed point set of the homotopy type of L. Thus we have the following 
theorem. 

0.3. Theorem If r is not a prime power and L is a finite complex, then 
there is an integer m such that Rn admits a self-homeomorphism of period r 
whose fixed set has the homotopy type of L, for  any n 2 m (including the 
case L = 0). I 

Remarks Kister [I] has improved on the embedding of the above con- 
struction and has shown that m can be taken to be 8 when L = 0. It is 
known (Smith [lo]) that, in the differentiable case, m must be at least 7 
for L = 0. Conner and Montgomery [2] have modified these construc- 
tions to produce an action of SO(3) on some euclidean space with no sta- 
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tionary points. They use a self-map of the 5-dimensional representation 
of S0(3), discussed at the end of Section 4, having degree 0 (originally 
found by Floyd [12]). The same construction was generalized to actions 
of SO(2n + l), n 2 1, by Hsiang and Hsiang [4] and, by an examination 
of the actions of subgroups, they showed that the same is true of any 
compact, connected, nonabelian, Lie group (but is false for tori, as we 
shall see later). Again by joining a finite complex L to the construction, one 
obtains actions whose fixed point set is homotopically equivalent to L. 
The end result, which we state without proof, is the following theorem. 

8.4. Theorem If G is any compact, connected, nonabelian, Lie group, 
then there is an action of G on any euclidean space of suJiciently high dimension 
for which thefixedpoint set has the homotopy type of any givenfinite complex 
(including F = 0). I 

Remark These examples surely show that, without some restrictions, 
there is little one can say about a transformation group. However, under 
certain restrictions, one can prove some strong theorems. For example, 
we will obtain some important results about actions of p-groups and of 
tori. Also one can prove strong theorems about actions in which the orbits 
have low codimension, or the fixed set has low codimension, or the number 
of orbit types is small, and so on. We shall study some such situations in 
later chapters. 

9. COVERING ACTIONS 

Let X be a G-space and suppose we are given a covering space p : X' ---f X 
of X .  It is natural to ask if we can lift the G-action on Xto an action on X ' ,  
perhaps of a covering group of G. 

We shall assume throughout that G is a Lie group. (We use only the fact 
that the identity component Go of G has a simply connected covering space 
and is open in G.) Also we assume that X is connected and locally arcwise 
connected. 

First, we shall discuss the case in which G is connected and we let G* 
be the universal covering group of G with projection n: G* -t G. Let e 
and e* be the identities of G and G*, respectively, and let x,,' be a point in 
X' with p(x,,') = x,. Let 0: G x X - t  X be a given G-action on X .  

Since the inclusion {e*}  x X' c G* x X'  induces an isomorphism of 
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fundamental groups, we see that 

in n l (X ,  xo). By a fundamental theorem of covering space theory this implies 
that there is a unique map 

@*: G* x X'+ X' 

which covers 0 and takes e* x x,,' to x,,'. We claim that @* is an action. 
To see this, note that O*(e*, .): XI-+ X' covers the identity on X and 

takes x,' to xo'. Hence it is the identity. Also the maps G* x G* x X' 
-+ X' defined by (g*, h*, x') H @*(g*, @*(h*, x ' ) )  and @*(g*h*, x'), re- 
spectively, both cover the same map G x G x X-+ X and both take 
(e*, e*, x,,') to xo'. Hence they are equal and @* is an action. 

Moreover, @* does not depend on the choice of x,,' since for any covering 
action and any point x,,' we must have that @*(e*, x,,') = x,,'. 

We claim that the action @* commutes with each deck transformation 
T of X' (a map X' -+ X' covering the identity). To see this, consider the 
map 

(g*, x') I+ T-l@*(g*, Tx') 

of G* x X ' +  X'.  This covers 0 and takes (e*, x') into T-'@*(e*, Tx') 
= T-lTx' = x'. Thus this map must be O*, that is, 

O*(g*, Tx') = T@*(g*, x') 

as claimed. 
Now suppose that G acts eflectively (which is no loss of generality) and 

let G' be the effective factor group of G* for the action on X'. Then G' 
covers G. Clearly, the kernel of G' + G consists of deck transformations 
of X'. 

If there is a stationary point x for G on X ,  then the fiber p-l(x) is invariant 
under G'. Since G' is connected and p-'(x) is discrete, G' leaves p-'(x) 
pointwise fixed. This would imply that an element of ker(G' --L G) is the 
trivial deck transformation, and hence that G' = G. We have proved the 
following theorem. 

9.1. Theorem Let G be a connected Lie group acting eflectively on a 
connected, locally arcwise connected space X and let X' be any covering space 
of X. Then there is a covering group G' of G with an effective action of G' 
on X' covering the given action. Moreover, G' and its action on X' are unique. 
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The kernel of G‘ - G is a subgroup of the group of deck transformations of 
X ’ +  X .  (In particular, if X ’  - X has finitely many sheets, then so does 
G‘ + G.) If G has a stationary point in X ,  then G’ = G and F(G, X’)  is the 
full inverse image of F(G, X ) .  I 

Now we shall discuss actions of disconnected Lie groups G. Let Go de- 
note the identity component of G. First, we consider the case in which G 
has a stationary point xo in X .  Let x,’ be a point of X’ over x, and consider 
the question of lifting the action so as to leave x,’ fixed. 

Note that G acts as a group of automorphisms of n,(X, x,) and that 
Go acts trivially. Let 

J = P#(Zl(X’, x,’)) = n,(X xo). 

Then, given g in G, covering space theory shows that 8,: X -  X lifts to 
a map 0,‘: X ’ +  X’  such that O,‘(x,l) = x,’ iff (Og)#(J) c J.  Thus 8,‘ 
exists for all g iff J is stable under the G-action on n,(X, x,). Supposing 
this to be the case, we define 

by 0’(g,  x’) = Oi(x’). The uniqueness of the 8; imply that this is an 
action once we check continuity. But it is clear that the restriction to Go 
x X’ - X’ is the map given by 9.1, and hence is continuous. Now, for any 
g E G, 0‘ can be written as the composition 

G x X‘ 

and this implies that 0‘ is continuous on gG, x X’, and hence everywhere. 
Thus we have the following theorem. 

9.2. Theorem Let G be a Lie group (not necessarily connected) acting 
on a connected and locally arcwise connected space X ,  and let p :  X ’  - X 
be a covering space of X .  Let x,’ E X’ project to x, E X and suppose that 
G leaves x, stationary. Then there exists a (unique) G-action on X‘ leaving 
x,’ stationary and covering the given action on X iflthe subgroup p,(n,(X’,x,’)) 
is invariant under the action of G on n,(X, x,). I 

Now we shall consider the case in which G is disconnected and does not 
necessarily have stationary points in X.  Since a general discussion would 
be difficult we shall assume that X is also semilocally l-connected, so that 
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X has a universal covering p :  X* + X ,  and we shall first discuss lifting the 
action to X * .  We also assume that G acts eflectively on X .  

For any g in G, 8,  can be covered by a homeomorphism of X * ,  since 
X *  is simply connected, and any two such liftings differ by a deck transfor- 
mation. Clearly, all such liftings, for all g ,  form a subgroup G’ of Homeo(X*) 
and there is a natural surjection 7t: G’ ---f G whose kernel is precisely the 
group d of deck transformations. [Note that d - nl(X).] We must topol- 
ogize G‘. (Of course, for G discrete this is trivial.) For this, note that 9.1 
provides a canonical subgroup, say G,,’, projecting to Go and carrying a 
topology under which it covers Go. We shall show that Go’ is normal in 
G’. To see this, let g E G’ and consider the subgroup gG,,’g-l of G‘. With 
the topology on this induced from that on Go’ it is clear that gGdg-l covers 
Go. By the uniqueness part of 9.1, the transformations of X* in gG,,’g-l 
are identical with those in Go’. Hence G,,’ is normal in G’. Clearly we may 
topologize G‘ by taking G,,’ to be open and having the above topology. 
Then G‘ is a Lie group, with identity component Go‘, and 

1 --+A + G’ + G -+ 1 

is an exact sequence of topological groups, with A - n l ( X )  discrete. 
The more general case of a regular covering space X ’  ---f Xis also amenable 

to study. Recall that a regular covering space is a covering space X’ - X * / N  
associated with a normal subgroup N - n l ( X ’ )  of d - 7tl(X), and that its 
group of deck transformations is A’ = A / N .  (Also, regularity is equivalent 
to transitivity of the group of deck transformations on the fiber.) If N also 
happens to be normal in G‘, then we have an exact sequence 

1 + d / N + G ‘ / N + G - +  1. 

Moreover G‘/N acts on X ’  = X * / N  and covers the action of G. Conversely, 
if a transformation group exists on X ‘  covering G on X (with the group a 
covering group of G in the nonconnected sense), then the deck transfor- 
mations can be thrown in with it. Then A’ is the kernel of the projection of 
this enlarged group G” onto G and thus there is an exact sequence 

1 + A ’  + G” + G -+ 1. 

Then, applying the above remarks to X *  + X’, there is an exact sequence 

I + N +  G’ + G” + I 

(where it is clear that G’ is the original covering group defined above, 
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since it acts effectively on X*,  covering the G-action, and contains A ) .  
Thus G” - G‘/N and the situation arises as above. 

Now the normality of N in G‘ may be interpreted geometrically as fol- 
lows, Let dc denote the set of conjugacy classes of elements of d, which 
can be identified with the set [S, XI of free homotopy classes. Similarly 
Ne = [S, X’] and the inclusion N c d induces a map Nc--+Ae which 
corresponds to the canonical map [S, X’] -+ [S, XI. Now G acts on [S’, X ]  
in the obvious way and it is clear from standard covering space theory that 
the corresponding G-action on dc is given by lifting elements of G back 
to G’ and conjugating d by these (well defined on dc). Since N is normal 
in A this clearly implies that N is normal in G‘ iff the action of G on [S, X ]  
1: de preserves the image of [Sl,  X’]  = Ne (not necessarily pointwise). 
We sum up our remarks in the following theorem. 

9.3. Theorem Let G be a Lie group (not necessarily connected) acting 
efectively on a connected, locally arcwise connected, and semilocally 1 -con- 
nected space X.  Let X ’  be a regular covering space of X with group A‘ of 
deck transformations. A necessary and suficient condition for  there to exist 
a covering group G’ of G (in the nonconnected sense) and an effective action 
of G‘ on X’ covering that of G on X ,  is that the action of G on the set [Sl,  XI 
Cfree homotopy classes) preserves the image of [Sl,  X‘] + [S, XI. [Note 
that i f z l ( X )  is abelian, then the condition is that G preserves the image of 
H,(X’) -+ Hl(X) . ]  By possibly enlarging G‘, there is an exact sequence 

l - + A ’ - + G ’ + G - + l .  I 
(The reader should note the case of finite groups G. It is definitely false 

that G‘ can be taken to be G and the reader should be able to find simple 
counterexamples of this.) 

There are some cases in which one can find a canonical lifting of ho- 
meomorphisms and thus provide a covering action by the original group; 
9.2 gave one such situation. Another is the case of the orientable double 
covering of a nonorientable manifold. Suppose that M is a nonorientable 
manifold and that M’ is its orientable double cover. Let G be a Lie group 
(not necessarily connected) acting on M .  We apply 9.3 by noting that the 
image of [Sl, M’]  ---f [Sl, MI consists exactly of those classes represented 
by orientation preserving loops. Since any homeomorphism clearly preserves 
the set of such classes, 9.3 implies that there is a covering action by a Lie 
group G’ and an exact sequence 
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But there is a splitting homomorphism G‘ + Z, taking g’ to the identity 
iff g‘ preserves orientation. (Since the component of the identity is in the 
kernel, this is continuous.) Thus the subgroup of G‘ consisting of orienta- 
tion preserving homeomorphisms maps isomorphically onto G, and we 
have the following corollary. 

9.4. Corollary If G is a Lie group (not necessarily connected) acting on 
a nonorientable manifold M ,  then there is a unique covering action of the same 
group G by orientation preserving homeomorphisms on the orientable double 
covering of M. I 

Remarks It is certainly possible to weaken the Lie condition in some of 
these theorems, at some expense of efficiency in the proofs. We do not 
know the most general possible conditions. We regard 9.1 and 9.2 as folk 
theorems. In the special case of compact connected Lie G and finite cover- 
ings of locally compact spaces, 9.1 was proved in Kister and Mann [I]  
by a different method. The case of 9.2 for the universal covering was proved 
in Conner and Montgomery [I], and the general case can be found in Conner 
and Raymond [l]. A more general version of 9.4 can be found in Bredon 
[3]. Theorem 9.3 does not seem to have been noticed. 

EXERCISES FOR CHAPTER I 

1. Let X be a G-space and let N be a closed normal subgroup of G. 
Show that there is a canonically induced action of GIN on XIN and a nat- 
ural homeomorphism 

XIN X 
GIN G ’ 

-5- 

2. If X is a G-space and A c X let GA = {g E G I g(a) = a for all 
a E A } .  Show that: 

(i) A c B=> GA 3 G B ,  
(ii) H c K X H  3 X K .  

Also put A‘ = X G ~  and show that 

(iii) A’ 2 A ,  
(iv) A” = A’, 

(v) ( A  u B)’ = A’ u B’, 

and hence that A H A ’  is a closure operator, when G acts nontrivially. 
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3. In the examples of Section 7 show that the orbits corresponding to 
boundary points of D2 =Zf?-l/O(n) have the orbit type of Sn-’ 
= O(n) /O(n - 1) and those corresponding to interior points have the 
orbit type of Vn,, = O(n)/O(n - 2). 

4. Let G be a compact group and let gDC be the set of G-orbit types. 
Topologize fTu by taking the smallest topology for which the set of all 
types less than or equal to type(G/H) is closed (for each H c G). If X is 
a G-space, show that the canonical function z: X/G -+ &Ou , assigning to 
an orbit its type, is continuous. (Hint: Consider the images of XE in X/G 
for each H.) 

5. We define a G-orbit structure to be a Hausdorff space Y together 
with a continuous map Y -+ 8~ (see Exercise 4), and the orbit structure 
of a G-space X to be the canonical map z: X/G -+ 8,. Iff: Y -+ X/G 
is any map, show that the orbit structure of the G-spacef*X is (canonically 
equivalent to) z of: Y + gU, 

A map Y, -+ Y, of spaces with given G-orbit structures is said to preserve 
the orbit structures if the diagram 

commutes. An equivariant map f: X, -+ X, of G-spaces is said to preserve 
the orbit structure if its induced map X,/G -+ XJG does so. Show that 
an equivariant map preserves orbit structure iff its restriction to each orbit 
in X, is a homeomorphism to its image in X,.  

Let K be a simplicia1 complex and let G be a discrete group acting 
simplicially on K. Show that the first barycentric subdivision K’ of K has 
the following property (where g E G and u is a simplex of K’): 

6. 

(*) 

Also prove the following Equivariant Simplicia1 Approximation Theorem : 
Let K and L be G-complexes (as above) and assume that L satisfies (*) 
(where o is now a simplex of L). Let f: I K I -+ I L I be an equivariant map 
on the polyhedra associated with K and L. Then, for suitable r, there is 
a simplicia1 approximation g: K(?)--+ L of f which is equivariant ( K ( r )  
being the rth barycentric subdivision of K) and such that I g I : I K I -+ I L 1 
i s  equivariantly homotopic to f. (Hint: Choose g suitably on one vertex 
out of each orbit of G on the vertices of K ( r )  and extend by equivariance.) 

If g(u) = u, then g leaves u pointwise fixed. 
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7. Consider the 5-dimensional representation of SO(3) given at the 
end of Section 4. Show how to construct an equivariant proper m a p 8  
R5 -t R5 such that f -l(O) = 0 and such that the degree off is 0. (Hint: 
Consider F(Z, 0 Z,, R5) and, inside this, the cross section of the action 
given in Section 4. Use Corollary 3.4.) 

8. Show that the Tietze-Gleason Theorem 2.3 also holds for completely 
Use the regular spaces X and compact invariant subspaces A. (Hint: 

Stone-Cech compactification of X.) 

9. Show that each neighborhood of an orbit in a G-space, with G 
compact, contains an invariant neighborhood. (Hint: Use 3.1.) 

10. Let G be compact and letf: X - t  Y be an equivariant orbit structure 
preserving map between G-spaces with f I :  X/G -+ Y/G the induced map of 
orbit spaces. Show that f is open iff f '  is open. 

11. Let G be compact and X be a G-space. Iff: X - t  X is an equi- 
variant map such that the diagram 

f x-x 

XIG 
I J  

commutes, show that f is an equivalence of G-spaces. 

12. Let H, K c G be compact groups. Show that u-~KH RE,H gives 
a homeomorphism 

- 
(G/K)= = F(H, G/K) 1 MapG(G/H, G/K) 

of the space of fixed points of H on G/K onto the space of equivariant maps 
G/H -+ G/K in the compact-open topology. 

13. If G is a compact group and X is a metric G-space, show that there 
is an equivalent metric which is invariant under the action. Also give an 
example showing that this is generally not possible uniformZy (that is, so 
that the two metrics give the same uniform structure). 



CHAPTER I I  

GENERAL THEORY OF G-SPACES 

In this chapter we shall study actions of compact Lie groups from a 
general point of view, as distinguished from the study of actions on man- 
ifolds or of actions of special types of compact Lie groups. 

The chapter contains four main theorems. The first is the existence of 
tubes, or slices, due to Montgomery and Yang [l] and to Mostow [I]. 
This fundamental result concerns the study of the nature of the neighbor- 
hood of an orbit in a G-space. This topic is treated in Sections 4 and 5 after 
some preliminary background material on bundles and twisted products 
in the first three sections. It is applied in Section 6 to the comparison of 
the fundamental group of a G-space with that of its orbit space. 

The second main theorem is the Covering Homotopy Theorem of Palais 
[3]. It is studied in Section 7 and applied in Section 8 to the situation of a 
G-space with conical orbit structure. 

The third main theorem is the Classification Theorem of Palais [3] which 
is treated in Section 9 and then applied in Section 10 to prove the fourth 
main theorem, the Equivariant Embedding Theorem of Mostow 111. The 
latter states that every separable metric G-space of finite dimension and 
finitely many orbit types, with G compact Lie, can be embedded in an or- 
thogonal representation of G. 

From Section 5 on, our attention is restricted to actions of compact Lie 
groups. 

1. FIBER BUNDLES 

In this section we define the notion of a fiber bundle and make some 
elementary remarks about them. We shall not go far into the theory of fiber 
bundles in this book, but rather refer the reader to Steenrod [I] and Husemol- 
ler [l] for this. (But note that the use of “effective” to mean “free” in the 
latter reference is incorrect.) 

Let K be a topological group and let F be an effective right K-space. 

70 
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Let X and B be Hausdorff spaces. By a fiber bundle over B (the base space) 
with total space X, fiber F, and structure group K, we mean a map 

p :  X - t B  

together with a collection @ of homeomorphisms 9 : F x U 1, p-l( U )  for 
U open in B, called charts over U, such that 

- 

(1) The diagram 

F x U&p-’(U) 

U 
m j \  JP 

commutes for each chart 9 E @ over U. 
(2) Each point of B has a neighborhood over which there is a chart 

in @. 
(3) If p,: F x U + p - l ( U )  is in @ and V c U is open, then the restric- 

tion of p, to F x V+p- ’ (V)  is in @. 
(4) If p,, y E @ are charts over U, then there is a (continuous) map 

8: U +  K such that 
w ( f ,  u)  = p,(f * WU), .) 

for all f E F and u E U. This map 8 is called the transition function for the 
charts p, and y .  

( 5 )  The set @ is maximal among collections satisfying the preceding 
conditions. 

Remark Since K acts effectively on F, it is clear that the map 8 in (4) is 
uniquely determined by p,-ly. Also note that q-?: F x U +  F x U in- 
duces a function 

U-+ Map(F, F X U )  = Map(F, F )  x Map(F, U )  

which takes u to (O(u), c,), where c, is the constant map of F to u. It is 
well known (see Dugundji [I], for example) that this map is continuous 
if these mapping sets are given the compact-open topology (and the “equal- 
ity” is a homeomorphism). Thus, 8 is automatically continuous when K 
has the compact-open topology. (Also see Arens [l] with regard to “good” 
topologies on K.) 

1 .I. Theorem Suppose thatp: X + B is a bundle withfiber Fandstructure 
group K.  Suppose that F is also a left G-space and that the actions of G and 
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K commute [that is, (gf  )k = g( f k ) ] .  Then there is a unique G-action on X 
covering the trivial action on B and such that each chart 9: F x U -+p-'(U) 
is equivariant [where G acts on F x U by (g,  (f, u ) )  H (gJ u)]. 

Proof The action is to be defined by the equivariance of the charts and 
it clearly suffices to prove that it is independent of the choice of a chart 
over U. That is, it suffices to show that each v-$: F x U - t  F x U is 
equivariant. But 

g(pl-lyr(f, 4) = g ( f  * w 4 Y  .) 
= ( g ( f  * e(u>>Y .) 
= ((dl * W > Y  4 
= v-wgf, u> = v - ' v ( g ( f ,  4). 1 

By a principal G-bundle we mean a bundle with fiber G and structure 
group G acting by right translation (that is, g in the structure group takes g' 
in the fiber to g'g; giving a right action). 

Since the usual left translation action of G on itself commutes with right 
translation, 1.1 shows the following. 

1.2. Corollary I f p :  X -+ B is a principal G-bundle, then there is a canoni- 
calfree G-action on X ,  which covers the identity on B (and is left translation 

in the jibers). The map p :  X-+ B induces a homeomorphism X/G 1 B, 
and thus may be regarded as the orbit map for this action. 

- 

I 

Remark In Section 5 we shall prove a theorem of Gleason [l] which im- 
plies that every free action comes in this way from a principal bundle when 
G is compact Lie and X is completely regular. Thus, in this case, the no- 
tions of a principal G-bundle and of a free G-action are canonically equiv- 
alent. 

2. TWISTED PRODUCTS AND ASSOCIATED BUNDLES 

Suppose that X is a right G-space and that Y is a left G-space. Then a 
left G-action on X x Y is given by letting g take (x, y )  to (xg-l, gy). We 
define the twisted product of X and Y to be the orbit space 

X X G Y  
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of this action. That is, X x u  Y is the quotient space of X x Y under the 
equivalence relation which relates (xg, y )  to (x,  g y )  for all x E X ,  y E Y, 
and g E G. The equivalence class (orbit) of (x,  y )  is denoted by [x, y] ,  so 
that [x ,  y ]  = [x’, y’] iff there is a g E G with x’ = xg-’ and y’ = gy .  Note 

This construction is functorial. That is, iff: Y -+ Y‘ is an equivariant 
that 1% yl  = [x,  gyl. 

map of left G-spaces, then we have the induced map 

X X Q f :  X X @ Y - + X X Q Y ‘  

given by [x, y ]  i+ [x , f ( y ) ] .  Similarly for equivariant maps of the left-hand 
factor. 

2.1. Proposition I f f  is open, then X x G  f is open. 

Proof This is immediate from the commutative diagram 

x xf x x  Y - x x  Y’ 

since the vertical maps are open. I 

In particular, the projection of Y to a point induces an open map 

X x Q Y - +  X X g  * X/G. 

This may also be described as the map on orbit spaces induced by the 
equivariant projection of X x Y to X.  Similarly we have the open map 

If X and Y are right and left K-spaces, respectively, and X is a left G- 
space (with right and left operations always commuting), then X x K  Y 
is a left G-space by g [ x , y ]  = [ g x , y ] .  Similarly, if Y is a right H-space, 
then so is X x K  Y by [x ,  y ] h  = [x ,  yh]. 

X X G  Y - t  Y/G. 

2.2. Proposition G - X taking [x ,  g ]  H xg is an equi- 
variant homeomorphism of right G-spaces. The inverse is given by x t+ [x ,  el. 

The map X x 

Proof Both maps are clearly well defined and inverse to one another. 
Continuity of the first map follows from that of the action map X x G -, X 
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and from openness of X x G + X x a G. Continuity of the second map is 
clear. [ 

2.3. Proposition 
and Z a left K-space. Then there is the canonical homeomorphism 

Let X be a right H-space, Y a left H- and right K-space, 

Proof The map is well defined since [[xh-l, hylk-l, kz]  = [[xh-', hyk-l],kzl 
goes to [xh-l, [hyk-l, kz]] = [xh-l, hbk- l ,  kz]]  = [x, b, z]]. Continuity fol- 
lows from the fact that the composition (X x Y )  x Z + ( X  X H  Y )  x Z - ( X  XH Y )  x K  Z is open, since all orbit maps are open. Clearly the in- 
verse has the same properties. [ 

Recall from 1.2 that a principal K-bundle p :  X -+ B has a canonical free 
left K-action whose orbit space X/K is homeomorphic to B, via p. 

2.4. Theorem Let p :  X + B be a principal K-bundle and let F be a right 
K-space. Then 

TL: F x g X - B  

defined by n [ f ,  x] = p ( x )  is a bundle with Jiber F and structure group K 
and is called the F-bundle associated with this principal K-bundle. I f  q: K 
x U -+ p-l( U )  is a chart of the princigal bundle over U, then the composition 

cjj: F x U + ( F x K K ) x  U - S F X ~ ( K X  U )  
- - - 

- FXgv 
F X g p-'( u) 1 Z-'( u) 

is taken to be a chart of the associated bundle. (Note that q(J u)  = [f, q(e,u)].) 

Proof The first map in the above composition is that of 2.2, the second 
is that of 2.3, and the third map is a homeomorphism by 2.1. The last map 
is induced by inclusion p-'(U) -+ X ,  is an embedding in F XK X by 2.1, 
and its image is n-l(U) since all these maps commute with the obvious 
projections to U. 
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If and y are charts over U of the principal bundle and if 0: U - .  K 
is the transition function (so that y(k,  u) = p(kO(u), u)), then 

(by definition of the left K-action on X )  and this shows 0 to be the transition 
function for 

Since any collection of charts satisfying conditions (1)-(4) of the defi- 
nition in Section 1 is easily seen to be contained in a unique maximal such 
collection (see Steenrod [l]), the theorem follows. 

and v as well. 

I 

2.5. Lemma In the situation of 2.4, the diagram 

is a pull-back diagram. 

Proof The given maps induce a map of F x X into the fibered product of 
( X ,  p )  and (F x K  X ,  n) and it is easily checked that this is one-one onto 
(since K acts freely on X ) .  It remains to show that it is open. To do this, 
we may look at the diagram ZocaZZy in B. Then if U c B is small, the dia- 
gram becomes 

* K x  U proj F x K x U  

where the left-hand map is (f, k, u )  H [f, (k,  u)] H ( f k ,  u). Then the fi- 
bered product is just F x K x U and the map in question is (f, k,  u )  
H (fk, k, u). The inverse of this is (f, k,  u )  H (fk-', k,  u )  and is con- 
tinuous. I 
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Remark When K is compact, another proof is available using Chapter I, 
Exercise 10. 

The following theorem is a basic result in bundle theory. 

2.6. Theorem Let p :  X + B be a principal K-bundle and let Y be a left 
K-space, Let K act on the right of Y by putting y k  = k-ly. Then there is a 
natural one-one correspondence between the K-equivariant maps f: X + Y 
and cross sections f of the associated Y-bundle 

Z: Y X K X +  B. 

The correspondence is characterized by the equation f ( p ( x ) )  = [ f(x), x]. 

Proof I f f :  X +  Y is equivariant, then x H [ f ( x ) ,  x] gives a map f I :  X 
-+ Y x K  X ,  and since 

, f ' ( k x )  = [ f (kx) ,  kx] = [kf(x), kxl = [f(x)k- ' ,  kxl = [ f ( x ) ,  X I  = f  

we see that f '  induces a map 8 B = X/K+ Y x X which is clearly a 
cross section and is characterized by the equation f ( p ( x ) )  = [ f ( x ) ,  X I .  

I f f  is a cross section, then n ( j o p ( x ) )  = p(x).  It follows from 2.5 that 
there is a unique equivariant map 8: X +  Y x X such that the diagram 

.fO P X - Y X K X  

I " 7  
Y X X  

11 , / w j  

X 

commutes. Thus 8 has the form 8(x) = ( f ( x ) ,  x )  where f: X + Y satisfies 
f ( P ( X > )  = [ f ( x ) ,  XI .  I 

The remainder of this section will be devoted to some material that will 
not be used until Chapter V, but which will be important there. 

Let S and T be topological groups. Let A be a right S-space and let A' 
be a right T-space. Assume that A is locally compact. Let Map(A, A') be 
the space of continuous maps from A to A' with the compact-open topology 
and let S x T act on the left of Map@, A') by putting 

((s , t ) f)(a> =f(as)t-l,  

where f E Map(A, A'). 
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Now suppose that px:  X -, B is a principal S-bundle and that p y  : Y -+ B 
is a principal T-bundle. The product X x Y - ,  B x B is then a principal 
S x T-bundle. The restriction of this to the diagonal of B x B is a principal 
S x T-bundle over B whose total space will be denoted by 

A = {(XY Y )  E x x YI P X ( 4  = PY(Y>). 

We put p(x ,  y )  = px(x)  = p y ( y )  for (x, y )  E A. As usual, by 1.2, A has a 
canonical left S x T-action which is given by (s, t ) (xy  y )  = (sx, ty). We 
shall consider the associated bundles A x s  X and A' X T Y over B. By a 
map q ~ :  A x s  X-+ A' x T  Y over B we simply mean a map which com- 
mutes with the projections onto B. 

2.7. Theorem In the above situation, there is a canonical one-one cor- 
respondence between maps 91: A x S  X-+ A' x T  Y over B and S x T- 
equivariant maps 9 :  A --f Map(A, A'). The correspondence is characterized 
by the equation 

VbY XI = [9<x, m ) Y  ul. 

Thus these are also in one-one correspondence with the cross sections p of 
the associated bundle 

Map(A, A ' )  x sxlT A -+ B, 

given by F(P(& v)) = [@(XY Y>Y (XY r)l. 

Proof Note that 
A - Y  

I I p y  
X - B  

PX 

is a pull-back diagram, so that the projection A --f Xis the bundle induced 
from the bundle p y  by the map p x .  In particular, A -, Xis  open. Thus also 
A x A - t A x X  and the composition , u : A x A - + A x X - + A X ~ X  
(where p(a,  (x ,  y)) = [a, x ] )  are open maps. 

Y 
by (a, ( x , y ) ) ~  [Q(x, y)(a), y] .  If (x, y )  and (x ,  y') are both in A,  then 
y' = ty  for some t E T. Since 

Suppose that 9: A -, Map(A, A') is given. Map A x A -+ A' x 

[9(XY tv)(a)Y tYl = [&Y r>(a)t-'Y tYl = [@(XY Y ) W ,  YIY 

by equivariance of 9, we see that this map factors through A x X. Since 
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Q(s-lx, y)(as) = Q(x, y)(a) we see that the above map factors through 
A x X. That is, there is a function p: A x X + A’ x Y given by p[a, x] 
= [Q(x, y)(a), y ]  [where p y ( y )  = px(x) ] .  Since ,u: A x d + A xs X is an 
open map it follows that p is continuous. Since px(x)  = p y ( y ) ,  p is a map 
over B. 

Now suppose that p is given and consider the diagram 

prop 
A x A  * A ‘  X T  Y 

I) ---* 
proj I .\ A’ x Y /  1 

* B  
4 j  

Y 
PY 

Since p is a map over B, (p o ,u)(u, (x, y ) )  = p[a, x] projects to p x ( x )  
=pp(y) in B, which means that the square commutes. The lower right 
part of the diagram is a pull-back diagram by 2.5 and thus there exists a 
unique map q as indicated, completing the commutative diagram. By 
commutativity, q has the form 

r(a,  (x, v)) = ( q ’ b  (x, Y ) ) ,  v), 

where q’: A x d + A ’ .  By the “exponential law” the function 9: d 
+ Map(A,  A’) given by Q(x, y)(a) = q’(a, (x, y ) )  is continuous. Commut- 
ativity of the top part of the above diagram becomes 

vb, XI = [Q(% y)(a), vl. 

The above diagram can be considered as a diagram of S x T-spaces with 
the obvious actions and thus q is equivariant, that is, 

(Q(sx, v)(as-’), tv) = q @ - 1 ,  (sx, 04) 
= q((& t xa ,  (x, Y ) ) )  

= t(rl(a, (x, Y N )  = (Q@, u)(a)t-’, v).  
This is equivalent to the equivariance of Q and finishes the proof of the 
first part of the theorem. The second part follows from 2.6. I 

It  is edifying to see what the correspondence between 9 and becomes 
“locally.” Thus if both bundles are trivial over U c B, then (for given charts 
over U )  p can be regarded as a map p: A x U +  A’ x U commuting with 
projection to U. Thus 9 has the form ~ ( u ,  u )  = (q(u)(a), u), where q:  U 



3. TWISTED PRODUCTS WITH A COMPACT GROUP 79 

+ Map(A, A’)  (by the exponential law). Thus p can be regarded as a cross- 
section of the product bundle Map(A, A’)  x U +  U. The reader may check 
that this is, indeed, the correspondence given by 2.7 (forgetting now about 
9). Note that a homotopy of maps over B corresponds to a homotopy of 
cross sections (by2.7) and that continuity of the homotopies is easily checked 
by looking at them locally for trivial bundles. We shall leave the details 
of this to the reader. 

Also note that if W c Map(A, A ’ )  is any subspace invariant under the 
S x T-action (that is, invariant under composition with the S-action on 
A and the T-action on A’), then the maps q over B which arefiberwise iii 

W correspond to cross sections of the subbundle 

W x S x T A + B .  

In particular, suppose that A and A’ are left G-spaces with the G-actions 
commuting with the right S and T actions. Then A x X and A’ x Y 
are canonically left G-spaces by 1.1. The space MapG(A, A’) c Map(A, A’) 
of G-equivariant maps is S x T-invariant (since the S and T actions are 
G-equivariant). Moreover, a map A x X - t  A’ x Y over B is fiberwise 
in MapG(A, A’)  iff it is G-equivariant. Thus we have the following corollary. 

2.8. Corollary u, in 2.7, A and A‘ are left G-spaces with the G-actions 
commuting with the right S- and T-actions, then 2.7 gives a one-one corre- 
spondence between G-equivariant maps q: A x S  X +  A’ x T  Y over B and 
cross sections of the associated bundle 

MapG(A, A’)  x sx17 A + B. 

Since we shall eventually make important use of it, we remark again 
that the correspondence of 2.8 induces a correspondence between G-equi- 
variant homotopies of maps A x X .+ A‘ x Y over B and homotopies of 
cross sections of the bundle 

MapG(A, A’)  x SxT A + B. 

3. TWISTED PRODUCTS WITH A COMPACT GROUP 

Throughout this section we let G be a compact group and we shall spe- 
cialize our considerations to the case of twisted products 

G X H A ,  
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where H is a closed subgroup of G and A is a left H-space. This case was 
noted briefly in Chapter I, Section 6. Left translation makes G x H  A into 
a left G-space: (g, [g', a])  e- [gg', a]. 

3.1. Proposition I f  K c H c G and B is a (left) K-space, then the map 
G x K  B - G X H  (H  x K B )  taking [g, b] e- [g,[e, b]] is a G-equivariant ho- 
meomorphism. 

Proof The map is the composition 

- - - - 
G xgB---+(G X H H )  X K B - - + G  X H ( H  X K B )  

of 2.2 and 2.3. 

Recall the map i,: A +. G x H  A given by &(a) = [e, a], which is an 
H-equivariant embedding since H is compact. (This is also an embedding 
when G + G/H is a bundle mapping, since then G x A is an associated 
bundle by 2.4. Thus i, is an embedding when G is any Lie group (not nec- 
essarily compact) and H is closed. Perhaps it is always an embedding.) 

Note that the map G x A - G/H given by [g, a] H gH is G-equiva- 
riant and that the inverse image of the point H / H  is ie(A) = { [e, a] I a E A}. 
The following proposition is a converse to this. 

3.2. Proposition Let X be a G-space and suppose that f: X - t  G/H is 
equivariant. Put A = f -l(eH). Then A is invariant under H and the map 
pl: G x H  A -t X defined by q[g,  a] = g(a) is an equivariant homeomorphism. 

Proof Clearly p is well defined, equivariant, and is continuous by the 
diagram 

To see that p is onto, let x be in X with f ( x )  = gH and then note that 

To see that pl is one-one, suppose that p[g, a] = q[g', a']. Then ga = g'a' 
f(g-'x) = eH so that (g-'x) E A and x = g(g-'x) = pl[g,g-'XI. 

so that 

gH = g ( f ( 4 )  =f(ga> =f(g'a')  = g'( f (a ' ) )  = g'H 
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whence h = g-lg‘ is in H. Thus ga = g’a’ = gha’ so that a = ha’ and [g‘, a’] 
= [g‘h-l, ha’] = [g,  a] as claimed. 

is closed. But this follows 
from the above diagram, since A is closed in X and G x A + X is a closed 
map by 1.1.2. I 

To complete the proof is suffices to show that 

3.3. Proposition 
phism A/H-+  (G X H  A)/G (i.e., H(a) H- G[e, a]). 

The inclusion i,: A -  G X H  A induces a homeomor- 

Proof Recall that the embedding i,: A + G x H  A is H-equivariant. 
Thus every H-orbit in A is mapped into an H-orbit (and hence in a G-orbit) 
of G x A ,  so that the map is defined. It is continuous by the diagram 

A - G x H A  

I I 
AjH - (G A)/G.  

The projection G x A +  A is H-equivariant and thus induces a map 

G XH A -+ A/H.  

This is given by [g, a] H H(a) and hence clearly factors as 

I \  
(G X, A)/G - A/H. 

The diagram shows the horizontal map G[g, a] H H(a) to be continuous 
and it is clearly the inverse of the original map. I 

Remark Clearly iff:  G* -+ G is an isomorphism and H =f(H*) and if 
A * + A  is a homeomorphism, then an H-action on A pulls back to an 
H*-action on A* and G* x H .  A* is equivalent to G x H  A.  Applying this 
to an inner automorphism by some given g E G we see that, given an H-ac- 
tion on A ,  there is an action of gHg-l on a copy A* of A and an equivalence 

G x H  A - G x K  A* (where K = gHg-’) 

of G-spaces. 
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We wish to find the isotropy group at a point of the twisted product 
G x H  A.  It suffices to treat points of the form [e, a ] .  Clearly g E GLe,a, 
iff [e, a] = g[e,  a] = [g,  a ] ,  which means that, for some h E H, (h-l, h (a ) )  
= (8, a), that is g E Ha. Thus 

(3.4) Gr,,al = Ha in G x H  A .  

4. TUBES AND SLICES 

Let X be a G-space with G compact and let P c X be an orbit of type 
G/H. By a tube about P (or a G-tube about P) we mean a G-equivariant 
embedding (homeomorphism into) 

onto an open neighborhood of P in X ,  where A is some space on which H 
acts. 

In this situation, note that every G-orbit in G x H  A passes through a 
point of the form [e, a ] .  Thus let a E A be such that p[e, a] E P and put 
x = p[e ,  a],  so that P = G(x). Then, by (3.4), G, = Gre,al = Ha c H. Since 
G, is conjugate to H, by assumption, this implies, by 0.1.9, that 

G, = Ha = H. 

Thus such a point a E A is stationary under H. 
Since i ,: A - G x A is an H-embedding, the composition p 0 i ,: A -+X 

is also an H-embedding when p is a tube. Clearly, it is no loss of generality 
to suppose that A c X. This gives rise to the following definition. 

4.1. Definition 
G,(S) = S. Then S is called a slice at x, if the map 

Let x E X ,  a G-space. Let x E S c X be such that 

G X Q ,  S +  X ,  

taking [g, s] H g(s), is a tube about G(x). 

4.2. Theorem 
Then the following statements are equivalent: 

Let X be a G-space, let x E S c X ,  and put H = G,. 

(i) There is a tube p: G x A -+ X about G(x) such that p[e,  A]  = S. 
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(ii) S is a slice at x. 
(iii) G(S)  is an open neighborhood of G ( x )  and there is an equivariant 

retraction 8 G(S)  + G(x)  such that f -l(x) = S. 

Proof That (i) implies (ii) is clear since A can be replaced with S. To show 
that (ii) implies (iii) let S be a slice and define8 G(S) + G(x)  by commu- 
tativity of - 

G x ~ S -  - G(S) 

(Recall that H = G,.) Then f ( g ( s ) )  = g ( x )  and f clearly has the desired 
properties. Finally, if f is as in (iii), then pl: G x H  S +  X ,  defined by 
pl[g, s] = g(s), is a tube by Proposition 3.2. I 

From part (iii) the following fact is clear. 

4.3. Corollary I f S  is a slice at x ,  then g(S)  is a slice at g(x).  I 
The next theorem gives another characterization of a slice. 

4.4. Theorem Let X be a G-space and let x E S c X .  Suppose that: 

(i) 
(ii) 
(iii) G,(S) = S. 

S is closed in G(S). 
G(S)  is an open neighborhood of G(x). 

(iv) ( g s )  n S # 0 * g E G,. 

Then S is a slice at x .  Conversely, every slice satisfies these conditions. 

Proof Because of (i) and (iv) the constant map S - t  {x}  c G(x)  satisfies 
the conditions of 1.3.3 and hence extends uniquely to an equivariant map 
8 G(S)  + G(x), necessarily a retraction. If x = f ( g s )  = g( f ( s ) )  = g(x) ,  
then g E G, and gs E S by (iii). Thus f - l (x)  = S and S is a slice. For the 
converse, suppose S = f -l(x) for f: G(S) + G(x) an equivariant retrac- 
tion. Then gs E S iff x = f ( g s )  = g( f ( s ) )  = g x  which holds iff g E G,. I 

Recall that for an H-equivariant map f: A + A' there is an induced 
G-equivariant map 

G X H f :  G X H A - G  x H A '  

and that this is open when f is open, by 2.1. 
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4.5. Theorem Let X be a G-space and let p: G x H  A -+ X be a tube 
about G(x).  Let a E A, put p[e,  a] = y ,  and let p: H x K B -+ A be a tube 
about H(a)  in A. Then the composition 

is a tube about G(y) in X .  (Here the first map is that of 3.1 .) 

Proof By 2.1, 8 is open and is clearly an embedding. Also G, = Gr,,a,, 
since p is an equivalence, and Gre,al = Ha which is conjugate to K [by 
definition of a tube about H(a)], so that G(y) has type G/K. I 

4.6. Corollary I f S  is a slice at x in the G-space X and if S' is a slice at a 
point s E S for  the G,-space S, then S' is a slice at s for  the G-space X .  I 

The following fact is immediate from 3.3. 

4.7. Proposition If S is a slice at x in the G-space X ,  then the natural 

map 
SIC, + X/G 

is a homeomorphism onto the open subspace G(S)/G. I 

5. EXISTENCE OF TUBES 

Let G be a compact Lie group. In the present section we shall prove the 
existence of a tube about each orbit of a completely regular G-space. The 
proof will require a knowledge of some elementary differential geometry, 
but this has been reduced to an absolute minimum. We remark that through- 
out a major part of this book we shall be working under hypotheses 
(locally smooth actions) which assure the existence of tubes of an especially 
nice type. 

The first piece of information we need is the following lemma. 

5.1. Lemma Let G be a compact Lie group acting orthogonally on Rn 
and let vo be a point with isotropy group H. Let V c Rn be the normal space 
to the orbit G(vo) at v o ,  and note that this is a vector subspace of Rn since it 
passes through the origin. Then there exists a neighborhood U of eH in GIH, 
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a local cross section a: U + G, and a number E > 0 such that the restriction 
of G x Rn -t Rn to a(U) x V, -t Rn is a homeomorphism onto an open 
neighborhood of vo in Rn, where V, is the open &-ball in V about vo. 

Proof Let a be any differentiable local cross section at  eH with o(eH) = e. 
Since G x Rn-tRn is differentiable, it follows from Chapter 0, Section 
5 that G/H+ C(vo) is a diffeomorphism. Thus the action map o ( U )  x {uo} 
-t G(vo) - G/H, being the inverse of a, is a diffeomorphism onto U and 
hence its differential at (e, vo) is an isomorphism onto the tangent space of 
C(vo) c Rn at v o .  Also, the differential of { e }  x V - t  V c Rn is an isomor- 
phism onto the normal space V of G(vo) at uo. It  follows that the differential 
of o ( U )  x V - t  Rn is an isomorphism from the tangent space of a(U) 
x V at (e, uo) to that of Rn at v o .  By the Implicit Function Theorem it fol- 
lows that a(U) x V +  Rn is a diffeomorphism on some neighborhood of 
(e, vo) to a neighborhood of vo.  I 

5.2. Corollary In the situation of 5.1, the map 

G XH V - R n  

given by [g, v]  t-+ g(v), induces a homeomorphism of G x H  V, onto the open 
neighborhood G(V,) of G(uo) in Rn for  E suficiently small. 

Proof Let U c GIH be as in 5.1 and let K be the compact set G - o(U)H.  
Then K(vo) c Rn - {vo}.  Now K(v,) = n K(C) ,  where C ranges over 
the compact neighborhoods of vo in Rn. As is well known, any neighbor- 
hood of K(vo) must contain one of the K(C),  since the K(C)  are all compact. 
This implies that, for sufficiently small C, we have K(C)  n C = 0. In 
particular, K(Va) n V, = 0 for E sufficiently small. Now suppose that 
g(v) = g’(v’) for some v and v’ in V,. Then g-lg’(v’) = v, showing that 
g-lg‘ @ K. Thus g-lg’ E o(U)H, that is, g‘ = ga(u)h for some u E U and 
h E H. Then ga(u)h(v’) = g(v), so that o(u)(h(v’)) = v. Now H(VJ = V, 
since H = G,, acts orthogonally on V. Thus the equation o(u)(h(v’)) 
= e(u) implies, by 5.1, that a(u) = e and h(v’) = v.  Thus 

[g, 4 = [ g d u ) ,  40 = [gdu)h,  v‘l = k’, v’l 

showing that the given map is one-one for E small. But G X H  V, - G(V,) 
is continuous and closed since G x V, - G(V,) is. Since G(V,) is the sat- 
uration of the open set a(U)(V,),  by 5.1, it is open in Rn. I 
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5.3. Corollary In the situation of 5.2, the map C(V,) ---f G(v,) defined by 
g(v) I+ g(v,) is a well-defined equivariant retraction for  E small. I 

We now prove the main result on the existence of tubes. 

5.4. Theorem There is a tube about any orbit of a completely regular 
G-space, where G is a compact Lie group. 

Proof Let X be a completely regular G-space and let x, E X have isotropy 
group H. By 0.5.2 there is an orthogonal representation of G on Rn and a 

point oo in Rn with G,, = H .  Map q: G(x,) C(v,) c Rn by g(xo)  I+ g(vo). 
Then by the Tietze-Gleason Theorem 1.2.3 and Chapter I, Exercise 8, 
there is an equivariant extensiony: X +  Rn of q. With E as in 5.3, put 
W = y-l(G(VC)). Then G( W )  = W is open in X and the composition 

- 

W G( V,) ---f G(v,) 2 G(x,) 

is clearly an equivariant retraction. I 

Remarks Gleason [I1 first proved the existence of tubes in the important 
special case of free actions. The general case was first proved by Mont- 
gomery and Yang [l], under slightly more restrictive conditions, by using 
a selection theorem of Michael. Shortly thereafter, Mostow [I] gave es- 
sentially the present proof. The idea of using equivariant retractions is 
due to Palais [3, 41. 

As a consequence of the existence of tubes we have the following Cor- 
ollary. 

5.5. Corollary I f  P is any orbit in a completely regular G-space, G com- 
pact Lie, then there is a neighborhood of P such that type(Q) 2 type(P) 
for any orbit Q in this neighborhood. More precisely, for  any given neigh- 
borhood U of e in G and any point x in X ,  there is a neighborhood V of x such 
that for  any y in V,  there is a u in U with u-lG,u c G,. 

Proof If P = G(x)  and i f f :  G(S) + G(x)  is an equivariant retraction 
with S =f-l(x), then f takes any orbit G(y) in G ( S )  to G(x) ,  whence type 
(G(y)) 2 type(G(x)). If y = us E US, then G, = uG,u-l and G ,  c Gf( , )  
= G,, so that u-lG,u c G,. I 
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5.6. Corollary Let G be a compact Lie group and let H be a closed sub- 
group of G. Then for any neighborhood U of e in G there is a neighborhood 
W c U of e such that i f  K is any subgroup of G with K c WH,  then there is 
an element u of U such that u-lKu c H. 

Proof Let X be the space of all closed subsets of G/H, [with the Hausdorff 
metric d(A, B )  = max d(a, B )  + max d(A, b)] and let x be the point {eH)  
in X.  Then G acts on X via left translation on G/H and clearly G, = H. 
Let U be given and let V be a neighborhood of x satisfying the conclusion 
of 5.5. Clearly we may choose W c U so small that any closed set contained 
in ( W H ) / H  c G/H is a point of V. Then, if K c W H ,  it follows that y 
= KH/H is an element of V and obviously K c G,. Thus u-lKu c u-lG,u 
c G, = H for some u in U. I 

Remark Corollary 5.6 also holds for noncompact Lie G and compact H.  
The proof of this more general result, which makes clever use of riemannian 
geometry, can be found in Montgomery and Zippin [4]. The present proof 
for compact G was given by Mostow [l]. A similar proof for noncompact 
G was later given by Palais [l]. 

Let G be compact Lie and K c H c G be closed subgroups. Recall 
from Chapter I, Section 5 that the action of N ( K )  on (G/H)K is not necessarily 
transitive. However, the following corollary shows that this is nearly the 
case. 

5.7. Corollary Let K c H c G be compact Lie. Then the orbit space 
(G/H)=/N(K) of the left translation action of N ( K )  on (G/H)K is finite. 

Proof Suppose that KgH = gH, that is g-lKg c H, By 5.6 there is a 
neighborhood W of e in G such that if 

L c ( W  n H)(g-lKg) = W(g-lKg) n H ,  

then h-lLh c g-lKg for some h in H. By continuity of multiplication 
and compactness of g-'Kg, we can find a neighborhood V of e such that 

V-lg-'KgV c Wg-lKg. 

Let g' = gv E gV and suppose that Kg'H = g'H, that is, v-lg-lKgv c H. 
Then, for some h in H ,  we have that 

h-lv-lg-lKgvh c g-'Kg 
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which means that guhg-l is in N(K).  Thus 

g'H = gvH c N(K)gH, 

which means that g'H is in the N(K)-orbit of gH on (G/H)R. Since gVH/H 
is a neighborhood of gH in G/H, this shows that the N(K)-orbits in (GIH)" 
are open (and closed), By compactness, they are finite in number. I 

An important consequence of the existence of tubes is that the orbit 
map of a G-space with orbits all of the same type is a fiber bundle projec- 
tion map. 

5.8. Theorem Suppose X is a completely regular G-space, G compact 
Lie, and that all orbits have type G/H. Then the orbit map X-+ X/G is the 
projection in a fiber bundle with fiber G/H and structure group N(H)/H 
(acting by right translation on GIH). Conversely every such bundle comes 
from such an action. 

Proof The converse follows from 1.1. For the first part, we note that a 
tube in X is of the form G x R  A. But Gre,al = Ha c H and the fact that 
Gr,,al is conjugate to H imply that Ha = H for all a in A. That is, A has 
trivial H-action. In this case we have G x A = (G/H) x A (equivariant- 
ly) and, identifying A with its homeomorphic image A / H  = (G x H  A)/G 
in the orbit space, this gives a product representation 

If VA and p)B are two such product representations, then 

v&A: (G/H) x ( A  n B) - (G/H) x ( A  n B) 
/ 

A n B  
\ 

gives a map 8:  A n B - HomeoG(G/H) [where &VA(gH, x) = (B(x)(gH), 
x)] into the group of self-equivalences of G / H  in the compact-open topology. 
By 1.4.3, Homeoa(G/H) - N(H)/H. I 

Bore1 [5] noticed that a G-space X all of whose orbits have type G/H 
also fibers in another manner with structure group N(H)/H. This fibration 
is given by the following theorem. 
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5.9. Theorem Let G be compact and let X be a G-space all of whose orbits 
have type GIH. Then the map 

G x N X H - + X  

[taking [g, x]  H g(x)] is a homeomorphism, where N = N(H)  is the nor- 
rnalizer of H in G. Thus X is equivalent to the bundle over GIN withjiber XE 
associated with the principal bundle G + GIN when G is Lie (so that G -+ GIN 
is a bundle). 

Proof The map is continuous, onto, and closed (since X H  is closed in X 
and G x X-+ X is closed). Thus we need only show that it is one-one. 
For this, suppose that g(x)  = g‘(x’), where x and x’ are in X H  (so that 
G, = H = G,,). Let n = g-’g’ so that n(x’) = x.  Then 

H = G, = GacZr, = n G , d  = nHn-’ 

so that n E N. Thus [g, x] = [gn, n-’x] = [g’, x‘]. I 

5.1 0. Corollary 
a homeomorphism 

With the hypotheses of 5.9, the inclusion XH c X induces 

Proof By 3.3, XH/N-+ (G x N  XH)lG is a homeomorphism and also 
(G XN XH)/G X/G by 5.9. I 

5.11. Corollary With the hypotheses of 5.9, let K = NIH. Then the map 

(GIH) X I (  XH -+ X, 

defined by [gH, x]  H g(x), is an equivalence of G-spaces. 

Proof Since H acts trivially on X H  we have 

* I  
(G x XH)/H (GIH) x X H  

NIH N/H 
G x N X H -  

5.12. Corollary With the hypotheses of 5.1 1, let Y be any G-space. Then 
restriction to XH gives a one-one correspondence between G-equivariant maps 
X -+ Y and K-equivariant maps XH ---f YE. 
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Proof Iff: XE -+ YH is K-equivariant, let f ’: X-+ Y be defined as the 
composite 

X - (G/H) X K  XIi -+ (G/H)  X K  YH -+ Y 

[the latter map being [gH, y ]  H. g o ) ] .  Then for x E XH,  f ’ (gx)  = gf(x) ,  
so that f ’ l  X H = J  I 

Note that, in the above situation, K = N(H)/H acts freely on XH and 
the orbit space is XH/K - X/G by 5.10. Thus, by 5.8 applied to this action, 
we have the principal K-bundle nx: XH + X/G (the restriction to XH of 
the orbit map X - +  X/G). Combining 5.12 and 2.6 we obtain the following 
theorem. 

5.13. Theorem Let X be a completely regular G-space with all orbits 
of type G/H,  and with G compact Lie. Let K = N(H)/H.  If Y is any other 
G-space, then there is a natural one-one correspondence between the G- 
equivariant maps f: X -+ Y and cross sections f of the YH-bundle 

YH x K X H + X / G  

associated with the principal K-bundle nx: XH -+ X/G. The correspondence 
is characterized by the equation 

f ( 4 X ) )  = [fW, XI for x E XH.  I 

The reader should note that 5.13 is also an easy direct corollary of 2.8. 

6. PATH LIFTING 

In this section we shall use slices to prove a result of Montgomery and 
Yang [l] that paths in X/G can be lifted to X when X is any G-space, G 
compact Lie. First we consider the case in which X/G is an arc. 

6.1. Lemma I f X  is a G-space, G compact Lie, and f X / G  is homeomorphic 
to I = [0, 11, then there is a global cross section for  the orbit map n: X + X/G. 

Proof Since Xis compact, by 1.3.1, it is completely regular and hence has 
a slice at each point. First we note that it suffices to prove that n has a local 
cross section near each point of X/G. This is true since, if oi: [i/n, (i + l)/n] 
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-+Xis  a cross section for i = 0, 1,  . . ., n - 1, and if gi E G is such that 
go = e and giui(i/n) = ui-l(i/n) for 1 5 i 5 n - 1 ,  then the map 0: I -+ X ,  
defined by u( t )  = g d 1  - - - giui(t) for i/n 5 t 5 (i + l ) /n ,  is a global cross 
section. Similarly, if J c I is an open subset, and if local cross sections exist 
near all points of J, then a cross section over J exists. 

Now by double induction over the dimension and number of components 
of G, we can assume that the lemma is true for actions of any proper 
subgroup of G.  

Consider F = X u  and its image F* c I = X/G,  a closed subset. Then G 
acts on X- F with no stationary points and with orbit space I - F*. 
If y E X - F, let S be a slice at y.  Since G, # G and since S/G, = G(S)/G 
(by 4.7) is an arc near y*, the inductive assumption, applied to the G,-ac- 
tion on S, yields a local cross section at y for the orbit map S -+ S/G, 
and hence for X - F -  I - F*. As shown above, the existence of these 
local cross sections implies the existence of a global cross section, say 
C’ c X- F, of X- F-I- F*. Then C’ is closed in X- F and thus 
C = C‘ u F is closed in X .  Since C clearly touches each orbit of X exactly 
once, it is a cross section by 1.3.2. I 

6.2. Theorem Let X be a G-space, G compact Lie, and let f: I -+ X/G 
be any path. Then there exists a lifting f I :  I -+ X, nx o f ’  = f. 

Proof Consider the pull-back f * X  (see Chapter I, Section 6 )  and recall 
that f *X/G - I .  Let u :  I -+ f *Xbe a cross section. Then, from the diagram 

.f *x - x fl 

it is clear that f ’ = f i  o u is a lifting off.  

6.3. Corollary If X is an arcwise connected G-space, G compact Lie, 
and if there is an orbit which is connected (e.g., G connected or X u  # @), 
then the fundamental group of X maps onto that of X/G.  Thus if X is simply 
connected, then so is X/G. 

Proof Suppose that G(x)  is connected and put x* = n(x).  Iff: I -+ X/G 
is a loop at x*,  that is f ( 0 )  = f ( 1 )  = x*, let f ’: I - X be a lifting of f .  
By composing f ’  by an element of G we may suppose that f ’ ( 0 )  = x. Let 
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k :  I + G(x) be a path from f’(1) to x. Then the path composite f’ o k 
(f’ then k )  is a loop at x projecting to f o 1,. which is homotopic tof. I 

6.4. Corollary If X is an arcwise connected, locally simply connected, 
completely regular G-space, G compact Lie, then X/G is locally simply connec- 
ted. 

Proof Let x E X ,  let V* be a neighborhood of x* in X/G and put 
V = n-l(V*). Let U c V be a neighborhood of x such that n,(U, x )  
+ nl( V, x )  is trivial. Let S be a slice at x and assume that S c U. Since 
x is fixed for G, on S, and hence is a connected orbit of G, in S, we have 
that n,(S, x )  -+ n,(S/G,, x * )  = nc,(G(S)/G, x * )  is onto. By the diagram 

0 
n,(S, x )  ’ n1(K x )  

n,(G(S)/G, x * )  ----4v*, x * )  
.1 I 

the bottom map is trivial. fl  

6.5. Corollary 
Then H l ( X ;  Q )  + H,(X/G; Q )  is onto (rational singular homology). 

Proof By the Universal Coefficient Theorem, H l ( X ;  Q) - H,(X; Z) @ Q. 
Let a E Hl(X/G; Z). By the Hurewicz Theorem, a can be represented 
by a loop f: I -+ X/G.  Then we can lift f to a p a t h f ’ :  I +  X .  Iff’(0) and 
f ‘(1) are not in the same component of their orbit, then letf’(1) = gf’(0)  
for some g in G. Suppose that gn is in the identity component of G. Then 
gn-y’( l )  = gnf’(0) and f ’ ( 0 )  are in the same component of G ( f ’ ( 0 ) )  
and there is a path k in this orbit from gn-lf’(l) tof’(0). Then the path 
composite f ’  ogf’  og2f ’ o - .  - 0 gn-’f’ o k is a loop in X projecting to 
f o f o - - - o f  o 1 which is homotopic to f n. Thus na is the image of a class 
in H l ( X ;  Z) ,  so that a @ q = na @ (q/n) is  in the image of H l ( X ;  Z) @ Q 
+ H,(X/G; Z )  @ Q, whence this homomorphism is onto. 

Let X be an arcwise connected G-space, G compact Lie. 

7. THE COVERING HOMOTOPY THEOREM 

This section is devoted to the proof of a type of covering homotopy 
theorem for orbit maps 1- X/G, due to Palais [3]. First we prove the fol- 
lowing result about G-spaces whose orbit structure is a product of an orbit 
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structure with the unit interval I. Recall the notation and terminology of 
Chapter I, Exercise 5. 

7.1. Theorem Let Y be a topological space such that every open subspace 
is paracompact, and let G be a compact Lie group. Suppose that W is a G-space 
with orbit space WIG = Y x I such that the orbit structure is a composition 

with the projection on Y (that is, the orbit types are constant on each ( y }  x I). 
Let n: W-. Y x I be the orbit map. Then there is a G-space X with X/G - Y and orbit structure X/G = Y 5( ,  and an equivalence q: W G  X x I 
of G-spaces (where G acts trivially on I )  such that the diagram 

- 

W A X X I  - 
n I  - J 

Y X I  
commutes. 

X + X x I, the inclusion x H ( x ,  0). 
Moreover, X can be taken to be n-'(Y x (0) )  and q I n-l(Y x (0)): 

Proof First we note that the last paragraph follows from the rest, since q 
induces an equivalence of n-l(Y x (0)) onto X x (0). We shall identify 
Y with Y x (0) and X = n-l(Y) with X x (0). 

We prove the theorem by double induction over the dimension of G 
and the number of components of G. Thus we may assume that it holds 
for actions of all proper subgroups of G. We let F denote the homeomorphic 
image of XG in Y. Thus WG = n-l(F x I). 

The proof will be given in four parts which we shall first outline. 
In part A we shall show that the inductive assumption implies that the 

result holds for the action above a small product neighborhood of 0, t )  
when y e  Y- F. 

In part B we conclude that the result holds for the action over U x I, 
where U is a small neighborhood of y E Y - F. 

In part C we show that the result holds for the action over (Y - F) x I. 
In part D we finally prove the theorem for the given action. 

Part A: L e t y E  Y - F a n d t E I . L e t w E  Wproject to(y, t )E:  Y x I  
and let S be a slice at  w. We may identify S/G, with G(S)/G c Y x I 
by 4.7 and we may take S so that SJG, = U x [a, b], where U is a neigh- 
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borhood of y on Y and [a, b] is a closed interval about t in I. Since G, # G,  
the inductive assumption implies that 

S - T x [a, b] 

for some G,-space T with T/G, - U and S + S/G, corresponding to the 
obvious map T x [a, b] + U x [a, b]. Then we have the equivalence 

G ( S ) - G  x c u , S - G  xG,,,(Tx [ a , b ] ) - ( G  xG,T) x [a,b] 

of G-spaces, which obviously commutes with the projections to U x [a, b].  

Let y E Y - F. Then, by an obvious compactness argument 
on I, we can cover { y }  x I by U x [ i /n,  ( i  + l ) /n ] ,  0 5 i f  n - 1, with 
U a neighborhood of y in Y, such that there are equivalences 

Part B: 

n-'(U x [ i /n,  ( i  + l ) / n ] )  -+n-l(U x { i / n } )  x [i/n, (i + l)/n] 

of G-spaces. This shows that the G-spaces n-l(U x { i / n } )  and n-l(U 
x {( i  + l ) / n } )  are equivalent for all i so that we may replace the above 
equivalences by 

pi: n-l(U x [ i /n,  ( i  + l> /n ] )  1 n-'(U) x [ i /n,  ( i  + 1)/n] 

(identifying U with U x (0)). Now popyl is defined on n-'(U) x {l/n} to 
itself. Let yl on n-l(U> x [l/n, 2/n] to itself be the extension of this which 
is essentially the product of it with the identity on [ l / n ,  2/n].  Then we may 
replace p1 by pl' = yl o p1 and note that po agrees with yl' on their com- 
mon domain. Continuing this way, the pi can be modified so that they agree 
with one another on their common domains and together give an equiv- 
alence - 

pu: n-l( u x I) 1 n-l( U )  x I. 

Clearly one may assume that pv(x) = (x,  0) for x in n-l(U x (0)). 

Part C :  Since Y -  F is paracompact, by assumption, we may cover 
Y - F by a ZocaZZy finite collection { V, [ 01 E A }  of open sets, for each of 
which there exists an equivalence 

- 
yv,: n-yv, x I) 1 n-l(V,) x I 

normalized by pv,(x) = ( x ,  0) for x in n-l(V, x (0) )  and commuting, as 
always, with the orbit maps onto V, x I. 
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Well-order the index set A and put Ua = us., V,. We shall inductively 
define equivalences vu, with the property that for B c a, pup = vU, over 

Assume that vUs has been defined for all /? < a. If a: is a limit ordinal, 
then U, = us<, Us. Now if y E U,,  there is a neighborhood N of y in Y 
touching only a finite number of the Vy for y < a!. If ,8, /I' < a! are both 
larger than any of these y, then the assumption on the qus implies that 
vus = vus, on n-l(N x I ) .  Hence we may put vu, = lim,,,~U, in the 
obvious sense, and obtain an equivalence over U, x I. 

Now suppose that a is the successor of a'. Put U,, = U and Va, = V, 
SO that U, = U v V.  Then it clearly suffices to define vuuv coinciding with 
~ J U  over ( U -  V )  x I. Let 

y = yu o vj2: &(U n V )  x I L n - l ( U  n V )  x I ,  

<U/I - U s s y < a  Vy) x 1. 

I 

and let yl: n-I(U n V )  x I -+ r l ( U  n V )  be defined by 

y(x, 0 = ( y h  0, t).  

Pl(X, 0) = x. 

Note that 

Now, by assumption, U u V is normal and thus there is a map 

f: U u V - + I  

such that .f = 1 on a neighborhood of U - V and f = 0 on a neighborhood 
of v -  u. 

Put y'(x, t )  = ( y l ( x ,  f (nx) t ) ,  t )  and note that 

y' :  n - ' ( U n  V )  x I - + n - l ( U n  V )  x I 

is equivariant, continuous, and covers the identity on (U n V )  x I .  Thus 
y' is an equivalence by Chapter I, Exercise 11. (In fact, the inverse of y' 
is easily seen to arise from y - I  by the same construction.) 

Now consider - 
y'opv: z-l((Un V )  x I ) L n - l ( ~ n  V )  x I. 

On the neighborhood of U - V where f = 1 we see that y' o rpv = y o vV 
= yu. Similarly, on the neighborhood of V - U, where f = 0, we see that 
y' 0 Q ~ V  = 1 0 y v  = plv. Thus we can define 

V U W  if n(x) E ( U -  V )  x I ,  

V V ( X )  if n(x)  E ( V -  U )  x I. 
y' ovv(x) if 4 x 1  E ( U  n V )  x I, 
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By exhaustion of ordinals we eventually obtain an equivalence 

of G-spaces commuting with the projections to ( Y -  F )  x I. 

Part D: Since r l ( F  x I )  is precisely the set of fixed points of G on 

F. 
- 

W, it maps homeomorphically onto F x I via 7c. Similarly n-l(F) 
Thus define vF by commutativity of 

9F n-l(F x I )  -z-'(F) x I 
=\ J=: 

F x I  

and put vY = P ) ~ - ~  u plF. That this is bicontinuous, and hence an equiv- 
alence, follows from the next lemma, which will thus complete the proof 
of Theorem 7.1. I 

7.2. Lemma Let X and Y be G-spaces, G compact, and assume that we 
are given an equivariant map 9: X - X G  -+ Y and a map y :  X/G -+ Y/G 
such that y(XG/G) c YG/G and 

commutes. Extend v to X by putting p(x) = n+,wzx(x) for x in Xo. Then 
this extension is continuous. 

Proof Let x E XG and put y = q ( x )  E YG. Then a basis for the neighbor- 
hoods of y is given by the 7c?(ZV), where N ranges over the neighborhoods 
of ny(y), by 1.3.1. But q-l(n?(ZV)) = n;i?y-'(N) is a neighborhood of x 
by the continuity of p, which shows that p is continuous at x. I 

Let X and Y be G-spaces and recall that a map X/G + Y/G is said to 
"preserve the orbit structure" if it commutes with the orbit structure maps 
~ x , G :  X / G - t g G  and r y , G :  Y/G-+&OG (see Chapter I, Exercise 5). An 
equivariant homotopy is an equivariant map X x I - +  Y, where X x I 
has the G-action (g, (x,  t ) ) ~  (gx, t ) .  Note that ( X  x I ) /G - ( X / C )  x I .  
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Thus a homotopy X/G x I-+ Y/G preserves the orbit structure if the dia- 
gram 

X/G x I- Y/G 

commutes. The following is the Covering Homotopy 
~31: 

Theorem of Palais 

7.3. Theorem Let G be a compact Lie group and let X and Y be G-spaces. 
Assume that every open subspace of X/G is paracompact. Let f: X-+ Y 
be equivariant and let f ': X/G-+ Y/G be the induced map. Let F':  XIG 
x I -+ Y/G be a homotopy which preserves the orbit structure and starts at f' 
[that is, F'(x*, 0)  = f ' (x*)]. (In particular, f ' must preserve orbit structure.) 
Then there exists an equivariant homotopy F:  X x I-+ Y covering F' and 
starting at f. Moreover, any two such liftings of F' difer by composition with 
a self-equivalence of X x I covering the identity on X/G x I and equal to 
the identity on X x (0). 

Proof Consider the G-space f '* Y, the pull-back of Y by f '. By the uni- 
versal property of pull-backs, there is a unique equivariant map y :  X 
.+ f ' * Y  such that the diagram 

X . Y  I 1 
XIG f' ' YIG 

commutes. [Precisely,f'*Y = {(x*,  y )  E X/G x Y I f ' ( x * )  = y*} ,  where y* 
is the orbit of y ,  and cp is given by I&) = (x*, f(x)).] Now cp preserves the 
orbit structure, by Chapter I, Exercise 5, and covers a homeomorphism 
X/G + (f '*Y)/G. Hence it is one-one and onto. It is also open by Chapter 
I, Exercise 10. Thus it is an equivalence. That is, 

f x-Y 

I f' I 
X/G - Y/G 

is a pull-back diagram. 
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Consider the pull-back W = F'*Y. Then WIG = X/G x I and the 
inverse image in W of X/G x (0)  is the pull-back f '* Y = X.  By 7.1 we 
have that W = X x I and thus have the diagram 

F 
X X I - Y  

X/G'x I 
F' I - Y/G 

where F(x, 0) = f ( x )  by construction. 

F'*Y = X x I; that is, Fl is the composition 
Any other lifting F,: X x I-+ Y of F' factors through the pull-back 

F x x  ILXX I- Y. 

Since y covers the identity on X/G x I, it is an equivalence by Chapter 
I, Exercise 11. [ 

7.4. Theorem Let G be a compact Lie group and let Y be a G-space. 
Let B be a space, every open subspace of which is paracompact, and with a 
given orbit structure B + &oc. If f o  andfi are homotopic maps of B into Y/G, 
by a homotopy which preserves the orbit structure, then the pull-backs fo*X 
and f i *X  are equivalent by an equivalence which preserves the orbit map 
onto B. 

Proof This is an immediate consequence of 7.1 applied to the pull-back 
F*X, where F: B x I -+ X/G is the given homotopy. (It also follows easily 
from 7.3.) [ 

Conjecture Suppose that W is a compact G-space, G compact Lie. 
Also suppose that WIG has the form of a mapping cylinder with orbit 
types constant along generators of the cylinder less the base. Then we conjec- 
ture that W is equivalent to a mapping cylinder of an equivariant map 
inducing the given mapping cylinder structure on WIG. 

8. CONICAL ORBIT STRUCTURES 

We shall now apply the Covering Homotopy Theorem to investigate 
G-spaces whose orbit structure is conical. We define the open cone COB 
on a space B to be the quotient space COB =(B x R+)/(B x (0))  and will 
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use b, to denote the vertex of COB (the point corresponding to B x (0)). 
Here R+ denotes the nonnegative reals. 

8.1. Definition Let ty: Y + F G  and tB: B + F G  be orbit structures 
and let yo E Y. Then (Y,  tY) is said to be conical with base (B, tB) and 

vertex yo if there is a homeomorphism h :  COB -1, Y with h(bo) = yo, such 
that the diagram 

- 

h 
COB - {bo) - y -  {Yo) 

commutes. 

Of course, this just means that Y has the structure of an open cone with 
the orbit types constant along rays (less the vertex). Since ty is an orbit 
structure, its continuity implies that the orbit type of yo is less than or equal 
to the orbit type of any other point in Y. 

As an obvious example, we remark that the orbit structure of any orthog- 
onal action on euclidean space is conical. 

8.2. Theorem Suppose that (Y,  tY) and (W, tw) are conical orbit struc- 
tures with vertices yo and wo and paracompact bases B and D,  respectively. 
Let f: W + Y be an orbit structure preserving homeomorphism onto an open 
neighborhood U of yo and taking wo to yo. Then there is an orbit structure 
preserving homeomorphism of W onto Y coinciding with f on some neighbor- 
hood of wo. 

Proof We may take Y to be COB and W to be COD. We regard B x ( 0 , ~ )  
as the subspace COB - {b,) and shall use the notation B x [f, t ]  for the 
image of B x [0, t ]  in COB. 

First let us assume that we have the following conditions holding: 

(i) B x [*, 81 c Image(f); 
(ii) f(D x [f, 21) c B x [f, 8); 

(iii) B x [f, 51 c f(D x [f, 2 ) ) ;  
(iv) f ( D  x I*, 11) = B x [f, 2 ) ;  

(v) B x [f, 11 = f ( D  x [*, 1 ) ) ;  
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(see Figure 11-1). Since f is a homeomorphism onto an open set contain- 
ing B x [*, 81 we see that f(D x (1)) c B x (1,2) and f(D x (2)) c B 
x (5 ,  8) (since, for example, f(D x (1)) consists exactly of the boundary 
points of fC0 x [f, 11) in COB). 

FIGURE 11-1 

We shall use SA to denote the image of A c COB under (b, t) H (b, st). 

Consider Figure 11-2. Let P = f ( D  x [*, 21) - 2f(D x [f, 1)) and Q = 

2f(D x [f, I]) - f ( D  x [f, 1)). Define q: R+ ---f R+ by 

for 0 5 f 5 4 ,  
~ ( t )  = 3t- 10 for 4 5 t 5 5 ,  {: for 5 5 f. 

Then (b, t )  H (6, ~ ( t ) )  induces a homeomorphism 
- 

P l  Q u P = f(D x [1, 21) = D x [ l ,  23. 

NOW, since f is a homeomorphism, P n Q has a product neighborhood 
in Q of the form D x I. (These homeomorphisms, and those to follow, 
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preserve “ends” and orbit structures.) Hence 

Q - Q u (D x I) Q u P = D x [ l ,  21. 

But 

COB = f ( D  x [*, 11) u Q u 2Q u 4Q u . . . 
( D  X [*, I]) U ( D  X [I ,  21) U ( D  X [2, 41) u ( D  X [4, 81) u * * - 

= COD. 

Since this homeomorphism COD + COB preserves orbit structure, by con- 
struction, and extendsf1 (D x [*, 11) we are done. 

P =  
V 

P =  

FIGURE 11-2 

Now we must justify conditions (i)-(v). This will be done by repara- 

Consider the function defined by 
metrizing the cone structure of Y and W. 

a,@) = sw{t I {b} x I*, $1 = Image(f)) 
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from B to  the extended reals. Since 8, is lower semicontinuous there exists 
a continuous a,: B -+ R with 0 < as@) < ti,@) for all b (see Dugundji 
[I, p. 1701). Let 

4, = {(by t )  E COB I t I a,(b)} 

and 
B&, = int Baa. 

Then 
R, = Image(f 1. 

By using the inverse o f f  we may similarly define a continuous positive 
function &: D -+ R with 

B z ( 4  < sup{t I f({4 x If, tl) = En> 

D& = ( (4 t )  E COD I t 5 B Z ( 4 )  
and define 

and 
DZa = int Ds, . 

Thus 

f@&) = * 

Similarly, we can find 0 < a2 < aq < a5 < a, with 

It is clear that one may reparametrize Y and W such that the ai and Bj 
are “level” and, in fact, such that in the new parameters we have Bat = B 
x [f, i] and Dsj = D x [*,j], so that conditions (i)-(v) are thereby sat- 
isfied. I 

Note that if X is a G-space and A c X is an invariant closed set, then 

The following is the main result of this section. (“Completely paracom- 
X / A  is a G-space with { A }  stationary. 

pact” means that every open subspace is paracompact.) 
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8.3. Theorem Let X be a G-space, with G compact Lie, and let A c X 
be a closed invariant subspace. Suppose that the orbit structure on (X/A)IG 
is conical with vertex {A}* and paracompact base. Suppose that U c X 
is an invariant open neighborhood of A and that the orbit structure on (U/A)IG 
is also conical with vertex (A}* and completely paracompact base (unrelated 
to the cone structure of (X/A)/G).  Then U and X are equivalent as G-spaces 
via an equivalence which is the identity in some neighborhood of A. 

Proof By 8.2 there is a homeomorphism f: (U/A) /G  -L (X/A) /G preserv- 
ing orbit structure and which is the identity in some neighborhood of 
{A}*. Because of the latter property, f induces a homeomorphism F :  U/G 

1 X/G preserving orbit structure and equal to the identity on some neigh- 
borhood of AIG. Moreover, by the proof of 8.2, we may assume that F 
is the identity for t < E ,  where t is the parameter coming from the cone 
structure of (U/A)/G. Let F,,,,, denote the restriction of F to the part of 
U/G with cone parameter in [0, t] .  Then FLO,&, lifts to the identity F;O,EI on 
that portion of U c X.  By the Covering Homotopy Theorem 7.3, we can 
clearly extend this lifting to one, say F;n,2s,, ofFI,,,,, . Continuing indefinitely, 
we finally obtain a lifting F' of F. Since F is a homeomorphism and preserves 
orbit structure, F' must be an equivalence. (The openness of F' follows 
from Chapter I, Exercise lo.) I 

- 

- 

8.4. Corollary Let M be a manifold which is a G-space with G compact 
Lie. Suppose that x, is a stationary point and that the orbit structure on MIG 
is conical with vertex xo*. If there is a coordinate system about X g  in which 
G acts linearly, then the G-space M is equivalent to euclidean space with this 
linear action. I 

Somewhat more general than 8.4 is the following corollary. 

8.5. Corollary Let M be a G-manifold, G compact Lie. Suppose that the 
orbit structure is conical with vertex xo* and that there is a slice V at x, 
which has the form of euclidean space with linear G,.-action. Then M is 
equivalent, as a G-space, to 

where H = G,.. I 
G x n  v, 

Remark In a later chapter, we shall see that the hypothesis of a linear 
coordinate system in 8.4 and that of a linear slice in 8.5 are equivalent to 
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a hypothesis that G acts differentiably in a neighborhood of x, (in some 
differentiable structure on this neighborhood). 

Remark Theorem 8.2, without orbit structure, can essentially be found 
in Kwun [2] and Kwun and Raymond [l]. Obviously any kind of extra 
structure which is constant on rays can be carried along in the proof. Note 
the implications of 8.3 for G-spaces which are mapping cylinders, with 
“bottom” A, of equivariant maps. 

9. CLASSIFICATION OF G-SPACES 

In this section we shall give the construction, due to Palais [3], of a 
“classifying space” for G-actions, G compact Lie. Since the results in this 
section, and the next, will not be used elsewhere in this book, they may be 
skipped. However, we feel that this material deserves more attention than 
it has received and the reader might do well to study it. Assume that G is 
a compact Lie group throughout this section. “Dimension” refers to cov- 
ering dimension. 

First, we need some preliminary material. The following two lemmas 
are quite well known, but since there is no adequate reference we shall 
indicate their proofs. 

9.1. Lemma Let X be a paracompact space of dimension n at most. Let 
I L I be a compact (n - 1)-connected polyhedron. Then any map of a closed 

subspace A c X into 1 LI can be extended to X .  

Proof Let 9: A + I L I be the given map and consider the open covering 
F-’(star(v)) of A, v ranging over the vertices of L. Since dim X 5 n we 
can find a covering % = { U }  of Xrefining this (that is, y ( U  n A) c star(vu) 
for some vertex vu of L )  and such that the nerve K(%) of this covering has 
dimension n at most. Let { fu} be a partition of unity subordinate to this 
covering and g: X-1 K(%)1 the corresponding map; that is, g(x)  = 

Cfu(x )U.  Let K(%/ A) be the subcomplex of K ( g )  corresponding to A,  
that is, the simplex (U,,, . . .  , U,) is in K(P1 A) iff U, n n U,n A 
# 0. Note that p(U, n - - - n U, n A) c star(vuo) n . - n star(vu,) 
which is nonempty iff (vuo,  . . . , vu,) is a simplex of L. If y E lK(% I A )  1, 
y = CauU, put p(y) = Cauvu E I LI. Then p: lK(%l A) I ---f I LI and 
pg(a) = C fu(u)vu. If fu(a)  # 0, then a E U n A so that y(a) E star(vu) ; 
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that is, uu E support(cp(a)), the smallest simplex containing cp(a). Thus 
qg(a) E support(q(a)), whence the “line segment” between qg(a) and 
cp(a) is in I L I. This shows that q is homotopic to qg by (a, t )  H tcp(a) 
+ (1 - t f ig(a).  Now q, being a map of the subpolyhedron I K ( 9 1  A )  I 
of the n-dimensional polyhedron I K(P) I into the (n - 1)-connected poly- 
hedron I L 1, must extend to a map of I K(P) I into I L I (by a standard 
argument). Thus qg: A + I L I extends to a map X -+ I L 1. Since I L I 
is an ANR and X is binormal (because it is paracompact) it follows that 
the homotopic map cp: A + [  LI also extends to X (see Spanier [I, p. 

571). I 

9.2. Lemma Let B be a paracompact space of dimension at most n. Let 
E :  E -j B be a bundle whose fiber F is a compact (n  - 1)-connected polyhe- 
dron. Then every cross section u oft over a closed set A c B can be extended 
to a global cross section. 

Proof Cover B by a locally finite collection {C,} of closed sets over each 
of which E is trivial. Well-order the index set and put A,  = A u Up<, C, 
which is closed by local finiteness. Extend u over the A ,  inductively as fol- 
lows: If (T is defined on A,  for all p < a and if a is a limit ordinal, then 
A,  = up<, A,, and the continuity of u on this follows from the local 
finiteness. If a is the successor to p ,  then A,  = A, u C,. Since E is trivial 
over C,, uI C, n A,  extends to C, by 9.1 and this extends (T to A,. I 

Let us say that a G-space is of type GIH if all orbits have type GIH. 
More generally, if 2 c 8, is any collection of types, we say that a G- 
space X has type Z if each orbit type occuring in Xis  in L’. We shall confine 
our attention to the case in which Z is finite and in this case will write 
Z = (HI , . . . , Hk),  where the Hi are representatives of the (distinct) 
corresponding isotropy types. We put 

X,,, = {x  E XI type G(x) = type G/H}. 

9.3. Theorem Let H c G, K = N(H)/H,  and let E :  E-+ B be a prin- 
cipal K-bundle whose total space E is a compact (n - 1)-connectedpolyhedron. 
Then the associated GIH-bundle 

Y = ( G / H )  X,E-+B 

has the following property: Let X be a paracompact G-space of type GIH 
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with dim X/G 5 n. Then any equivariant map v: A + Y, A c X closed 
and invariant, extends to an equivariant map q :  X +  Y. 

Proof By 5.13 the equivariant maps y :  A -+ Y are in natural correspon- 
dence with the cross sections over A/G of the YH-bundle 

YH xg  X H  -+ X/G 

associated with the principal bundle XH -+ X/G. However, it is clear that 
YH = K x K  E - E. Thus such a cross section extends to X/G by 9.2. I 

Now we shall note the existence of a special type of bundle space E 
satisfying the hypotheses of 9.3. Since any compact Lie group may be em- 
bedded as a subgroup of an orthogonal group, we can assume that 

K = N(H) /H c O ( r )  

for some r. Let O(r) x O ( n )  c O(r + n )  in the standard way. Then the 
map (of right coset spaces) 

E = ({e} x O(n))\O(r + n) -+ (K x O(n))\O(r + n )  = B 

is a principal K-bundle and, as is well known, E is  (n - 1)-connected. 
(One proves this by considering the fibrations O(i + 1 + n)/O(n)  
-+ O(i + n)/O(n) with fiber O(i + 1 + n)/O(i  + n )  = Si+n, for i = 0, 
1 ,  ..., r -  1.) 

Note that, for this E, G operates on the left of Y = ( G / H )  x K  E and 
O(r  + n )  on the right. Moreover, the action of G x O(r + n )  is transitive 
on Y. Thus, this particular space Y satifying 9.3, is a coset space of the 
compact Lie group G x O(r + n). By 5.3, Y embeds in an orthogonal action 
of G x O(r + n), and hence of G, on some euclidean space as a neigh- 
borhood equivariant retract. This fact will be important below. 

We denote the closed cone over a G-space Y by CY and define it to be 
the quotient [0, 11 x Y/{O} x Y, where G acts trivially on [0, 11. The image 
of ( t ,  y )  in CY will be denoted by ty, and Oy will be written simply as 0, 
the vertex of the cone. 

The following is a basic lemma for the Classification Theorem. 

9.4. Lemma Let H c G, n and Y be as in 9.3 and such that Y embeds 
in an orthogonal G-action as a neighborhood equivariant retract. Let X be 
a G-space such that X/G is metrizable and has dim X/G 5 n. Let A c X 
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be an invariant closed set and let 

pl: A - C Y  

be equivariant and such that pl-'(0) n X,,, = 0. Then pl extends to 

with y-'(O) n X,,, = 0. 

Proof Using the cone coordinates, we can write 

= f (a>w4,  
where 

f: A -+ 10, 11, 

8: A - Z -  Y where 2 =f-'(O). 

Conversely, such a pair of equivariant maps gives a map p. If type G(a) 
< type G / H ,  then we must havef(a) = 0, since Y only has orbits of type 
G/H. Since the set of orbits of type less than type GIH is closed (the comple- 
ment is open by 5.5) pl extends by 0 to this. Thus we may assume that A 
contains all orbits of type less than type G/H. Since the set of orbits of type 
less than or equal to type G/H is also closed (by Chapter I, Exercise 4) we 
then see that A u X,,, is closed. Also A n X,,, c A - Z by assumption. 

Now ( X G  - X,,,) c Z since it consists of orbits of smaller type. Thus 

8 I A - Z extends to ( A  - Z )  u X,,, by 9.3 (applied to ( A  n X:) -2 

= ( A  n X,,,) and X,,, - Z = X,,,). Also f extends to A u X,,, by the 
classical Tietze Theorem appIied to the induced map on the orbit space, 
and, to this extension, we may add a real (equivariant) function vanishing 
exactly on A (e.g., the distance function from A/G in some metric on X/G) 
and then bound the sum by 1. Thus we may extend f so that the extension 
is nonzero on X,,,. These extensions off and 6 show that we may as well 
assume that 

- 

A = X,,,. 

By assumption, Y embeds in an orthogonal G-action on some euclidean 
space R* and has a neighborhood in R" retracting equivariantly onto Y. 
Thus 8: A - Z + Y extends to X - 2 + R* by the Tietze-Gleason Theo- 
rem 1.2.3. Following this by the retraction, we see that 0 extends to 
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where W is some open neighborhood of A - Z in X - Z. Now f is 0 on 

2 =I A n (X- W). Thus f extends by 0 to A u (X - W) and then extends 
equivariantly to 

f I :  x+ [O, I] 
by the classical Tietze Theorem applied to the induced map on the orbit 
space (or directly by the Tietze-Gleason Theorem). Then 

p: x - C Y  

w(x) =I ‘(x>~’(x) 
defined by 

is the desired extension. I 

We shall now digress to discuss the join of several G-spaces. If Y, , . . . , Y,  
are G-spaces, then 

CY, x CY, x * .  * x CY, 

is a G-space. The canonical maps CYi - [0, I] = I induce a map 

CY, x x C Y , + I  x * . .  x I=Ik  

given by 
@,y, Y * * * , t k Y k )  H 0 1  Y - * * Y tk). 

The join Y, * - . - * Y, of Y, ,  . . . , Y, is the inverse image of the standard 
simplex dk-l c 1,; that is, it consists of those points (t,y,, . . . , tkyk) with 
xti = 1. Clearly, the isotropy group of a point in the join is just 

It will be necessary to consider a certain subspace of the join. Thus we 
define the Palais join 

Y , @  - . .  @ Y, 

to be the subspace of Y, * . . * Y, consisting of those points with 

for some i with t i # O .  G(tlyl  .. . . stkffk) = 

Note that then, G(tlvl,..,,tkvk) c G ,  for all j with t j  # 0. Also note that 
the Palais join is invariant, and hence is a G-space. 

Remark Palais [3] calls this the reduced join, but we feel that that terminol- 
ogy is unfortunate since it has another established meaning. 
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9.5. Theorem Let ,Y = ( H I ,  . . . , Hk), the Hi being mutually noncon- 
jugate closed subgroups of G, and put Ki = N(Hi)/Hi. Let 

Yi = (G/Hi) x E( Ei, 

where Ei is the total space of aprincipal Ki-bundle, with Ei a compact (n - 1)- 
connected polyhedron. Also assume, as we may, that Yi embeds as a neigh- 
borhood equivariant retract in some orthogonal G-action. Put Y = Yl @ - - - 
@ Y,. Let X be any metrizable G-space of type Z such that dim X/G 5 n. 
Then any orbit structure preserving equivariant map p: A -+ Y on a closed 
invariant subspace A of X, can be extended to an orbit structure preserving 
equivariant map y :  X +  Y. 

Proof Consider 

let pi: A -+ CYi be the projection to CY,,  and put 

pi(a) =fi(a)fJi(a), where f i :  A -+ [0, 11 and fJi: A - f i - l ( O )  -+ Yi. 

Let a be in A n X ( H , ) .  We claim that then &(a) > 0, for if not, then 
there is an index j # i with f i (a)  > 0 and with 

contradicting the assumption that Ga - Hi + H j  for j # i. Thus f i  is pos- 
itive on A n X(H, ) .  By 9.4 we conclude that pi extends to an equivariant map 

map 
p;: X - C Y , ,  
p;(x)  = f a ' ( X ) f J i ' ( X ) ,  

fi' > 0 on X(H, ) .  

hi = fil"lcfi 3 

I 
Put 

y i (x )  = hi(x)fJi'(x), 1 Y=(?#l ,  . . . , Y k )  : x - c Y 1  x ' . *  x CYk. 

T h e n C h + = l  s o t h a t y :  X - + Y , * . . . * Y ,  . Forx€X( , , ,wehave  

G, c G,(,, c GVi(,) -Hi (since hi(x) # 0) 

from which we conclude that G,(,) = G,,(,) and that G, = GV(,.. The 
first equation implies that y(x)  is in Y, @ - . @ Yk, and the second equa- 
tion implies that y preserves orbit structure. I 
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9.6. Definition A G-space Y of type Z = (HI, . . . , H k )  which satisfies 
the conclusion of 9.5 is called n-universal for G-structures o f  type 2. 

9.7. Theorem Let Z = ( H l ,  . . . , H k )  and let Y be n-universal j o r  G- 
structures of type Z. Then Y/G is (n  - I)-classifying for  G-structures of type 
2, by which we mean the following: 

(i) If X is a metrizable G-space of type Z and with dim X/G 5 n, then 
there is an orbit structure preserving map f: X/G + Y/G such that X is 
equivalent over X/G to f *Y (“over X/G” means commuting with the projec- 
tions to X/G) .  

If W is a metrizable space with dim W 5 n - 1 and if f o ,  .fi: W 
+ Y/G are maps inducing the same orbit structure on W, then fo*Y and 
f l*  Y are equivalent over W if and only i f f 0  is homotopic, preserving orbit 
structure, to fi . 

(ii) 

Proof For (i) note that, from 9.5, there is an equivariant map X - t  Y 
preserving orbit structure. This induces a map f: X + f * Y ,  where f: X/G 
+ Y/G is the induced map on orbit spaces. Thenfpreservcs orbit types and 

X-f*Y 

I J  
X/G 

commutes, so that f is an equivalence (openness following from Chapter 
I, Exercise 10). 

For part (ii), suppose that h :  f i * Y  + fo*Y is an equivalence over W. 
Let X = Mh be the mapping cylinder of h and A the union of the ends. 
By 9.5, the canonical map fo*Y-+ Y together with j ;*Y+ Y extends to 
X +  Y preserving orbit structure. The induced map W x I - X/G + Y/G 
clearly gives a homotopy between f o  and f l .  The converse follows directly 
from 7.4. I 

10. LINEAR EMBEDDING OF G-SPACES 

In this section, we shall use the results of the last section to prove a fa- 
mous theorem of Mostow [l] to the effect that any finite-dimensional, 
separable metric G-space with only finitely many orbit types may be em- 
bedded, equivariantly, in an orthogonal action of G on some euclidean space, 
where G is compact Lie. (The converse is also true by Exercise 2.) We 
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shall not use this material elsewhere in this book. (However, when we 
study differentiable actions, we will treat this subject again in that context, 
since there are important consequences of the smooth case.) 

10.1. Theorem If X is a Jinite-dimensional, separable metric G-space, 
G compact Lie, and if there are only afinite number of orbit types, then there 
is an eguivariant embedding of X as an invariant subspace of some euclidean 
space with an orthogonal G-action. 

Proof Let X have type 2 = ( H I ,  . . . , Hk)  as in 9.5. By Exercise 3, X/G 
is also finite-dimensional. Let n = dim X/G. Then, as is well known, there 
is an embedding 

f l :  X/G+Rq 

for some g .  (It suffices for q = 2n + 1; see Hurewicz and Wallman [l].) 
Now let us recall from the construction in Section 9, that the G-space 

Y, constructed below 9.3, was a coset space of G x O ( r  + n )  and hence 
was an orbit of some orthogonal action of G x O ( r  + n).  Consequently, 
we may regard the Yi of 9.5 to be embedded in the unit sphere Smi-' of an 
orthogonal G-action on Rmi. Then CYi c D"i, and 

Y =  Y1 @ * . *  @ Y k  c CY1 X . * *  x CY, c D"1 x X D"k c Rm, 

where m = C m i ,  and where G acts diagonally. 
By 9.5 there is an orbit structure preserving, equivariant map 

f i :  X +  Y c Rm. 

We define 
f :  X +  RQ x R" == Rq+" 

byf(x) = ( f i (x* ) , f z (x ) ) ,  and let G act trivially on R*. Thenfis equivariant, 
and the induced orbit space map 

f lG = (fi 9fZlG) 

is an embedding, since fi is an embedding. Since f preserves orbit types, it 
is one-one. Thus f is a homeomorphism onto its image by Chapter I, 
Exercise 10. I 

10.2. Corollary 
ding may be taken to be as a closed subspace. 

I f X ,  as in 10.1, is also locally compact, then theembed- 



112 11. GENERAL THEORY OF G-SPACES 

Proof The one-point compactification X u {*> satisfies the conditions and 
hence may be embedded equivariantly as a subspace of Rp, say. The ideal 
point * is fixed under the action, and it follows easily that the translation 
taking * to 0 is equivariant. Thus * may be taken to be the origin 0. Then 
the map 

Y t+ Ylll Y 112 

of R P  - (0) to itself, is equivariant and takes X = R -  (0) to a closed 
subspace of Rp. 

Remark The method of proof given here differs considerably from Mo- 
stow’s original proof in Mostow [l]. For two expositions of Mostow’s 
method, see Palais [3, 41. 

It should be noted that the orthogonal representation of G in which the 
embedding of 10.1 occurs, depends only on dimX/G and on the orbit 
types which occur in X.  

EXERCISES FOR CHAPTER II 

1. Let X be a simply connected G-space, G compact Lie. If there is an 
orbit with n components, show that n bounds the order of each element of 
n,(X/G). 

2. Show that an orthogonal action on Rn has only a finite number 
Consider the unit sphere and the action of the isotropy of orbit types. (Hint: 

group at each point.) 

3. If X is a separable metric G-space, G compact Lie, show that dim X/G 
5 dim X.  

4. Let X be a completely regular G-space, G compact Lie, and assume 
that all orbits have type G/H.  Let T be a maximal torus of H and let N 
= N(T) be the normalizer of T in G. Show that the map 

G XN XT-+ X 

[taking [g, x] t+g(x)] is the projection of a fiber bundle with fiber 
H/(N n H). Also show that the canonical map 

X T / N  -+ X/G 

is a homeomorphism. 
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5. Let G 3 K,  H be compact. Let 5 :  X - t  B be a bundle with fiber 
G/H and structure group N(H)/H and let 1;1: Y-+ B be a bundle with fiber 
G/K and structure group N(K)/K.  Consider the canonical left actions of G 
on X and Y whose orbits are the fibers of 5 and 7; see 1.1. Let MapC(E, 7) 
be the set of equivariant maps X - t  Y over B (ie., commuting with the 
projections to B). Show how to construct a fiber bundle dqC(E, 9 )  over 
B with fiber (G/K)= and structure group N(H)/H x N(K) /K  (made ef- 
fective) such that 

where r is the cross section functor and equality means a canonical cor- 
respondence. 

6. Let Z, act on a separable metric space X of dimension n. Show that 
X embeds equivariantly in R3n+2 with the representation of Z, which is 
-1 on the first n + 1 coordinates and 1 on the last 2n + 1 coordinates. 

7. Let X be the total space of a principal G-bundle over B. Consider 
X as a free (left) G-space and X - t  B as the orbit map. Let H c G be a 
closed subgroup. If Y is the orbit space of the action of H on X ,  show 
that the induced map Y -+ B is the projection in the associated H\G-bundle 
where H \ G  denotes the space of right cosets of H in G, and the structure 
group G acts by right translation on H \ G .  

8. Let p: W - t  B be a principal G-bundle and let A and A' be right 
G-spaces. Then G acts on A x W and A' x W as in Section 2. Show 
that passage to orbit spaces gives a one-one correspondence between equi- 
variant maps y :  A x W +  A' x W commuting with projection onto W 
and maps y': A x W -+ A' x a W over B. Also, for locally compact A, 
show that the exponential law gives a one-one correspondence of the y with 
the equivariant maps y": W - .  Map@, A') [where G acts on Map(A, A') 
by putting ( g ( f ) ) ( u )  = f(ug)g-l] and that 2.6 gives a correspondence of these 
with the cross sections ip of the associated bundle Map(A, A') x W -+ B. 
Use this to give another derivation of 2.7. (Hint: In 2.7 put G = S x T 
and W = d.) 

9. Let X be a G-space and let H c G be a closed subgroup. Show that 
the G-space G x Xis equivalent to the G-space (GIH) x X with diagonal 
G-action. 



CHAPTER 111 

HOMOLOGICAL THEORY OF FINITE GROUP ACTIONS 

In this chapter we shall study the homological relationships among the 
total space, orbit space, and fixed point set of an action of a finite group. 
For the total space and the orbit space, the basic tool is the transfer map 
which is a homomorphism in homology or cohomology going in the op- 
posite direction from that of the homomorphism induced by the orbit 
map. For the fixed point set, the basic tools are the Smith exact sequences 
defined for actions of cyclic groups of prime order. 

Our approach to this material, in this chapter, will be to present it in 
the most elementary way possible. We will return to the subject in a later 
chapter, assuming more background in algebraic topology, and shall obtain 
more powerful methods to deal with such matters. 

We begin by presenting the transfer and Smith theory for simplicial ac- 
tions on abstract simplicial complexes. This material is elementary enough 
to be included in a first course in homology, and we believe that it should 
be included in every topologist’s tool kit. In Sections 6 and 7, the Cech 
method is then used (as was done by Smith) to generalize these results to a 
wide class of topological spaces. 

The last three sections contain some divergent topics, all of which make 
use of the theory developed in the first seven sections. Section 8 contains 
results of Smith and Milnor concerning groups acting freely on spheres. 
Section 9 contains a theorem of Newman, as treated by Smith, showing 
that a compact Lie group action on a manifold cannot have uniformly 
small orbits. Section 10 contains Smith-type theorems for actions of toral 
groups. 

1. SlMPLlClAL ACTIONS 

Let us establish our terminology and notational conventions, which, 
with minor exceptions, will be those of Spanier [l]. By a simplicial complex 
K we mean an abstract simplicial complex; that is, K is a set (possibly 

114 
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infinite), whose elements are called vertices, together with a collection 
of finite nonempty subsets, called simplices, of the set of vertices such 
that 

(1) Every vertex is contained in some simplex. 
(2) Every nonempty subset of a simplex is a simplex. 

A nonempty subset of a simplex is called a face of that simplex. A simplicial 
map from one simplicial complex to another is a map of the set of vertices 
which carries simplices into simplices. 

There is a topological realization, or polyhedron, associated with a sim- 
plicial complex K, which is a topological space denoted by I K 1. For its 
definition and properties, we refer to Spanier [I]. We always use the coherent 
(or weak) topology for K;  that is, a subset of I KI is closed iff its intersec- 
tion with each I s I is closed, where s is a simplex of K. 

The barycentric subdivision (or first derived complex) of a simplicial 
complex K is the simplicial complex K‘ whose vertices are the simplices of 
K and whose simplices are the sets (so, . . . , sfi), where the si are vertices 
of K’ (i.e., simplices of K )  such that, after reordering, 

(i.e., each si is a face of si+,). There is a canonical homeomorphism 

Now suppose that G is a discrete group. (We shall be concerned almost 
exclusively with finite groups G.) Suppose also that G acts on K simplicially ; 
that is, such that each transformation is a simplicial map. The simplicial 
complex K, together with such an action is called a simplicial G-complex. 

Consider the following statements concerning a simplicial G-complex 
K :  

(A) For any g E G and simplex s of K,  g leaves s n g(s) pointwise 
fixed. 

(B) If g o ,  g , ,  . . . , g ,  are elements of G and ( v o ,  . . . , v,) and (govo, . . . , 
gnu,) are both simplices of K ,  then there exists an element g of G such that 
g(vi) = gi(vi) for all i. 

Clearly neither of these need hold. For example, neither holds for the 
cyclic permutation of the three vertices of a 2-simplex, and (B) even fails 
for the barycentric subdivision of this. 
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First let us note that (A) is equivalent to 

(A') If v and g(v) belong to the same simplex, then v = g(v). 

To see that (A) implies (A') let s = (g-lv, v),  whence g acts trivially on 
v E s n gs. To see that (A') implies (A) let v E s n gs, and note that then 
(v,  gv) c gs so that gv = v by (A'). 

Moreover, note that (B) implies (A') and hence (A), since if v and gv 
belong to some simplex, then (v, v )  and (v,  gv) are simplices of K ,  whence, 
for some g', v = g'v and gv = g'v, so that gv = g'v = v.  

1 .I. Proposition If K is a simplicia1 G-complex, then the induced action 
on the barycentric subdivisi0n.K' satisfies (A). If (A) is satisfied for G on K, 
then (B) is satisfied for  G on K'. 

Proof If s is a vertex of K', thus a simplex of K, and if s and gs belong to 
a simplex of K', then s is a face of gs (or vice versa). But G clearly preserves 
dimension of simplices of K ,  so that s = gs, proving the first part. 

Now suppose that (A) is satisfied on K. We shall prove (B) for K' by 
induction on n. Suppose that (so, sl, . , . , s,) is a simplex of K'. By reorder- 
ing, we may assume that 

as simplices of K. Suppose that (g,,so, . . . , g,s,) is also a simplex of K'. 
By the inductive assumption, there is a g in G with gsi = gisi for 0 5 i < n. 
Operation by g-l shows that 

(so, Sl , . . . 9 3,-19 g's,) 

is a simplex of K', where g' = g-'g,. Since these are ordered by ascending 
(or rather by nondescending) dimension, we must have that 

so c s1 c * * * c c g's,. 

Then snP1 c (s, n g's,) which implies that g' acts trivially on snPl by (A), 
hence trivially on si for all i < n. Since g' = g-lg, we have gisi = gsi = g,si 
for i < n. Thus g,si = gisi for all i .  I 

1.2. Definition A simplicia1 action of G on K satisfying (B) for the 
action of each subgroup of G is called regular, and K (with the action) 
is called a regular G-complex. 
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Thus any simplicial action becomes regular upon passage to the second 
barycentric subdivision. Consequently, an assumption of regularity is no 
loss of generality from the topological viewpoint. 

For a regular G-complex K we define a simplicial complex K/G as fol- 
lows. The vertices of K/G are just the orbits v* = G(v) of the action of G 
on the vertices of K ,  and we take the simplices of K/G to be those simplices 
of the form 

(vo* 9 . . . Y Urn*), 

where (vo, . . . , v,) is a simplex of K (that is, there exist representatives vi 
of vi* such that this is the case; it is not required for all systems of represent- 
atives of the orbits vi*). The simplex (vo,  . . . , v,) of K is said to be over 
the simplex (uo*, . . . , v,*) of K/G. (We remark that the above definition 
makes sense for arbitrary simplicial actions, but we shall only rarely con- 
sider it for actions which are not regular.) 

Now, by  regularity, if ( v o ,  . . . , v,) and (wo, . . . , w,) are simplices of 
K over the same simplex ( v o * ,  . . . , u,*) = (wo*, . . . , w,*) of K/G, then 
( w o ,  . . . , w,) = g(vo ,  . . . , v,) for some g in G. That is, the simplices over 
a given simplex of K/G form an orbit of the action of G on the simplices 
of K.  

Clearly v H v* defines a simplicial map K -+ K/G, and hence a continuous 
map I K I + 1 K/G 1, and G(CiZivi) H Cl iG(v i )  = CIivj* defines a map 
I K I/G --f I K/G I giving the factorization 

IKI 
J I  

I K I P  I K/GI.  

Moreover, the horizontal map is one-one and onto, by regularity. Now, 
I K 1 + I K/G I is onto and it is clear from the definition of the coherent 
topology (Spanier [l]) that I K/GI has the quotient topology defined by 
this map. (This holds for any surjective simplicial map.) It follows that the 
horizontal map is a homeomorphism 

I K I P  = I KIG I. 
It is also clear by regularity [or, in fact, by (A)] that 

I KGI = I  KIG, 

where KG is the subcomplex of K consisting of all simplices which are point- 
wise fixed under G. 
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2. THE TRANSFER 

Let K be a regular G-complex with G finite, and let C ( K )  be the oriented 
chain complex of K (see Spanier [I]). Then C ( K )  inherits an action of G 
by chain mappings, by putting 

g[vo, . . . 9 on1 = k v o ,  . . . 9 gvnl, 

and hence is a module over the group ring ZG of G (whose elements are 
formal sums 

where the ng are integers). The norm a E ZG is defined to be the sum 

of the elements of G. Then ac = Cgc for a chain c in C(K). The image 

oC(K) c C ( K )  

of a: C ( K )  -+ C ( K )  is a subcomplex. 
Similarly, if L c K is a subcomplex which is invariant under the action 

of G, then G acts on C(K, L) = C(K)/C(L) and aC(K, L )  is a subcomplex 

Let n: K +  K/G be the canonical simplicia1 map and use n to also 
of C(K, L). 

denote the induced chain map 

n: C(K, L)  - C(K/G, L/G). 

2.1. Lemma 

ker{a: C(K, L)  -+ C(K, L)}  = ker{n: C(K, L )  + C(K/G, LIG)}. 

Proof Let s be any simplex of K/G and let s1 , . . . , s, be the simplices of 
K over s. By regularity, we may orient s and the si so that n: si -+ s preserves 
these orientations. Since {sl, . . . , s,} is an orbit of the action of G, we see 
that n = I G I / I GS1 1, where I G I denotes the order of G.  Clearly, it will 
suffice to consider chains of the form 

c = Cnisi. 

Then nc = (Cni)s, so that nc = 0 iff Cni = 0. Also note that go(c) = a(c), 
and, since G permutes the si transitively, it follows that 

ac = mCsi 
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for some integer m. By adding the coefficients on both sides of this equa- 
tion we see that 

I GI Cni = rnn = ml GI / I  Gall. 

Consequently, m = I G8, I Cni and uc 2= 0 iff rn = 0 iff Eni  = 0. I 

(Note that if we work over an arbitrary base ring A instead of over Z, 

From 2.1, it follows that we have the canonical chain isomorphism 
then 2.1 will hold as long as I G I is not a zero-divisor in A) 

uC(K, L) - C(K, L)/ker u = C(K, L)/ker n - C(K/G, LIG) 

since n is clearly onto. In fact, the map uC(K, L )  + C(K/G, L/G), taking 
uc to nc, is this isomorphism. The composition 

- 
p :  C(K/G, L/G) 1 uC(K, L) c C(K, L) 

of the inverse of this with the inclusion is given by c* = nc t+ uc, and induces 
a homomorphism 

p*: H(K/G, LIG) + H(K, L) 

called the transfer. Of course, n induces the usual map 

n*: H(K, L) + H(K/G, LIG). 

Note that, for c* = nc, we have np(c*) = nu(c) = I GI n(c)  = I GI c*, 
since n o g = n. Also pnc = uc by definition. Thus 

n,p* = [ G I : H(K/G, LIG) + H(K/G, LIG) 

p*n* = U* = g,: H(K, L) -+ H(K, L). 
(2.2) 

ge@ 

We may also define p for arbitrary coefficient groups, simply by tensoring 
the chain groups with the coefficient group, and (2.2) clearly holds in this 
general case. 

Also note that the image of p consists of chains which are fixed under the 
action of G. Consequently, for the induced action of G on homology, we 
have 

Impu ,  c H(K, L)". 

Clearly the restriction of n* to H(K, L)G satisfies 

(2.3) p*n* = I GI : H(K, L)G + H(K, L)". 

Together with (2.2) this gives the following theorem. 
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2.4. Theorem If A is a jield of characteristic 0 or prime to I GI,  then 

n*: H(K,  L;  A)G --t H(K/G, L /G;  A )  

is an isomorphism, as is 

,LA*: H(K/G, L /G;  A )  --+ H(K, L;  A)G.  

Moreover, the kernel of n* on H(K,  L;  A )  is equal to the kernel of u*. 1 

Let us generalize the above discussion by considering a subgroup H of 
G and the diagram 

K 

K / H  - K/G 
%/H 

of simplicia1 maps. (We need not have H normal in G.)  As before we use 
ZG, n ~ ,  and n G / H  to also stand for the induced chain maps. Also let 

" E L  I"" 

We define a chain map 

by commutativity of 

which, on elements, is 

nG(c) 1- n H ( C ' )  

t 1 ,  - 
- 

UG(c) 1- UH(c') 

where c' = Cgic, {gi} being any system of representatives of the right 
cosets of H in G. 

Now nG/H(nE(c')) = ~ G ( c ' )  = mnG(c), where m = I GI / I HI. Thus we 
have a natural homomorphism, the transfer, 

(2.5) b Q / H ) * :  H(K/G, L /G)  -b H(K/H, L/H) 
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such that 

for any coefficients. 

Remarks The transfer in this generality is due to Floyd [5] and Conner 
[l]; also see Floyd [lo] and Bredon [13]. The transfer was defined earlier 
for covering spaces by Eckmann [1,2] and Liao [l]; also see Steenrod and 
Epstein [l]. 

It is easy, of course, to dualize these results to cohomology. Thus, for 
any coefficient group A, p induces a cochain map 

Horn&, A): Hom(C(K, L), A)-+ Hom(C(K/G, LIG), A )  

and hence a homomorphism in cohomology 

p*:  H*(K, L;  A )  + H*(K/G, L / G ;  A) .  

The analog of (2.2) is 

The obvious analog of (2.4) holds. Similarly, the generalization pa/E of 
p dualizes in the obvious way. 

Also note that the transfer is natural. That is, i f f :  (K ,  L)  + (K',  L') 
is an equivariant simplicia1 map with fi (KIG, L / G )  -+ (K'/G, L'IG) the 
induced map, then 

f. 
H(K/G, L / G )  - H(K'/G, L'IG) 

commutes. In fact, this is already the case on the chain level, since pf(nc) 
= prf(c)  = af(c) -f(ac) =fp(nc).  Similar remarks clearly hold for the 
generalized version (2.5) of the transfer and for the cohomological 
versions. 
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3. TRANSFORMATIONS O F  PRIME PERIOD 

We shall now restrict our attention to a (multiplicative) group G of prime 
order p ,  and shall study homology with coefficients in Z,. Let K be a reg- 
ular G-complex. To simplify notation slightly we shall use K* for K/G 
and will identify KG with its copy KG/G in K*. 

Let g be a fixed generator of G and put 

u =  1 + g + g 2 +  . . *  +gP-', 

t = l - g g ,  

in the group ring ZpG. Since gp = 1 we have that 

ur = 0 = tu. 

Since we are working over Z p ,  and since 

( - l ) { (  P - 1  ) = 1  (modulo p )  , 

we have that 
IJ = t P - 1 .  

In particular, u = t when p = 2. 
If e = ti, we put Q = T P - ~ .  Thus t = 5 and u = %. 

Let L c K be an invariant subcomplex and note that La = L n KD.  
We shall consider the chain subcomplexes 

eC(K, L; Z,) 

of C(K, L ;  Z,) for Q = ti, 1 5 i 5 p - 1. Coefficients will always be in 
Z p  and will usually be dropped from the notation except when desired 
for stress. 

The basic result is the following theorem. 

3.1. Theorem For each Q = ti, 1 5 j 5 p - 1 ,  

0 -+ $(K, L) 0 C(KG, Lo) C(K, L) 5 &(K, L) + 0 

(coeficients in Z,) is an exact sequence of chain complexes, where i is the 
sum of the inclusions and Q: c e QC. 

Proof It clearly suffices to consider n-chains in the orbit of s for each 
n-simplex s of K not in L, and there are two cases, depending on whether 
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s is in KG or not. If s is in KG,  then ts = 0, so that es = 0 = Fs, and the 
sequence is clear. 

If s is not in KG, an n-chain in G(s) has the form 

Dig's, ni E Z p ,  

and corresponds to the unique element Cnigi of the group ring A = Z,G. 
Thus the sequence reduces to 

0 + FA L A L @A - 0. 

To check the exactness of this, we note that these are vector spaces over 
Z, and that i is injective and e surjective. Thus it suffices to show that 
dim PA + dim PA = dim A = p as vector spaces over Z,. Consider till, 
1 5 i 5 p - 1. The kernel of t: A + A consists of the elements with con- 
stant coefficients and hence is 1-dimensional, generated by cr = 1 + g 
+ . . - + gp-l. It follows that dim t A  = dim A - 1. However, ker t = Z,a 
c tin for all i, since cr = t P - - l  = ~ ~ t P - ~ - l .  Thus, more generally, dim ti+IA 
= dim t ( t iA)  = dim till - 1. Since dim A = p we conclude that dim t i A  
=p-i. I 

3.2. Definition For e = ti, 1 5 i I p  - 1, we let 

HQ(K, L;  Z,) = H(eC(K,  L ;  Z,)). 

This graded group is called the Smith special homology group. 

Remark It is important to note that we are using &(K, L ;  Z,) and not 
(eC(K, L; Z)) (23 z,. 

From standard facts, the short exact sequence of 3.1 gives a long exact 
sequence in homology. 

3.3. Theorem 
(coeficients in Z,) 

For e = ti, 1 5 i ( p  - 1 ,  there is an exact triangle 

H(K, L) 

s/, \ 
HQ(K, L)  - HG(K, L )  @ H(KG,  LG) 

where i* and e* have degree 0 and 6, has degree - 1 .  I 
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These sequences (triangles) are called the Smith sequences. It usually 
suffices to consider the two cases e = (T or e = t. 

Although most of these Smith groups have no interpretation in terms 
of more “familiar” things, the special group H‘(K, L) does. To see this, 
we note that the map 

0 :  C(K, L ;  Z,)- C(K, L ;  Z,) 

has the same kernel as does the composition 

C(K, L ;  q) 2 C(K, KG u L;  Z,) 2 C(K*, KG u L*; Z,). 

(Contrast this with Section 2!) This follows from the observation that if 
s is a simplex of K not in L, then a(Cnigis) = (Cni)a(s) = 0 iff Eni = 0 
or s c KG. 

Thus the images of these maps are isomorphic via (TC H nj(c). Passing 
to homology we have 

(3.4) 

Moreover, it is clear that the diagram 

H‘(K, L ;  Z,) - H(K*,  KG u L*; Z,). 

0 -+ tC(K,  L)  @ C(KG, LG) -+ C(K, L)  2 aC(K, L )  -+ 0 

I n  o+incl I (3.5) 

0 -  C(KG u L*, L*) - C(K*, L * ) A  C(K*, KG u L*)-+O 

commutes and hence induces a homology ladder which we shall not display. 
Denoting &(K, L; Z,) by C(e) for short, we note that, for p > 2, 

0 + C ( t )  0 C(KG, LG) + C(K, L )  2 C(a) -+ 0 

(3.6) I r’-2@o 1 p - 2  line1 

0 + C(U) @ C(KG, LG) -+ C(K, L )  - C ( t )  + 0 

and 

0 + C(a) @ C(KG, LG) + C(K, L )  2 C ( t )  + 0 

incl@l I (3.7) 

0 -+ C(t) 0 C(KG, LG) --j C(K, L )  - C((T) -+ 0 

commute. These diagrams give homology ladders which yield a relationship 
between the two Smith sequences for e = (T and e = t, respectively. 
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Note that it is a consequence of the proof of 3.1 that 
incl 

0 -+ oC(K,  L )  --+ t jC(K ,  L )  2 d+'C(K, L )  + 0 

is exact for all 1 4 j 5 p - 1 .  Hence there is the exact triangle 

H T ~ ( K ,  L )  

where the horizontal map has degree -1  and the others have degree 0. 
It is clear how to dualize these results to cohomology. Thus, one de- 

fines the Smith special cohomology groups 

He*(K, L ;  Z p )  = H*(eC(K, L; Z p ) ,  Z p ) ;  

that is, the homology of the cochain complex 

Hom(eC(K, L; Z,), z,). 
(We use the notation of Spanier [l, p. 2371 here.) 

The sequence 3.1 dualizes to an exact sequence of cochain complexes 
and passage to homology gives the Smith exact triangle of cohomology 
groups (coefficients in Z,) 

H * K  L) 

(3.9) .;/ a* \t 
He*(K, L )  - H,*(K, L)  @ H*(K", LG) 

where i* and e* have degree 0 and 6* has degree +l.  Similarly, (3.8) 
dualizes in the obvious way. The isomorphism 

oC(K, L;  Z,) - C(K*,  KG u L*; Z,) 
yields 

(3.1 0 )  

which is dual to (3.4). 
Also, the Smith groups are natural. That is, an equivariant simplicia1 

map f: (K,  L)  -+ (K',  L') induces homomorphisms of the Smith groups 

f*: HQ(K, L )  -+ He(K', L'), 

f*: H,*(K', L') + N,*(K, L). 

H,*(K, L ;  Z,) - H*(K*, K" u L*; Z,) 
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It is clear that these homomorphisms commute with the homomorphisms 
in the Smith sequences. 

Moreover, let us note, for later reference, that if fo and f l  are equivariant 
simplicia1 maps (K ,  L )  + (K’,  L‘) (regular G-complexes) which are contiguous 
[i.e., for any simplex s of K (or L) f o ( s )  andfl(s) belong to a common simplex 
of K‘ (or L’)], then the induced chain maps fo, fi: C(K,  L )  3 C(K’, L’) 
are equivariantly chain homotopic. To see this, choose a simple ordering 
of the vertices of K/G. This induces an ordering of the vertices of any 
simplex s in K and these orderings are clearly equivariant under action by 
G. Then if s = [uo, . . . , un] with vertices in the given order, we put 

n 
D s =  C ( - l Y [ & o ~  ,foVi,fivi, . - . , f i ~ n I *  

i d 0  

It is easy to see that 
Da +- aD = fi - fo 

and clearly Dg = g o .  [These remarks clearly hold for arbitrary G, but 
will be used only for the present case of cyclic G of prime order.] 

Since D is equivariant, we have that DQ = QD for all Q = ti, and hence 
D induces a chain homotopy between the restrictions of fo and f l  to &(K, L). 
Consequently, we conclude that contiguous equivariant maps f o  and fi 
induce the same map HQ(K, L)  + He(K’, L’) for any Q (and similarly in 
cohomology). 

4. EU LER CHARACTERISTICS AND RANKS 

We shall now apply the algebra developed in Section 3 to obtain some 
more explicit relationships between H(K) ,  H(KG), and H(K*)  due to Floyd 
[3]. As in Section 3, K is a regular G-complex, with G the cyclic group of 
prime order p ,  and K* = K/G. Homology is always taken with Z, coef- 
ficients. rk Hi(K)  denotes the rank (i.e., dimension) of H i ( K )  as a vector 
space over Z,. 

4.1. Theorem Suppose that K is a finite-dimensional regular G-complex 
and that L c K is an invariant subcomplex. Then, for  any integer n 2 0 
a n d a n y e = t i ,  l < i < p - l ,  

rk HnQ(K, L) + 1 rk Hi(KG, LG) 5 C rk Hi(K, L ) .  
i 2n  i a  
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In particular, if the right-hand side is finite, then so is the left-hand side, and 
so is rk Hi(K*, L* u KG) for all i 2 n. 

Proof The exact sequence (of 3.3) 

Hf+l(K, L )  + H:(K, L)  @ Hi(KG, LG) -+ Hi(K, L) 

shows that 

rk Hi% L)  + rk Hi(KG, LG) 5 rk H$+,(K, L)  + rk Hi(K, L )  

(and recall that e and p may be interchanged). Let us put 

ai = rk Hi(KG, LG), 
ci = rk Hie(K, L), 

bi = rk Hi(K, L), 
Pi = rk Hi@(K, L). 

Then we have 
cn + an 5 cn+1 + bn, 

?n+1 + an+, 5 cn+2 + bn+ly 

(4.2) 

cn+$k--l + an+Zk-1 5 %+Zk + bn+zk-l > 

Cn+Zk + an+Zk 5 Pn+Zk+l + bn+Zk. 

Now if Ci2n bd is infinite there is nothing to prove. Thus assume that 
bi < 00 for i 2 n. For n + 2k 2 dim K we have Cn+zk+l = 0, so that the 
last inequality shows that both sides are finite. Then the next to the last 
inequality has both sides finite, and so on. Thus everything in (4.2) is finite. 
Adding these inequalities and canceling gives 

as claimed. The last statement follows from the fact that 

Hi(K*, L* u KG) - Hia(K, L )  

by (3.4). I 

4.3. Theorem Suppose that K is a finite-dimensional regular G-complex 
and L c K an invariant subcomplex. Assume that rk H(K, L ;  Z,) < 00 

and let x(K, L )  = C(-l)i rk Hi(K, L ;  Z,) be the euler characteristic 
of (K,  L). Then 

x(K, L)  + ( P  - l )x (KG,  LG) = PX(K*,  L*). 
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In particular, 

%(KO, La) = x(K,  L)  (modulo p ) .  

Proof First, let us note that these euler characteristics are all defined. 
From 4.1 we have rk H(Ka, La) < 00 and rk H(K*, L* u K") < 00. The 
exact triangle 

H(K *, L*) 

/ \  
H(K*,  L* u K") - H(L* v KG,  L*) - H(KG, La) 

shows that rk H(K*,  L*) < 00 as claimed. 
We shall use the fact that if 

B 

is an exact triangle of graded groups with deg f = 0 = deg g and deg h 

similar fact that the euler characteristic is preserved under passage to ho- 
mology (see Spanier [l,  p. 1721) as follows: Consider the triangle as a 
chain complex. Then its homology is trivial and hence its euler characteristic 
is 0. Interpreting this for the grading on A, B, and C, we see that x(B) 
- %(A)  - x(C) = 0 as claimed. 

- - -1, then x(B) = %(A)  + x(C).  This well-known fact follows from the 

Thus the above triangle gives 

x(K*, L*) = x(K*, L* u K") + x(K", L"). (1 1 

Putting x(e)  = x(HQ(K, L ) )  we see, from the Smith sequence 3.3 with 
e = u, that 

x(K, L) = x(4 + x(r) + X(KG, L"). (2) 

Similarly, from (3.8) we see that 



5. HOMOLOGY SPHERES AND DISKS 129 

Adding (2) and all of (3), and canceling, gives 

Using (1) and the fact that x(a) = x(K*, L* u Kc) by (3.4), we have 

Remark The results of this section and their extension to locally compact 
spaces are due to Floyd [3]. Some further developments were made by 
Heller [2]; also see Swan [2]. 

There is no difficulty in proving these results, and those of the next section, 
using cohomology rather than homology. Readers with minimal back- 
ground in algebraic topology might well carry this out as practice in the 
use of cohomology. 

5. HOMOLOGY SPHERES AND DISKS 

We shall now apply the results of the preceding sections to the special 
cases of actions on homology spheres, disks, and acyclic complexes. 

5.1. Theorem If G is a p-group 0, prime) and i f  K is a finite-dimensional 
regular G-complex which is a modp homology n-sphere [i.e., H ( K ;  &) - H(Sn; Z,)], then KG is a mod p homology r-spherefor some - 1 5 r 5 n 
(where r = - 1 means that KG is empty). u p  is odd, then n - r is even. 

Proof Since a p-group is solvable (and, in fact, has a nontrivial center) 
there is a normal subgroup G' # { e } ,  G. Since F(G, K )  = F(G/G', F(G', K)), 
an induction on the order of G shows that it suffices to treat the case in 
which G is cyclic of order p .  In this case 4.1 shows that rk H(K") 5 rk H ( K )  
= 2. The case rk H(KG) = 1 is impossible since, then x(KG) = 1 $ 0 , 2  
(modp) contrary to 4.3. If p is odd, then x(Kc)  E x ( K )  (modp) implies 
that n - r is even. I 

A pair (K ,  L)  is called a modp homology n-disk if Hi(K, L; Z,) = 0 
for i # n and Hn(K, L; Z,) - 25,. By a proof which is similar to that 
of 5.1, but easier, we have the following result. 
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5.2. Theorem Let G be a p-group (pprime) and let K be a$nite-dimen- 
sional regular G-complex and L an invariant subcomplex. If (K, L )  is a 
mod p homology n-disk, then (Kc, La) is a mod p homology r-disk for some 
0 5 r 5 n. I f p  is odd, then n - r is even. I 

For later reference we shall show how to give a canonical isomorphism 
H,(K, L)  - Hr(KG, La) in the situation of 5.2. Similar considerations will 
hold for 5.1. We confine our attention to the case in which G is cyclic of 
order p. 

First note that the composition 

H,(K, L) 2 H,Q(K, L)  H,(K, L )  

is just operation by e = z or c. But operation by G on H,(K, L )  is trivial 
since Z, has no automorphisms of order p .  Thus e clearly induces the zero 
map H,(K, L )  -+ H,(K, L), that is i*e* = 0. 

If r = n, then H,(Kc, La) + H,(K, L)  must be an isomorphism, since 
H$+I(K, L)  = 0 by 4.1. If r < n, then the exactness of 

0 - H,Q(K, L )  2+ H,(K, L)  5 H,C(K, L )  

shows that i* is injective and thus e* = 0 (since i&* = 0). Similarly p* = 0 
in degree n. Thus 

i,: H,e(K, L) 1 H,(K, L). 
- 

The remainder of the Smith sequences show that 
- - -  

6, :  Hne(K, L) - H&(K, L) ,  

6,: f&(K, L )  1 H&(K, L), 
- 

where 7 = p if n - r is even and 7 = e if n - r is odd (and necessarily 
p = 2 in the latter case). Thus the composition 

- - - - - 
(5.3) H,(K, L)  H,P(K, L )  1 Hi-l(K, L) + * 0 * 1 H:+,(K, L )  - 

1 H,(KG, La) 

is the desired explicit isomorphism. On the face of it, this isomorphism would 
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seem to depend on the choice of e = (T or t. But it is not hard to prove that 
these give the same isomorphism, by using (3 .6)  and (3.7). 

Note that the case L = 0 and n = 0 of 5.2 shows that KG is mod p acyclic 
(and nonempty) when K is mod p acyclic and finite-dimensional, and G 
is a p-group. For K* = K/G there is a much stronger result. 

5.4. Theorem Let G be anyJinite group and let K be a$nite-dimensional 
regular G-complex. Suppose that K is acyclic over the integers. Then K/G 
is also acyclic over the integers. 

Proof First, we shall show that, for each prime p ,  K* is modp  acyclic. 
Also we consider, for the present, the case of a p-group G. Since, for G’ nor- 
mal in G, we have K/G i5: (K/G’)/(G/G’),  an inductive argument reduces this 
case to the case in which G is cyclic of order p. In this case 4.1, with e = (T 

and for each n 2 0, shows that H,(K*, K G ;  Z,) = HmU(K; Z,) = 0 (for all 
n). Since KG is modp acyclic, this shows that K* is also modp acyclic. 

Now for the case of general finite G, let P be a Sylow p-group in G. Then 
KIP is modp acyclic by the above remarks. But by (2.6) there are homo- 
morphisms 

H(K/G;  Z,) + H(K/P;  Z,) -+ H(K/G;  Z,) 

whose composition is multiplication by I G I / I P I .  Since IG I / IP I is 
prime to p and H(K/P; Z,) = 0 in positive degrees, this shows that K/G 
is modp acyclic (for all p now). 

P 
The exact sequence (induced by 0 + Z - Z ---f Z, ---f 0 )  

P 
H,(K*; Z) - H,(K*; Z) -+ H,(K*; Z,) = 0 

shows that H,(K*; Z) is divisible. By (2.2) the composition 

H,(K* ; Z) --j H,(K; Z) --+ H,(K* ; Z) 

(through 0) is multiplication by I G I and hence H,(K* ; Z) = 0 for n > 0. I 

Remark Theorems 5.1 and 5.2 are essentially due to Smith [l]. The proofs 
given are due to Floyd [3], but the discussion below 5.2 is close to Smith’s 
method. Theorem 5.4 is due to Floyd [lo]. 

The following theorem is somewhat similar to 5.4, but substitutes an 
assumption on fixed point sets for the assumption of finite dimensionality, 
and has a strengthened conclusion. Note the case of free actions. 



132 111. HOMOLOGICAL THEORY OF FINITE GROUP ACTIONS 

5.5. Theorem Let K be a regular G-complex, Gfinite, and let L be an 
invariant subcomplex. Assume that for a given prime p, Hi(Kp, Lp;  &) =O 
for all i 5 n and all p-subgroups P of G (including P = {e} ) .  Then Hi(K*, 
L*; ZJ = 0 for i 5 n. Moreover, if this holdr for all primes p and also 
Hi(K, L ;  Z) = 0 for i < n, then Hi(K*, L*; Z) = 0 for i 5 n. 

Proof As in the proof of 5.4 we first consider the case in which G is cyclic 
of prime order p, and prove only the first part. In this case let k 5 n and 
suppose we have shown that Hi@(K, L) = 0 for i < k and both e = u 
and e = z. The Smith sequence 

0 = H,(K, L) -+ Hk@(K, L )  -+ Hf-l(K, L )  @ Hk-,(Ka, La) = 0 

shows that H,@(K, L) = 0. Thus we conclude that 

Hi(K*, Ka u L*) = Hiu(K, L )  = 0 for i 5 n. 

Since Hi(KG u L*, L*) = Hi(KG, La) = 0 for i 5 n, by excision, the se- 
quence 

Hi(Ka u L*, L*) -+ Hi(K*, L*) -+ Hi(K*, KG u L*) 

shows that Hi(K*, L*; Z,) = 0 for i 5 n. 
Now the usual inductive argument shows that this conclusion holds for 

all p-groups G. The proof for the general case now proceeds exactly as in 
the proof of 4.5 and will not be repeated. I 

6. G-COVERINGS AND CECH THEORY 

In the next section we shall show how to generalize the results of the 
previous sections, by the use of Cech homology and cohomology, to actions 
on a large class of topological spaces. In the present section we shall give 
the necessary background concerning Cech theory and coverings of G- 
spaces. We shall assume that the reader is reasonably familiar with the 
construction of cech theory as given, for example, in Eilenberg and Steenrod 
[l]. However, with one exception, we shall use only self-indexed open 
coverings in order to simplify notation and to avoid all logical technicalities. 
We consider only paracompact Hausdorff spaces. 

First, we shall address ourselves to finding suitable types of open cover- 
ings of a paracompact G-space X, and G is taken to be finite throughout 
this section. 
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If 9 is an open covering of X and if g is in G, then 

g g  = { g ( U )  I u E 91 
is also an open covering. If g 9  = 9 for all g ,  we say that 22 is invariant. 
If 22 and T are coverings, then 

9 n T = { U n  YI U~22, V E T }  

is a covering which refines both 9 and T. Clearly 

is an invariant cover refining 9. Moreover, this is locally finite if 22 is. 
Thus, for X paracompact, the locally finite invariant coverings are cofinal 
in the set of all coverings of X. 

We shall say that X is finitistic if it satisfies the “Swan condition” that 
every covering has a finite-dimensional refinement. (The dimension of a 
covering is the dimension of its nerve, which is one less than the maximum 
number of members of the covering which intersect nontrivially.) Clearly, 
if dim 22 5 n, then dim [ n g g ]  5 (n + l)lG’ - 1. In particular, if X is 
finitistic, then the finite-dimensional invariant coverings are cofinal in the set 
of all coverings. Note that there are two main classes of finitistic spaces, 
the compact spaces and the finite-dimensional spaces. 

Now let 9 be a locally finite invariant covering of X and let 

f =  {foI U E  221 
be a partition of unity subordinate to 22. Thenfis called a G-padtion of 
unity if fPo(gx)  = fu(x)  for all g ,  x ,  and U. 

Iff = { f,} is any partition of unity subordinate to the invariant covering 
9, we define a G-partition f‘ by putting 

Then 

and 

as claimed. 
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Now let K(%) be the nerve of the invariant covering 9 of X (the simplicia1 
complex with vertices the members U # 0 of 2 and simplices (U, , . . . , U,,) 
where Uo n n U,, # 0). Then K(P) is canonically a G-complex. 
Let f = uu} be a G-partition of unity subordinate to P and let fi X 
-+ I K(%) I be the associated map with 

Then f is equivariant, since 

= C f u W g U  = g C f u ( x > U  = gf(x). 
U U 

For any map k :  X +  1 L 1 to a polyhedron, let k-'L denote the cov- 
ering of X by inverse images of open vertex stars of I L I. Suppose that L 
is a G-complex and that k is equivariant. Then k-'L is an invariant cover- 
ing. Moreover, if L satisfies condition (A') of Section 1, then so does the 
nerve K(k-'L). Similarly, if L is a regular G-complex then so is K(k-lL). 
[For these facts, it is convenient to interpret conditions (A') and (B) of 
Section 1, for the nerve of a covering, directly in terms of the covering; 
see below.] 

Returning to the equivariant map fi X -+ I K(%) 1, note that f - l K ( % )  
is a refinement of % (in fact, it is the covering by the open sets U' = { x  I fu(x)  
# 0} c U).  Let L be the second barycentric subdivision of K(%) and 
regard the polyhedra I L 1 = I K(%) I as equal. Then the covering f - l L  
is an invariant cover which is a refinement of 22 and its nerve K ( f - l L )  
is canonically a regular G-complex. Also this covering is finite-dimensional 
when P is, since L is finite-dimensional when K(%) is. 

We shall call an invariant covering 9 a G-covering (sometimes called a 
primitive covering) if its nerve satisfies condition (A') of Section 1 ; that 
is, if it satisfies the following condition: 

For U E % and g E G, U n gU # 0 implies that U = gU. 

We shall call a G-covering P regular if its nerve is a regular G-complex, 
that is, if it satisfies the following condition for each subgroup H of G :  

If U, , . . . , U, are members of % and h, , . . . , h, are in H and if U, * - 
n U, # 0 # h,Uo n - - .  n h,Un, then there is an element h of H with 
hUi = hiUi for all i. 

Thus we have proved the following result. 
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6.1. Theorem Let X be a paracompact G-space, Gjinite. Then the locally 
finite, regular G-coverings of X are cojinal in the set of all coverings of X .  
If X is also jinitistic, then the jinite-dimensional, regular G-coverings of X 
are cojinal. 1 

If 2Y is a G-covering of X let PIG be the set of orbits of G on P (thus 
U E 27 determines an element U‘ of PIG and U‘ = V‘ iff U = gVfor some 
g ) .  Also 2YG will denote the covering of X / G  by the sets U* = G(U)/G 
but indexed by 2Y/G (thus if G(U) = G(V) but U # gV for any g ,  then U* 
and V* are regarded as different elements of the covering). Since an indexed 
covering and the associated self-indexed covering are refinements of one 
another, this will not effect homology or cohomology. Clearly, every cov- 
ering of X / G  is produced in this way since (n-l qa = T. If 2Y is a 
regular G-covering of X and if U,, . . . , U, are members of P with Uo* 
n - .  . n U,* # 0, then goUo n - - . n gnun # 0 for some gi in G and 
regularity of P implies that the orbit of the simplex (goUo, . . . , gnun) 
of K(P)  is uniquely determined by the simplex ( Uo* , . . . , U,*) of K(PG). 
Thus we have the following fact. 

6.2. Proposition If% is a regular G-covering of X ,  then the assignment 
(gU I g E G }  H U* = G(U)/G gives an isomorphism of the simplicia1 com- 
plexes 

K(%)/G 5 K(PG). I 
We need one further remark concerning G-coverings. Suppose that 2Y 

and r a r e  G-coverings and that r is a refinement of 2Y. Then we claim 
that there is a refinement projection p :  T-+ 22 that is equivariant; that is, 
V c p(v> and p ( g V )  = gp(V).  To see this, simply choose a representative 
out of each orbit of G on r a n d  define p arbitrarily on these representatives 
[so that V c p ( V ) ] .  If gV = g‘V, where V is one of these representatives, 
then [g-lg’p(V)] n p (  V )  3 [g-lg’ V ]  n V = V # 0 so that gp(V)=g’p(V). 
Thus we can extend the definition by putting p ( g V )  = gp(V).  

Thus G-coverings, ordered by existence of equivariant refinement maps, 
form a directed set. This is not true of invariant coverings, as is easily seen. 
For this reason, we regard G-coverings as the basic notion, rather than 
invariant coverings. 

Of course, a refinement projection p :  r-+ 2Y defines a simplicia1 map 
p :  K ( V  + K(%) which is equivariant when p is equivariant. Also recall 
that two refinement projections po  , p 1  : r-+ 22 define contiguous simplicial 
maps Po and p1 (see Eilenberg and Steenrod [l, p. 2351). 
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Let us now recall the definition of Cech homology and cohomology. 
For convenience, we shall restrict our attention to pairs (X,  A ) ,  where X 
is paracompact and A is closed. If % is a covering of X ,  then K(%I A )  
will denote the subcomplex of K(%) consisting of those simplices (U, , . . . , 
U,) such that U, n n U,, n A # 0, and K(%/( A )  will denote the 
corresponding full subcomplex consisting of those simplices (U, , . . . , U,) 
such that Ui n A # 0 and U, n -.. n U, # 0 in X.  

If Y is a refinement of 8 and p :  r-+ % is any refinement projection, 
then the induced simplicia1 map p: K ( T )  -+ K(%) carries K ( Y I  A )  into 
K(% I A) and B ( r l  A )  into E(% I A ) .  Moreover, for any two such refine- 
ment projections p ,  q :  r-+ %, p and 4 are contiguous on K ( r I  A) 
+ K ( 8  I A ) .  and on E ( Y l  A )  -+ B(% I A ) .  This implies that the induced 
homology maps (arbitrary coefficients) 

H(K(rnY K V - 1  A ) )  --+ H(K(%), K(% I A)), 

ff*(K(W, K(%l A ) ) - +  H * ( K ( Y ) ,  K ( Y l A ) )  

are independent of the choice of the refinement projection. Similarly, this 
holds with Kin place of K. The definition of C‘ech homology and cohomology 
may be taken to be (since A is closed) 

H(X,  A) = lim H(K( 8), K( % I A ) ) ,  

H*(X,  A )  = li,m H*(K( 8), K( % I A ) ) ,  
+ 

where the limits are taken over all coverings 8 (or, of course, over any 
cofinal system of coverings). Now we claim that using rather than K 
produces the same groups. This is usually shown by producing cofinal 
coverings with K = and in Eilenberg and Steenrod [l] it is done only 
for compact spaces. (However, it is not hard to generalize the proof to the 
paracompact case, as is well known.) However, this will not quite suffice 
for our purposes, and it is also more convenient to deduce this desired re- 
sult from the following lemma which produces a refinement “suitable” 
for all subspaces A c X simultaneously and “equivariantly.” 

Recall that a star refinement Y o f  a covering % is a refinement possessing 
a refinement projection p :  Y-+ 9 such that V’ n V # 0 implies that 
V’ c p ( V )  (see Dugundji [I, p. 1671). We shall call such a refinement 
projection p a star projection. 

6.3. Lemma I f 8  is a covering of X and i f T i s  a star re$nement of % 
with star projection p :  Y-+ 8, then for any subset A of X ,  the image under 
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of g(Y’l A )  in E(8 I A )  is contained in K ( 8  I A). Moreover, if X is a 
paracompact G-space and .% is a G-covering, then there exists a G-covering 

which is a star refinement of 8 and an equivariant star projection p :  F 
+ 8. 

Proof If (V,,  . . . , V,) is a simplex of E ( r l  A )  (i.e., Vi n A # 0 and 
V, n - * n V, # 0), then V, c p(Vi)  for all i. Thus 

PW,) n . - -  n PW,) = V, = Vo n A # 0 

so that (p(  V,) , . . . , p(V,)) is a simplex of K ( P  I A) .  
For the last statement, we may as well assume that 22 is locally finite. 

Let f be a G-partition of unity subordinate to 8 and 5 X - +  I K ( 8 )  I 
the associated equivariant map. Then if L is the second barycentric sub- 
division of K(8) ,  let Y’ = f - lL .  Then Y’ is a G-covering and it is well 
known to be a star refinement of 8 (see Dugundji [ I ,  pp. 167-1731). The 
existence of a star projection which is equivariant follows from the discus- 
sion following 6.2; that is, choose p arbitrarily on representatives V for the 
orbits of G on 7 such that V’ c p ( V )  for every V’ intersecting V non- 
trivially, and then extend p by equivariance: p ( g V )  = gp(V). I 

We also need the following algebraic lemma. 

6.4. Lemma Let D be a directed set and let {A ,  ,f,,,} and {B,, g,,,} 
be inverse systems of abelian groups based on D (so that f,,,: A,  -+ A,  
and g,,B: B, -+ B, for /? > a). Let {O,: A,  --f B,} be a homomorphism of 
directed systems (i.e., ga,,8, = Oaf&). Assume that for  each index a there 
i.c an index > a and a homomorphism ha,,: B, -+ A,  such that the diagram 

commutes. Then the induced map 

8: lim A, -+ lim B, 
c f 

is an isomorphism. 
Similarly, the dual 

all the above arrows) 
statement for  direct limits of direct systems (reverse 
holds. 
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Proof Let K, = ker 8, and C, = coker 8, so that 

0 -+ K, + A, -+ B, + C, -+ 0 

is exact for each a. If p > a is such that ha,, exists, then it is clear that the 
induced maps K, + K, and C, -+ C, are zero, giving the diagram 

O-+K,-.A,+B,-+C,+O. 

Let us write p > a when K, + K, and C, -+ C, are both zero. (In partic- 
ular, we have that lim K, = 0 = lim C,. In the direct limit case this implies 
the result immediately since the direct limit is an exact functor. This is 
also the case when the inverse limit functor is exact; e.g., when A,  and B, 
are finite-dimensional vector spaces over a field. This would suffice for our 
purposes, but we shall prove the general case for inverse limits, regardless. 
The proof is taken from Bredon [16, p. 121.) 

If a = {a,} E lim, A ,  (that is, f,,pD = a, for all p > a) ,  and if 6a = 0, 
then a, E K, and a, = f,,p, = 0 for > a so that a = 0 and 6 is a mono- 
morphism. Now suppose that b = {b,} E lim, B,. If p > a, then b, = ga,,bs 
= Oa(aa’) for some a,’ E A, .  Choose such an a,‘ for each a. If p > a, put 
a, =L,,a;. This is well defined since if y > @ > a, then 

which implies that 

by definition of > a. Also, for > a, 

and, for any y > a (and taking p> y),  we have 

Thus a = {a,} defines an element of lim, A, with e(a) = b. I 
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Note that it follows from 6.3 and 6.4 that if X is paracompact and if 
A 3 B are closed subsets of X ,  then, for coverings of X ,  the inclusions of 
pairs 

@(%I 4 K W I  B ) ) -  (Q%l 4 &%I B ) )  

induce isomorphisms in the limit on the homology or cohomology of these 
simplicia1 pairs 

&A, B )  - lim H@( % [ A ) ,  It(% [ B ) ) ,  

R*(A, B )  = lim H*(K(% I A) ,  K(% I B ) ) .  

(Here we use the obvious fact that a(A, B )  is canonically isomorphic to 
lim, H(K(ZG I A ) ,  K(% I B ) ) ,  and similarly for cohomology, since A and 
B are closed; see Eilenberg and Steenrod [l, p. 2491.) 

The importance of 6.3 and 6.4, for us, lies in the following fact and its 
consequences 6.6 and 6.7. 

f 

-+ 

6.5. Proposition Let % be a covering of the G-space X and let A c X 
be a closed invariant subspace. Then there exists a G-covering r refining % 
such that 

K(Y"[ A") c K ( r [  A)G c g(Y"l A") 

and 
K ( 5 5 [  X G )  c K ( F ) '  = K(5-l X'). 

Proof We may take % to be a G-covering. The first inclusion means that 
if V n AG # 0 (where V is in v), then gV = V for all g ,  and this always 
holds for a G-covering. The second inclusion means that if V n A # 0 
and gV = Vfor all g ,  then V n A" # 0. The equality means that V n X G  
# 0 iff gV = V for all g .  If x E X - X G  let V, be a small (contained in a 
member of %) neighborhood of x which is invariant under the action of 
G, and is such that gV,  n V, = 0 for g @ G,. [Note then that gV, n g' V, 
# 0 iff gV,  = g' V, and g ( x )  = g'(x).]  If x E X G ,  let V, be a small invariant 
neighborhood of x ,  and if x E X G  - A ,  require that V, n A = 0. Then 
the V, and their translates by G clearly provide the desired G-covering r. 1 

Remark Clearly we also have that R ( r l  A)G = E(7rl AG)  in the sit- 
uation of 6.5. 

From 6.3-6.5 we obtain (see the method of proof of 6.7) the following 
theorem. 
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6.6. Theorem 
invariant subspace, then there are canonical isomorphisms 

If X is a paracompact G-space and if A c X is a closed 

Z?(X@, AG)  - lim H(K( P)@, K( Z! I A)O) ,  

&*(XG, A") - lim H*(K( P)", K( 22 1 A ) G ) ,  

f 

-+ 

where 2Y ranges over the G-coverings of X. I 

6.7. Theorem 
variant subspace. Then there are natural isomorphisms 

Let X be a paracompact G-space and A c X a closed in- 

K ( 2 )  K(%\ A )  u I((%)" 
G 

l?(X*, A* u XG) = lim H 
c 

K ( P )  K(%\ A ) u  I((%)@ 
B*(x*, A* u X Q )  - lim -+ H*(-,  G 

G 

where 2 ranges over the G-coverings of X. 

Proof For Z! regular, the isomorphism K(%')/G - K(PG) of 6.2 clearly 
induces 

Thus the desired homology (and cohomology) is canonically isomorphic 
to that based on the pairs 

By 6.5 there is a cofinal system of G-coverings % such that 

K ( 2 )  K ( P (  A) u K ( Z \  X G )  K(%\  A )  u K(%)G 
G G 

it(%/l A )  u it(%/( X G )  
G 

By 6.3 there is a refinement v of P and an equivariant refinement projec- 
tion which takes the right-hand pair (and hence the middle pair) for 
into the left-hand pair for P. Thus 6.4 implies that these inclusions induce 
isomorphisms on the limits of their homology and cohomology. I 
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Remarks Of course, we may take the limits in 6.6 and 6.7 over any co- 
final system of G-coverings and thus can restrict the coverings to be regular 
(and finite-dimensional when Xis finitistic) even though we have not claimed 
6.5 for regular F. It is probably true that one can find a cofinal set of regular 
coverings such that the inclusions of 6.5 are equalities. However, this 
is not necessary and would be difficult. In the case of cyclic groups of prime 
order, coverings with properties similar to this were constructed by Smith 
[l] and called “special coverings.” 

Note that iff: X -+ Y is an equivariant map of G-spaces and if %2/ is a 
G-covering of Y, then f-lp = {f-’(U) I U E %} is a G-covering of X ,  
and it is regular if % is regular. This will imply the naturality of construc- 
tions based on passage to limits over G-coverings or over regular G-cov- 
erings. 

7. FINITE GROUP ACTIONS ON GENERAL SPACES 

We shall now use the developments in Section 6 to extend the results 
of the previous sections to actions of finite groups on a wide class of topo- 
logical spaces. 

Let X be a paracompact G-space, G finite, and A c X a closed invariant 
subspace. Let 22 be a regular G-covering of X.  Then we have the transfer 
homomorphism 

p*: H(K(%O/G, K W  I A)/G) + ff(K(% K P  I 4) 
satisfying (2.2). If is a regular G-covering refining 9, then there is an 
equivariant refinement projection p : T-+ 22 and we have the induced 
commutative diagram 

by naturality of the transfer, and the vertical maps are independent of the 
choice of p since contiguous equivariant simplicia1 maps K ( V  +K@) 
clearly induce contiguous maps on K ( q / G  -+ K(P)/G. 

Thus passage to the limit gives a transfer 

p*: IT(X*, A*)  -+ I?(X, A )  
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(where X *  = X/G and A* = A/G) ,  which satisfies the analog of (2.2) 

Similarly, one can define the analog of the generalized transfer (2.5) 
and also the duals in cohomology. Clearly we have the following theorem. 

7.2. Theorem If X is a paracompact G-space, Gfinite, and A is a closed 
invariant subspace, then Theorem 2.4 holds for t e c h  homology with (K ,  L)  
replaced by (X, A ) .  Also the dual statement in cech cohomology holds. 1 

Now we consider the generalization of the Smith sequences. Thus G 
will now denote a cyclic group of prime order p and we work only with 
coeficients in Z, unless otherwise specified. 

Let Z! be a G-covering of X and consider the special groups 

where Q = zi, 1 5 i 5 p - 1. These groups are natural with respect to 
equivariant maps as noted in Section 3. Since any G-covering T refining 
Z! possesses an equivariant refinement projection, we have the induced maps 

Any two equivariant refinement projections induce contiguous equi- 
variant simplicia1 maps and the induced chain maps are equivariantly 
chain homotopic and, as noted a t  the end of Section 3, this implies that 
the above homology maps are independent of the choice of the equivariant 
refinement projection. Consequently, we can define 

Re(X, A )  = lim t H@(K(  Z!), K( 22 I A ) ) ,  

I - i , * ( x y  A )  = 1iF He*(K( %), K( 9 I A ) ) ,  
(7.3) 

where Z! ranges over the G-coverings of X .  
Since the Smith triangles 3.3 and (3.9) are natural (and by 6.6) we obtain 
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the induced triangles 
a x ,  A )  

J, \ 

Y a* \ 

(7.4) 

Bqx, A )  - Bqx, A )  @ B(X', AQ)  
degree-1 

8 * ( X ,  A )  
(7.5) 

BQ*(X, A )  - H,*(X, A )  @ ETi*(XG, A'). 

Since the direct limit functor is exact, (7.5) is always exact for X para- 
compact and A closed. However, restrictions must be placed on X to insure 
that (7.4) is exact. Since the inverse limit of an exact sequence offinite- 
dimensional vector spaces over a field, Z, here, is exact (see Eilenberg and 
Steenrod [l, p. 226]), the triangle (7.4) will be exact if X is compact and A 
is closed (since the finite G-coverings will then be cofinal). 

Clearly we also have the generalization of the triangle (3.8) and its analog 
in cohomology. These will not be displayed. 

Note that the isomorphism 

degree+l 

of (3.4) is natural and similarly for the dual (3.10). Thus, by 6.7, we have 

I;i.(X, A )  = B(X*, A* u X G ) ,  

BU*(X, A )  - 8 * ( X * ,  A* u X G ) .  
(7.6) 

Moreover the homology (and cohomology) diagrams induced by (3.5) are 
natural, as is the excision isomorphism H(KG u L*, L*) w H(KG, L'). 
Consequently (3.5), 6.6, and 6.7 provide the commutative diagrams 

* * a  + k;+ l (X ,A)  - ~ n ' ( X , A ) @ k ~ ( X " , A Q ) - k ~ ( X , A ) - +  I;i,U(X,A) + 

.*. --+ ETin+l(X*, A* uX')--+Bn(XG, A G )  -Bn(X*,A*)-B,(X*, A* UX+ ... 

-+B~(x* ,A*uXQ)-+ l ; i l" (X* ,A*)+B~(XQ,AG)+B~+l (X* ,  A*UX')-+... 

Iwl  I IT* I =  

I 

(7.7) 1. 
and 

(0,l) (7.8) 1. 
* * * - B u y X , A )  -+ B y X , A ) 4 p ( X y  A)&P(XG, AQ)+B:+yX,  A ) - + - .  
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Similarly, we have the homology and cohomology diagrams induced 
by (3.6) and (3.7), which will not be displayed. 

Now we turn to the question of generalizing the results of Sections 4 
and 5. Basically, these results carry over in cohomology to all finitistic spaces 
X and closed invariant subspaces A in place of (K, L) ,  and, with two excep- 
tions, in homology to all compact (X, A). To avoid any possible misinter- 
pretation, however, we shall restate all these results. For the main part, 
the proofs follow exactly the lines of their analogs in Sections 4 and 5 and 
we shall only comment on the few extra justifications necessary. 

7.9. Theorem Let X be a finitistic G-space, G cyclic of prime order p ,  
and let A be a closed invariant subspace. Then, with coeficients in Z, , 

rk BQn<X, A) + C rk @(A'', A') 5 C rk @(X, A). 
ia iwl 

The corresponding statement in homology holds when X is compact. 

Proof The proof proceeds as in that of 4.1. However, we must justify 
the downwards induction from infinity. Thus, assume that @(X, A )  = 0 
for i 2 N. We claim then that f i;(X, A) = 0 = @(XG, A G )  for i 2 N. 
Suppose not. Then there exists a finite-dimensional G-covering % of X so 
fine that, with K = K(%) and L = K(% I A ) ,  

H;(K, L)  @ Hi(KG, LG) -+ l?:(X, A )  @ @(XG,  A G )  

is nonzero for some such i 2 N. 
Consider the commutative diagram 

8* 
H:(K, L)  @ Hi(K', L') - H$+'(K, L )  -+ H:(K, L )  = 0 

I I I 
fi;<x, A )  @ Bi(XQ,  AQ)  z fi;+1 ( X ,  A )  + PJX, A )  

where the horizontal maps are compositions of the maps S* : HQi + H F  
and those with p, @ interchanged (alternating), and where r > dim K.  
Since @(X, A )  = 0 for j 2 N the bottom row of this diagram consists 
of monomorphisms, and this contradicts the nontriviality of the left-hand 
vertical map. The dual proof in homology will be left to the reader. This 
clearly justifies using the proof of 4.1, and, of course, is a special case of 
the statement of 7.9 itself. I 
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7.1 0. Theorem Let X be a finitistic G-space, G cyclic of prime order p ,  
and A a closed invariant subspace. I f  rk H * ( X ,  A ;  Z,) < 03 and the euler 
characteristics are defined in terms of modp t e c h  cohomology, we have 

X(X, A )  + ( P  - l)X(XG, A G )  = P A X * ,  A*). 

This also holds for  homology when X is compact. [ 

7.1 1. Theorem I f  G is a p-group ( p  prime) and if X is afinitistic G-space 
which is a mod p t e c h  cohomology n-sphere, then X G  is a mod p t e c h  co- 
homology r-sphere for some - I  5 r 5 n. Similarly, if A c X is closed and 
invariant and if ( X ,  A )  is a modp t e c h  cohomology n-disk, then (XG,  A G )  
is a modp t e c h  cohomology r-disk for  some 0 4 r 5 n. In both cases, 
n - r is even when p is odd. The analogous statements in t e c h  homology hold 
when X is compact. [ 

We remark that the discussion following 5.2 also applies to give explicit 
isomorphisms in the situation of 7.11. The proof of 5.4 gives the next 
theorem. 

7.12. Theorem Let G be any finite group and let X be afinitistic G-space 
which is acyclic with respect to integral t e c h  cohomology. Then X / G  is also 
acyclic in integral t e c h  cohomology. [ 

Example That 7.12 does not hold in homology, even for compact spaces, 
is shown by the following example. Consider S2 as the (unreduced) suspen- 
sion of S,  the unit circle in the complex plane. Let f: S2-+S2 be the 
suspension of the map z ~--f z3 of S1 + S'. Then f is of degree 3 and clearly 
commutes with the antipodal map g :  S2 -+ S2. Thus, regarding S2 as a 
Z,-space via the antipodal map g, we may form the Z,-space 2 as the 
inverse limit of 

f f f . . . --* s2 --* s2 4 s2. 

Then Z/Z, is the inverse limit of 

f' f' f' ... --*P2'PZ.P2. 

Now fi2(Z; Z) = 0 since it is the inverse limit of 

... 3 . z L z 3 . z  
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and hence Z is acyclic over Z. However, f *: P2 -+ P2 induces an isomor- 
phism in homology [since 3 = 1 (mod 2)] and thus Bl(Z/Z2; Z) - Z,. 
[Note, of course, that Z is not acyclic over Z,, however, since B2(Z; Z,) 
;5: Z, .] It can be shown that 7.12 would hold for homology, with X compact, 
if one also assumes that Xis  homologically acyclic over Z, for all primes p. 
This follows from the fact that a compact space having trivial mod p Cech 
homology for all p also has trivial integral Cech homology (the same state- 
ment in cohomology is false). However, this contention is not easy to prove 
and, since we have no use for it, we shall not give the proof. Similar remarks 
apply to the next theorem which, for cohomology, follows from the proof 
of 5.5. 

7.13. Theorem Let X be a paracompact G-space, G finite, and let A be a 
closed invariant subspace. Assume that, for a given prime p ,  @(XP,  A P ;  
Z,) = 0 for  all i 5 n and allp-subgroups P of G. Then @(X*, A*;  Z,) = 0 
for  all i 5 n. I f  this holds for  all primes p and also @(X, A ;  Z )  = 0 for all 
i I: n, then IT"(X*, A*;  Z )  = 0 for  i 5 n. I 

The main case of interest, for this theorem and the following corollary, 
is that of free actions. In that case it will be used in the next section to study 
those groups which can act freely on spheres. 

7.14. Corollary Let X and Y be paracompact G-spaces, GJinite, and let 
f: X + Y be an eguivariant map. For a given prime p ,  suppose that 

f *: By Y P ;  Z,) + @ ( X P ;  Z,) 

is an isomorphism for  i < It and a monomorphism for  i = n, for  all p-sub- 
groups P of G. Then 

( f lG)* :  @(Y*;  Z, ) -+k"(X*;  Z,) 

is also an isomorphism for  i < n and a monomorphism for i = n. I f  this holds 
for all primes p and i f f  *: @ ( Y ;  Z) + @ ( X ;  Z )  is also an isomorphism 
for i < n and a monomorphism for  i = n, then the same is true of ( f lG)*  
with integral coeficients. 

Proof This follows easily from 7.13 applied to the mapping cylinder Mf 
off: X +  Y modulo the top X ,  and using the exact sequence 

f* . . . + k"-l(X) + @(Mf, X) + @( Y )  - @ ( X )  -+ - * * 
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(and similarly for X* + Y* and X p 4  Yp) which is obtained from the 
exact sequence of the pair (Mf, X )  by replacing Mf by its deformation 
retract Y. I 

7.15. Corollary Let G be a finite group acting j ieely on the connected 
and compact spaces X and Y. Suppose that p ( X ;  Z) = 0 and #( Y; Z) = 0 
for all 0 < i < n. Then there is a canonical isomorphism 

#(X /G;  Z) = @(Y/G; Z) 

for i < n. Similarly this result holds with Z replaced by Z, throughout, for  
any prime p .  

Proof Consider the equivariant projections X t  X x Y +  Y, where G 
acts diagonally on X x Y. These induce isomorphisms in cohomology in 
degrees less than n and monomorphisms in degree n. By 7.14 the same is 
true of the induced maps 

X/G t X X G  Y - t  Y/G 

on the orbit spaces. I 

Remark Since X and Y are compact, the Universal Coefficient Theorem 
implies that the conclusion of 7.15 holds with arbitrary coefficients. Also 
note that such G-spaces X with trivial cohomology below degree n, for 
arbitrary n, always exist; it suffices to take X to be the join of n + 1 copies 
of G. Corollary 7.15 shows that &(X/G; Z) depends only on G (for 
n > i). This group is called the “ith cohomology group Hi(G;  Z) of G.” 
One can define it in an algebraic way, of course, and for general G-modules 
as coefficients (see Cartan and Eilenberg [l] and MacLane [l]). 

Remark One may extend somewhat the results concerning homology 
by using compactly supported Cech homology. This is defined to be 

&(X, A )  = 1% B(B, C )  

where (B,  C )  ranges over the compact subspaces of ( X ,  A ) .  This gives exact 
Smith sequences for all pairs ( X ,  A )  of G-spaces. Of course, for most of 
the results, one would have to justify the induction from infinity used in the 
proofs of most of the theorems. This would require an assumption, in the 
nature of finite dimensionality of X ,  sufficiently strong to draw the conclusion 
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that fi ic(X*, A* u XG) = 0 for sufficiently large i. We shall not develop 
the theory in this direction since the cohomological results are at  least as 
strong as anything obtainable with homology, and are considerably simpler. 

Remark The examples of Chapter I, Section 7 show that the use of mod p 
coefficients in 7.9 and 7.11 is essential. Also the examples of Chapter I, 
Section 8 show that results similar to 7.9 and 7.11 are not obtainable for 
actions of finite groups of composite order, in general. Also the assump- 
tion that the spaces involved are finitistic is essential. To see this, note that 
the union S" of the spheres So c S1 c S2 c (as a CW-complex) 
carries a free involution (the antipodal map). Also S" is contractible since 
its homotopy groups are obviously trivial. If K is any polyhedron, then the 
join S" * K is also contractible and carries an involution with fixed set K 
and orbit space P" * K.  Also (S" t K )  x Sn is a homology n-sphere and 
carries an involution with fixed set K x S". Thus 7.9-7.12 fail miserably 
without the finitistic assumption. 

8. GROUPS ACTING FREELY ON SPHERES 

In this section we discuss the problem of determining which compact 
Lie groups G (including finite groups) can act freely on some sphere S". 

If n is even, the problem is almost trivial since the Lefschetz Fixed Point 
Theorem then implies that each element g # e of G must reverse orienta- 
tion. Since the composition of two orientation reversing homeomorphisms 
preserves orientation, G must be Z, or trivial. 

When n is odd the problem is considerably more difficult and, in fact, 
a complete solution is not known. First we prove a well-known result 
which is originally due to Smith [7], but which can be found in various 
other places, for example, see Cartan and Eilenberg [I, p. 3581. 

8.1. Theorem 
mod p cohomology n-sphere 2". 

The group Z, @ Z, cannot act freely on a finitistic 

Proof Let N > n be an odd integer and consider the usual free action 
of Z, on SN (the generator of which is given by the diagonal complex 
matrix diag(ezni'P, . . . , ezni/p) acting on C x - .  . x C = Ck 2 SN, where 
N = 2k - 1). Then G = Z, @ Z, acts freely, in the obvious way, on SN 
x SN with orbit space LN x LN, where LN = SN/Z, .  Let G act "diago- 
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nally" on the product Zn x (SN x S N )  and consider the equivariant pro- 
jections 

Z"-fZ" x S N  x S N L  SN x S N .  

In cohomology, f * is an isomorphism in degrees less than N,  h* is an iso- 
morphism in degrees less than n and a monomorphism in degree n. From 
7.14 applied to both f and h, it follows that &(Z'"/G; Z,) contains a sub- 
group isomorphic to &<LN x LN; Z,). Recall the fact that 

for O I i s N ,  
otherwise. 

Z,) = { 0". 
(This follows, for example, from the Smith sequence for the action of Z, 
on SN, and can be proved in many other ways.) From the Kiinneth formula 
(Spanier [ l ,  p. 3601) 

P < L N  x LN; z,) = Z, 0 Z, 0 - - 0 Z, (n + 1 times). 

Thus E;ih(Zn/G; Z,) must contain a copy of Z, 0 Z,. 
= S", then Zn/G would be a topological manifold and this would 

contradict the well-known fact that @ ( M n ;  Z,) - Z, or 0 for an n-man- 
ifold Mn. In the general case we shall obtain a contradiction using Smith 
theory.) 

Let Z, = K c G = Z, @ Z, so that G / K  = Z,. Then K acts freely 
on Zn and G / K  acts freely in Zn/K with orbit space (Zn /K) / (G/K)  = ZnlG. 
Applying 7.9 to both of these actions, and using the fact that I?,* is the co- 
homology of the orbit space in the free case, we see that (with Z, coeffi- 
cients) 

rk fin(Zn/G) 5 rk f i ( Z n / K )  2 rk fin(Zn) = 1 

(If 

which contradicts the previous discussion. I 

See Exercise 10 for a stronger result, also due to Smith [7], as well as 

Since an abelian group is cyclic iff it does not contain a subgroup of the 
an indication of an alternative method of proof. 

form Z, @ Z, for some prime p ,  we have the following theorem. 

8.2. Theorem 
integral cohomology sphere, then every abelian subgroup of G is cyclic. 

If G is afinite group which can act freely on a jni t i s t ic  

I 
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Groups with each abelian subgroup cyclic are precisely the groups with 
periodic cohomology (see Cartan and Eilenberg [ I ,  p .  2621). Swan [ l ]  
has shown that each such group acts freely on some compact polyhedral 
integral homology sphere. However, not all such groups can act freely on 
an actual sphere, since, in this case, there is the following additional re- 
striction due to Milnor [ l ] .  Note that it rules out actions by some groups, 
such as the dyhedral groups or order 2r, r odd, which satisfy the conclusion 
of 8.2. 

8.3. Theorem Let G be a group acting freely on S". Then each element 
of order two in G is in the center of G. 

Proof Let g have order two in G and let f be any other element of G. 
If fg # gf ,  then, since G acts freely, f g ( x )  # gf (x)  for all x. Since f is a 
homeomorphism, it has degree &l.  Thus 8.3 will follow from the next 
theorem. 

8.4. Theorem Let g be a homeomorphism of period 2 on Sn without 
fixed points and let f be any map from Sn to itself. If gf (x)  # f g ( x )  for  
all x ,  then f has even degree. 

Proof Let G = {e,g> - Z,. Put M =  Sn x S"- A ,  where A = 

{ (x  ,x) I x E Sn}  is the diagonal. Define a n  action of G on M by putting 

g(x9 r) = (gr ,  gx).  

Note that 

MG = {(x,  g x )  I x E Sn} c M. 

We claim that MG is a deformation retract of M. To see this, let (x ,  y )  E M 
so that x, y E Sn and x # y .  For 0 5 t 5 1 define F(t, x, y )  to be the point 
on Sn at which the line joining x and ty  + ( 1  - t )g(x)  intersects Sn - { x } ;  
see Figure 111-1. Then the map I x M + M defined by (t,  (x, y ) )  w (x,  
F(t, x, y ) )  is clearly a strong deformation retraction of M onto MG. 

Thus the inclusion MG -+ M induces an isomorphism in cohomology. 
Using Z, coefficients everywhere, we conclude from the inequalities 7.9 
and from (7.6) for A = (21, that 

@(M/G, MG) - BOi(M) = 0 for all i. 
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Figure 111-1 

Thus the inclusion induces an isomorphism 
- 

B~(M/G)  1 I P ( M G )  

for all i. (Alternatively, this follows directly from 7.14 applied to the in- 
clusion MG + M.) The diagram 

8 * ( M / G )  4 8 * ( M )  

shows that nM* is an isomorphism. 
Since G acts freely on S", the diagram (mod 2 coefficients) 

of (7.8) shows that n* is trivial (since z = 0, whence an(S") + kT"(Sn) 
is an isomorphism and the other map on the bottom is trivial; also see the 
discussion following 5.2 whose dual holds in cohomology). 

Now define an equivariant map 

by ~ ( x )  = (f(x), gfg(x)). The commutative diagram (mod 2 coefficients) 

shows that v* = 0. If p :  M -+ Sn is the projection p(x,  y )  = x,  then 
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f = p q  so that 

f * = v*p* = 0: &(S”; Z,) + &(S”; Z,) 

which means that f has even degree. 

Remark Theorem 8.4, and hence 8.3, also hold if S“ is replaced by any 
n-manifold Zn having the mod 2 homology of Sn. The proof of this requires 
the use of somewhat deeper results in algebraic topology than we wish to 
assume at  this point, so that we have replaced a more general algebraic 
argument with the geometric argument concerning Figure 111-1. However 
we shall briefly outline the proof of the more general result. The details 
may be found in Milnor [l]. Clearly it suffices to prove that the inclusion 
MG c M induces an isomorphism in mod 2 cohomology. This can be done 
by showing that the projection p: M + .En is a fibei bundle map with fiber 
Zn - {point}. (This part is an easy geometric argument.) Clearly MG is 
a cross section for p. Now the Lefschetz and Poincar6 dualities imply that 
the fiber Zn - {point} is mod 2 acyclic, and the Vietoris Mapping Theorem 
implies that p induces an isomorphism in mod 2 cohomology whose inverse 
comes from the inclusion MQ -+ M. [Milnor’s proof uses singular homology. 
We have used Cech cohomology instead, merely to be able to use the results 
of Section 7 directly. In singular homology, the proof that nM induces an 
isomorphism requires more justification.] We emphasize that any proof of 
8.3 must make some use of the “geometry” of the situation, since results 
of Swan [l], mentioned above, show that it does not hold for actions on 
polyhedral homology spheres (nonmanifolds). 

Remark The orthogonal free actions of finite groups on spheres have been 
completely classified by Wolf [l], completing earlier work of Vincent. 
There is a very simple necessary condition for a group to possess a free 
orthogonal action on some sphere, namely that every subgroup of order 
pq be cyclic (where p and q are primes, possibly equal). (This condition 
is also sufficient when the group is solvable.) It was a long standing 
conjecture that a group which can act freely on a sphere can also act freely 
and orthogonally on a sphere. Recently T. Petrie [1,2] and R. Lee [4] have 
independently disproved this by showing that nonabelian groups of order pq 
(p and q distinct odd primes) can act freely on suitable spheres. The con- 
struction of such examples uses the nonsimply connected surgery theory of 
C. T. C. Wall [3] and is beyond our scope. 

I 

We now turn to the same question for compact Lie groups of positive 
dimension. In this case there is the following complete and simple answer. 
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Denote the groups of complex numbers and quaternions (respectively) 
of norm 1 by S1 and S3. We regard S' c S3 and let N(S') be its normalizer, 
which is just the group generated by S' = {a  + bi 1 a2 + b2 = l} and j ,  
and which has two components S' and j S l .  

8.5. Theorem If G is a compact Lie group of positive dimension which 
can act freely on a sphere, then G is isomorphic to a subgroup of S3. Specijically, 
there are precisely three possibilities: G = S', G = N(S1), and G = S3. 

Proof The group G cannot contain a 2-dimensional torus since it cannot 
contain Z, @ Z, . Thus G has rank 1. We shall use the fact that there are 
precisely three connected Lie groups of rank 1, namely S1, S3, and SO(3) 
(which is doubly covered by S3). Thus the identity component Go of G 
must be one of these three groups. Since SO(3) contains Z, @ Z, as a sub- 
group, this case is ruled out. Suppose first that Go = s'. Then consider 
conjugation on S1 by an element g E G - Go. There are only two possi- 
bilities, gtg-l = t or gtg-l = t-'. Suppose the first possibility holds, that is, 
that g commutes with S1. Let n be the least integer for which gn is in S', 
and let h be an element of S1 with h" = gn. Then, for k = gh-', gS' = kS' 
and kn = 1. Then k and some element of S1 of order n generate a subgroup 
of G isomorphic to Z, @ Z,, contrary to 8.1. It follows that every ele- 
ment g E G - Go satisfies gtg-' = t-' for all t E Go = S'. This clearly 
implies that G/Co has order 1 or 2. Suppose G # Go = S' and let g E G 
- Go. Then gtg-' = t-' for t in G o ,  and g2  E Go.  Now g2  = g(g2)g-' 
= (g2)-' since g2  E Go, and hence g2 = &l .  If g2  = 1, then Z, @ Z, 
2: {I,  -l,g, ( - l ) g }  c G contrary to 8.1. Thus g2  = -1 .  Then taking 
g to j E S3 gives an isomorphism G = N(S1) .  

Now suppose that Go = S3. It is well known that every automorphism 
p of S3 is inner. [This fact follows from the classification theory of compact 
connected Lie groups, but we shall indicate a direct proof. The automor- 
phism p permutes the 1-parameter subgroups of S3 and, since all these are 
circles, they have a natural metric which must be preserved by p. It this 
way one sees that cp is orthogonal on the tangent space to S3 at the origin. 
However, the inner automorphisms constitute the action by S3/{ 1 , - l} 
2: SO(3) on this tangent space. Thus, if an outer automorphism exists, 
then there is one which operates by - I E  O(3) on the tangent space at  
the origin. This would imply that g H g-' is an automorphism, and it is not.] 
Thus, for any g E G - Go, there is an h E Go such that gh-l commutes 
with Go. However, this will yield a subgroup isomorphic to Zn @ Z, 
exactly as in the proof of the case Go = S'. Thus G = Go when Go = S3. I 
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9. NEWMAN’S THEOREM 

In this section we shall prove a theorem of Newman [l] in a version due 
to Smith [4]. This states that a compact Lie group (e.g., a finite group) 
cannot act on a manifold in such a way as to have “uniformly small” orbits. 

Let n: X - Y be a map, let B c Y be closed and put A = r l B .  For 
a covering of Y we let n- lT  be the covering of X by inverse images 
of members of T. Assume that TC is onto. 

9.1. Lemma Let % be a covering of X and suppose that the canonical 
homomorphism Hn(K(%), K(% I A ) ) -  @(X, A )  is onto. If there exists 
a covering T of Y such that n - l y  refines 2, then n* : An( Y, B )  + @(X,  A )  
is onto. 

Proof Note that K ( n - l r )  = K e y )  in a canonical way and that n*: 
An( Y, B) - A ( X ,  A )  is induced by passage to the direct limit of 

- 
H n ( K ( T ) ,  K ( Y I  B)): H n ( K ( n - l y ) ,  K ( r 1 F I  A ) ) - +  @(X, A ) .  

Since n-l r refines %, we have the commutative diagram 

Hn(K(%), K(% I A ) )  - H n ( K ( n - l T ) ,  K ( n - l T I  A ) )  - Bn(X, A )  

1.. 
H ” ( K ( y ) ,  K ( y [  B ) )  - @(Y, B )  

and this shows that n* must be onto when the composition along the top 
is onto. I 

9.2. Theorem Let X be afinitistic space and A c X a closed subspace. 
Let p be a prime and suppose that *(X ,  A ;  Z,) = 0 for  i > n and that 
Hn(X, A ;  Z,) - Z,. Also assume that i f  C c X is any proper closed sub- 
space, then the restriction Hn(X, A ;  Z,) + fin(C, C n A ;  Z,) is 0. Let 
22 be any covering of X such that 

H*(K(%/), K(% I A ) ;  z,) - W X ,  A ; Z,) 

is onto. Then there does not exist an effective action of Z,  on X leaving A 
invariant and such that each orbit is contained in some member of %. 
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Proof Suppose such an action exists and let G = Z,. Then each orbit 
is contained in a saturated open set contained in some member of 22. The 
projections of these open sets in the orbit space X *  give a covering Y 
of X* with n-lY refining 22. By 9.1, this implies that n*: IT"(X*, A*) 
3 P(x, A )  is onto (coefficients in z,). 

Theorem 7.9 implies that l?t(X, A )  = 0 = *(XG, AG)  for i > n, and 
the Smith sequence 

Qyx, A )  -+ H&r, A )  @ @ ( X G ,  A @ )  3 Qt+l(X, A )  = 0 

shows that @(XG,  AG)  = 0, (by the assumption on restrictions). Diagram 
(7.8) has the form 

k.(X*, A* u X G )  3 @(X*, A*) + 0 

I. 0' I. I 
koyx, A )  - &(X, A )  - k , n ( X ,  A )  -+ 0 

and implies that I?$(X, A )  = 0 and that a* is onto. Then the Smith se- 
quence 

i* 
0 = ii-,.(X, A )  3 I P ( X ,  A )  - lib"(X, A )  -+ 0 

shows that i* is an isomorphism. The composition o*i*: @(X, A )  
&(X, A )  is just Cg*. However, g* = 1, since k n ( X ,  A )  - Z, has no 

automorphisms of order p ,  and hence a*i* = p = 0 contradicting the pre- 
vious deduction that o*i* is onto. (Note that this argument also occurs 
following 5.2.) I 

9.3. Theorem Let X be afinitistic space and A c X a closed subspace. 
Suppose that k i ( X ,  A ;  Z )  = 0 for  i > n and that @(X,  A ;  Z )  - Z.  Also 
assume that if C is any proper closed subspace of X ,  then Hn(X, A ;  Z )  
3 Hn(C, C n A ;  Z )  is trivial. Let 2 be any covering of X such that 

H n ( K ( 2 ) ,  K ( 2  I A ) ;  Z) -+ @(X, A ;  Z) 

is onto. Then there does not exist an effective action of any compact Lie group 
on X leaving A invariant and such that each orbit is contained in some member 
of 2. 

Proof It is easily seen that the conditions are inherited for Z, coefficients 
by using the coefficient sequence 0 -+ Z + Z -+ Z, -+ 0. Since any compact 
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Lie group contains a cyclic group of prime order p for some p ,  the theorem 
follows from 9.2. I 

9.4. Theorem Let M be a connected topological n-manifold. Then there 
is afinite open covering 22 of the 1-point compactification of M such that 
there is no effective action of a compact Lie group on M with each orbit con- 
tained in some member of 2. 

Proof First suppose that M is orientable and let X be the 1-point compac- 
tification of M with A = {m}. Then fin(X, A) - Z and P(X, A) = 0 
for i > n. Also, if V c M is an open n-disk, then the inclusion (X, A )  
+ (X, X - V) induces an isomorphism 

- 
@(Day aDn) - @(X, X - V )  &(X, A) .  

(These facts are well known and shall be assumed. They follow from Lef- 
schetz duality, for example; see Spanier [l, p. 2971. They can also be proved 
by a fairly elementary direct argument.) For C c X a proper closed subset, 
we can find an open n-disk V c X -  C, and the diagram 

- 
Byx, X - V )  A &(X, A )  

1 1 
o = &(c, C )  = @(c, c n (X- v))-+ @(c, c n A )  

shows that the conditions of 9.3 are satisfied. This finishes the orientable 
case. 

In order to treat the nonorientable case we first note that there is a 
simple explicit covering 2? of an orientable manifold which satisfies the 
requirement of 9.3, where ( X ,  A) is as above. To construct this, let D be 
an n-disk in My let An+l be the standard (n + 1)-simplex with vertices 
v,, , . . . , v , + ~  , and let f: X --+ adn+' be a map which is a homeomorphism 
of int D onto the complement of vo and which takes X - int D onto v,, . 
Let Ui =f-'(star vi). Then the covering 2Y = {Ui 1 i = 0, . . . , n + 1) 
clearly satisfies the requirement that 

- 
Hn(K(2?), K(% 1 A ) )  -1 Bn(X, A ) .  

Now let M be nonorientable. Let L be the polyhedron obtained from 
6'dn+l by adding an edge (w, vo) ;  see Figure 111-2. Let D c int D' be two 
n-disks in M and let h:  M -+ L be a map taking int D homeomorphically 
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onto aAn+l - {z),,}, taking dD to v o ,  taking (int D’)  - D into the open 
edge (w, vo), and taking M - int D‘ to w. (See Figure 111-2, where the ui 
are points mapping to v i . )  

“2 

FIGURE 111-2 

Let 22 be the covering by inverse images of open stars of L. We claim 
that no action of a compact Lie group on M can have all orbits contained 
in members of P. Suppose there is such an action by G. Then clearly any 
transform of D must intersect D and G(D)  c int D‘. By compactness, 
there is a connected open neighborhood V of D with G ( V )  c int D‘. Since 
all transforms of V intersect D ,  G(V)  is connected. Thus we may as well 
take V = G(V) .  However, V is an orientable n-manifold and 22 n V is 
a covering of V of the type constructed above for orientable manifolds. 
It follows that G acts trivially on V. This contradicts the next result, which 
is another theorem of Newman [l]. 

9.5. Theorem If G is a compact Lie group acting efectively on a connected 
topological n-manifold M ,  then MC is nowhere dense. 

Proof Assume that D is an n-disk contained in MC. By lifting the action 
to the orientable double covering, using 1.9.4, we can assume that M is 
orientable. As before, map M to taking M - D to vo.  The induced 
covering of the 1-point compactification X of M then contradicts 9.3 with 
A = {m}, as noted in the proof of the orientable case of 9.4. I 

Remark Theorem 9.5 is a special case of a much stronger theorem of 
Smith which states that, for G cyclic of prime order p ,  MG is a generalized 
manifold over Z,. This is called the “Local Smith Theorem,” and proofs 
can be found in Bore1 [5], Bredon [3, 131, and Smith [2]. However, the theory 
of generalized manifolds will not be treated in this book. One can give a 
fairly direct proof of 9.5, using the Smith sequences, which is independent 
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of 9.3. For a recent treatment of this material along the lines of Newman’s 
original proof, see Dress [l]. The present method of Smith is, however, 
more generally applicable. 

9.6. Corollary Let M be a connected manifold and suppose we are given 
a metric on M. Then there is an E > 0 such that, for every action of a compact 
Lie group G on M ,  there exists an orbit of diameter larger than E. 

Proof Let {U, ,  . . . , U,} cover M u {co} as in 9.4 with co E U,. Then 
M - U, is compact and contained in U, u . . u U,. Let E > 0 be 
such that B2,(x) c Ui for some 1 5 i 5 n, for each x E M - U,, where 
B,,(x) is the closed ball of radius 26 about x. Suppose that G acts on M 
and diam G(y) 5 E for all y E M.  Then G(y)  c B,(y) for all y .  I f  x E B,(y) 
- U,,  then y E B,(x) and G ( y )  c B,(y) c B,,(x) c Ui for some i. If 
B,(y) - U,, = 0, then G ( y )  c B,(y) c U,. This contradicts the choice 
of the covering {Ui}. I 

9.7. Corollary Let Rn have the usual euclidean metric. Then an action 
of a compact Lie group G on Rn cannot have orbits of uniformly bounded 
diameter. 

Proof Let E > 0 be as in 9.6 for M = Rn and let N be a bound for the 
diameters of the orbits of a given action 0 of G on Rn. Define a new action 

Then 

contrary to 9.6. I 

10. TORAL ACTIONS 

In this section we shall prove some results analogous to 7.10 and 7.11 
for actions of a toral group. Our main purpose in giving these results here 
is for their application in the next two chapters. We first give some imme- 
diate consequences for toral actions of the results of the preceding sections. 
These suffice for most applications, but we also discuss a direct approach 
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which gives stronger results. We will denote by T the circle group and by 
T k  the k-dimensional torus; that is, the product of k copies of T. 

10.1, Lemma Let p be a prime. Then the set of elements of Tk of order a 
power of p is dense in Tk. 

Proof It suffices to show that the union of the p-subgroups of Tk is dense, 
and this follows from the same statement for the circle group (k = 1) 
where it is obvious. I 

10.2. Theorem Let G = Tk act on a finitistic integral cohomology n- 
sphere X .  Assume that l?*(XG; Z) hasfinite type and that there are only a 
finite number of orbit types. Then X G  is an integral cohomology r-sphere for 
some -1 5 r  < n  and n -  r is even. 

Proof Let p be a prime and let H I ,  . . . , H, be the isotropy types. Since 
the elements of G of order a power of p are dense, there exists such an 
element g not in any of the Hi. Thus X G  = Xg and 7.11 implies that Xg 
is a modp cohomology r,-sphere for some -1 5 rp 5 n, and n - rp is 
even if p is odd. 

Assume that X G #  0 and consider cohomology modulo some given 
point in X G ,  which we shall omit from the notation. We claim that @ ( X G ;  Z) 
has no p-torsion. If it does, then, since it is finitely generated, it has a sum- 
mand of the form Z$ for some j p 1. Then the exact sequence 

. . . -+ &-l(xG; z,) -+ @ ( x G ;  Z) -% g i (XG;  Z) -+ @ ( X G ;  Z,) -+ - - 
shows that fig-l(XG; Z,) and &YG; Z,) are both nonzero, and this con- 
tradicts the assertion that X G  is a mod p sphere. 

Since this holds for all p we conclude that each f i i ( X G ;  Z) is free abelian 
and (again by the above sequence) it must vanish for i # r, for each p 
and has rank 1 for i = rp. Thus r = rp is independent of p ,  lies between 
-1 and n, and n - r is even. 1 

A similar proof gives the next theorem. 

10.3. Theorem Let G = T k  act on a jinitistic integral cohomology 
n-disk ( X ,  A), where A is closed in X .  Assume that H*(XG,  A G ;  Z) hasfinite 
type and that there are onlyfinitely many orbit types. Then (XG,  AG) is an 
integral cohomology r-disk for some 0 5 r 5 n, and n - r is even. I 
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The above results are sufficient for most of our purposes, but they are 
not sufficiently strong to prove, for example, that the fixed point set of a 
toral action on euclidean space is acyclic over the integers (even if we 
assume finiteness of number of orbit types and that the action is differen- 
tiable). Thus we shall now develop a tool for studying toral actions directly. 
For this, we shall have to assume slightly more background knowledge, 
namely that of the Thom-Gysin isomorphism for orientable disk bundles. 

Let the circle group T act on the paracompact space X and, as usual, 
regard f l  as also being a subspace of the orbit space X* = X/T.  Let M ,  
denote the mapping cylinder of the orbit mapn:  X-+ X*.  Let F denote 
XT x I embedded in M ,  as the mapping cylinder of the restriction of n 
to fl, and put X’ = X u F which has X as a deformation retract. Consider 
the triple (M,, X’ ,  F). The cohomology sequence of this triple, together 
with the three exact sequences of the pairs contained in this triple, form the 
commutative “braid diagram of the triple” shown in Figure 111-3. - /------nn 

@(X’, F )  Bi+l(M,, X ‘ )  B’+l(M,) 

I /’\/’ / I / ’  
I/’\ /’I /’I 

UUUU‘ 

P + l ( M , ,  F )  Bi+l(X’) Bi( X ’) 

@(M*) P ( F )  @+l(X’,F) 

FIGURE 111-3 

Now we may replace the pair (X’ ,  F)  by ( X ,  XT) and the pair (M,, F) 
by (X*,  XT) .  Also we may replace the absolute groups of M,,  X’, and F 
by those of X*, X ,  and XT, respectively. For the pair (M, ,  X ’ )  we use the 
following lemma. 

10.4. Lemma IfT acts semifeely (i.e., freely outside XT), then Hi(M,, 
X‘ )  - P - z ( X * ,  f l )  for arbitrary coeficients. For a general T action with 
finitely many orbit types, this isomorphism holds with rational coeficients. 

Proof If N* ranges over the closed neighborhoods of XT in X *  and if 
N is the part of M ,  over N*,- then B*(X*,  XT) = lim, 8 * ( X * ,  N*)and 
8 * ( M , ,  X’) - lim, B*(Mn,  N u X’). (This well-known fact is almost an 
immediate consequence of the definition of Cech cohomology and of the 
relationship between double limits and iterated limits. Proofs of closely 
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related facts will be found in Bredon [13, p. 521 and in Spanier [I ,  p. 3161.) 
Now we may excise a neighborhood of X T  in N* and of F in N .  Also note 
that by 11.5.8, Mn - F +  X *  - XT is a 2-disk bundle map, in the semi- 
free case, with X’ - F + X* - XT the bounding 1-sphere bundle. Orienta- 
bility of this bundle follows from the fact that it arises from a T-action. 
Thus the claimed isomorphism follows from the relative Thom-Gysin 
isomorphism for 2-disk bundles. (We must assume this. It can be found 
in Spanier [l ,  p. 2591 for the absolute case in singular theory and it is not 
hard to copy the proof in Cech theory. A sufficiently general version can 
also be found in Bredon [13, p. 1501.) 

For the case of finitely many orbit types, note that T contains a cyclic 
subgroup H containing all isotropy groups other than T itself. Since T 
acts trivially in cohomology, 7.2 shows that @(Mn,  X’)  - @(Mn/H, 
X’/H) for rational coefficients. Now Mn/H is the mapping cylinder of X / H  
-+ X/T = X* and, since T / H  acts semifreely on X/H,  this case follows from 
the semifree case. I 

Remark It can be shown that the second part of 10.4 holds without the 
restriction of finiteness of number of orbit types. 

Now, using these isomorphisms, the above braid diagram may be re- 
placed by that in Figure 111-4 in either of the cases of 10.4. 

FIGURE 111-4 

From this we can extract out the following exact sequence (for T semi- 
free and arbitrary coefficients, or for finitely many orbit types and rational 
coefficients). 

(10.5) . . . Z fi(~*, XT) 2 gi(x) 3 fii-l(x*, IT) 0 ~ ( x T )  

fi+i(x*, xT) 2 . . . 



162 111. HOMOLOGICAL THEORY OF FINITE GROUP ACTIONS 

where q* = j*n,* = n*j,* in Figure 111-4. This sequence is called the Smith- 
Gysin sequence. It was first derived in Bredon [8] from the Fary spectral 
sequence; also see Bredon [13, p. 1691. The exactness is easily proved by a 
diagram chase in Figure 111-4. (Also see Wall [I]  for generalities about braid 
diagrams.) We remark that the homomorphism ,u* is the cup product with 
an element, the euler class, of f i2(X* - XT), which follows from the same 
fact for the classical Gysin sequence. 

For the sake of simplicity of notation, we have discussed only the absolute 
case. However, it is clear that for A c X closed and invariant, the discus- 
sion generalizes to give the following Smith-Gysin sequence 

(10.6) * - - -+ @(X*,  A* u XT) -+ P ( X ,  A )  

-+ f?-'(X*, A* u XT) @ B i ( X T ,  A T )  
-+ f?+I(X*, A* u XT)  -+ . - .. 

Using this sequence exactly as the Smith sequences were used, one may 
prove theorems for circle group actions which are analogous to the theorems 
of Section 7. To justify induction from infinity, we need to impose a condi- 
tion which insures that #(A'*, A* u XT) = 0 for sufficiently large i. Fi- 
nite dimensionality of X *  would clearly suffice for this, and certainly this 
is enough for most applications. However, for completeness, we shall show 
that it suffices that X and X* be finitistic. (We do not know whether or 
not X *  is finitistic when X is, but this does hold in the two main cases of 
compact spaces and finite-dimensional, separable, metric spaces; see 
Chapter 11, Exercise 3.) Thus we shall prove the following proposition. 

10.7. Proposition Let the circle group T act with onlyJinitely many orbit 
types on X with X and X *  bothfinitistic. Let A c X be closed and invariant 
and assume that Bi(X, A )  = 0 for i > n. Then also @(XT, A T )  = 0 for 
i > n and ki(X*, A* u XT) = 0 for i 2 n. This holds for either rational 
or integral coeficients. 

Proof First note that for any finite subgroup K of T we have H ( X I K ,  
A / K )  = 0 for i > n. For rational coefficients, this follows from 7.2. For 
integral coefficients, note that, by an induction, we may assume that K is 
cyclic of prime order p .  Then Hi(X/K,  A / K ;  Z,) = 0 for i > n by 7.9 and 
the exact sequence of the triple (XIK, AIK u XE/K,  AIK). This implies 
that @(X/K,  AIK; Z) is divisible by p for i > n, and the transfer shows 
it to be zero. (See the proof of 5.4 and also Exercise 9.) This reduces the 
proposition to the semifree case. 
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Suppose that 

@-l(X*,  A* u XT) 0 @(XT, AT) # 0 

for some i > n. Then the composition (from the Smith-Gysin sequence) 

I?-l(X*, A* u XT) @ @ ( X T ,  A T )  2 - g i+ l (X* ,  A* u X T )  - 
3 @+3(X*, A* u XT) . . . 

consists of monomorphisms. It suffices to show that a high power of p* 
kills any given element Po of @+l(X*, A* u XT). Now Po is in the image of 
Bi+l(X*, A* u N * )  for some sufficiently small closed neighborhood N* 
of f l  and, by excision, corresponds to an element j3 of @+l(X* - U*, 
(A* u N * )  - U * )  for some open neighborhood U* of XT in N*.  (Incech 
theory, U* can be taken to be the interior of N * ,  but this is of no conse- 
quence here.) We shall use the fact that p* is the cup product by some ele- 
ment a0 of I‘i.(X* - XT). Hence p*&) is the image in @f3(X* ,  A * u  XT) 
of a/3 where a: is the restriction of a0 to @(X* - U*). Since a closed sub- 
space of a finitistic space is clearly finitistic, it suffices to prove the following 
lemma. 

10.8. Lemma 
j3 E @(Y, B )  where i > 0. Then ak/3 = 0 for  sujiciently large k. 

Let Y befinitistic and B c Y be closed. Let GI E Bi(Y) and 

Proof There is a finite-dimensional covering 9 of Y such that a: and j3 
are images of elements GI’ and j3’ of Hi(K(%)) and Hj(K(%), K ( 9  I B)) ,  
respectively. Then (a:’)kp = 0 when ki + j > dim 9 and this implies 
that akj3 = 0. I 

Using 10.6, 10.7, and the argument of 4.1, the proof of the following 
theorem is clear. 

10.9. Theorem Let the circle group T act with only finitely many orbit 
types on X with both X and X *  = XITfinitistic. Let A c X be a closed in- 
variant subspace. Then, for coejicients in the rationals Q, 

IfI?*(X, A )  isfinitely generated over Q,  then so are B*(XT, A T )  and 8 * ( X * ,  
A*),  and we also have that x (X ,  A )  = x(XT, A T ) .  I 
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Remark Theorem 10.9 can be proved without the condition on finiteness 
of number of orbit types, and the same is true of all our results involving 
only rational coefficients (10.1CL10.12). 

For convenience we will call a Tk-space X Tk-finitistic if the orbit spaces 
of all subtori are finitistic. 

10.10. Corollary I f X  is Tk-finitistic, then 10.2 and 10.3 hold with rational 
coeficients throughout.. I 

10.11. Corollary Let the circle group T act on the finitistic space X with 
X*Jinitistic and with onlyjinitely many orbit types. Let A be an invariant closed 
subspace. Suppose that I?j(X, A ;  Q )  = 0 for  all odd j (respectively, even j ) .  
Then H j ( J ? ,  AT; Q )  = 0 for  all odd j (respectively, even j ) ,  and 

Crk Bi(XT, AT; Q )  = Crk ki(X, A ; Q). 

Proof The first part is immediate from 10.9. For the second part, we note 
that &j(X*, A* u XT) = 0 for j even, by 10.9, and thus the Smith-Gysin 
sequence consists of the short exact sequences 

0 + Pi(X, A )  -+ P i - l ( X * ,  A* u J?’) @ I?2i(XT, AT) 

+ P + l ( X * ,  A* u X T )  --+ 0. 

Thus 

rk p(J?, AT) + rk fi2i-1(X*, A* u XT) 

= rk f iZ i (X ,  A) + rk f iZi+l (X*,  A* u XT) 

and the desired equality results upon adding and canceling. I 

10.12. Theorem Let Z be a Tk-finitistic Tk-space which is a rational co- 
homology n-sphere, and assume that there are only a finite number of orbit 
types and no stationary points. If H c Tk is a subtorus of dimension k - 1, 
let r ( H )  denote that integer, between -1 and n, for  which ZH is a rational 
cohomology r(H)-sphere. Then, with H ranging over all subtori of dimension 
k -  1, we have 

n + 1 = 1 ( r ( H )  + 1). 
€I 
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Proof Since the circle subgroups are dense in Tk,  there is one, say S, 
with no stationary points. Then the Smith-Gysin sequence shows that 

for i = O ,  2, 4, ..., n - 1 ,  (" 0 otherwise. 
@(ZH/S; Q ) -  

Note that a point x in Z is fixed by a subtorus of codimension 1 iff its orbit 
has dimension 1 [and hence coincides with S(x)] .  This holds iff the image 
of x in Z/S is fixed by the action of Tk/S. Also, the fixed sets .ZH are mutually 
disjoint. Thus (Z/S)Tk/S consists of disjoint sets, each of the form ZH/S. 
As above 

for i = 0, 2, . . . , r ( H )  - 1, 
Q) { 

Thus 
rk kz(Z/S; Q) = $(n + 1)  

and 

C rk fii((Z/S)Tk's; Q) = 1 rk f i i (ZH/S;  Q) = & C ( r ( H )  + 1). 
i H i  €I 

But these are equal by 10.11 and an obvious induction. I 

Remark Theorem 10.12 is due to Borel [5 ] .  It is easily generalized to 
the case in which there are stationary points, as done by Borel, but the case 
given is the only one of interest to us here. Borel also proved an analogous 
result for actions of Z, @ Z, @ - @ Z,. 

10.13. Theorem Let the circle group T act with only finitely many 
orbit types on X with X and X* jinitistic, Let A c X be closed and in- 
variant. If 8 * ( X ,  A; Z) is finitely generated, then so are I?*(XT, AT; Z) 
and 8 * ( X * ,  A*; Z). 

Proof If Z, c T , we first show that H*(X/Z, , A/Z,; Z)  is finitely genera- 
ted. (Note that this is a special case of Exercise l .) The compositiona*(X/Z,, 
AIZ,; Z)  + 8 * ( X ,  A; Z)  + 8 * ( X / Z , ,  A/Z,; Z)  with the transfer is multi- 
plication by p and its image is finitely generated since it factors through a 
finitely generated group. Thus it suffices to show that the kernel of multiplica- 
tion byp on this group is finitely generated. But the exact sequence associated 
with the coefficient sequence 0 + Z + Z + Z, + 0 shows this to be the 
case, since &*(X/Z,,  AIZ,; Z,) is finitely generated by 7.9. By induction 
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we see that k * ( X / Z , ,  AIZ,; Z) is finitely generated for each cyclic sub- 
group Z, of T .  Thus the problem reduces to the semifree case. But this case 
is an easy consequence of the Smith-Gysin sequence (10.6) with integral 
coefficients by an induction from infinity, and by the exact sequence of 
the triple (X*, A* u XT, A*). (Compare the proof of 10.7.) I 

10.14. Corollary If X is Tk-finitistic, then the conditions of finite type 
in 10.2 and 10.3 may be removed. I 

Example That finiteness of number of orbit types is necessary in 10.2 
and 10.3 is shown by the following example for the case n = 0 and A = 0 
of 10.3. Let T act on S1 (= T) by (z, z ' )  ++ znz' of T x S1 -+ S'. The circle 
S1 with this action will be denoted by S1(n). The map z ++ z2 gives an equi- 
variant map f: S1(n) + S'(2n). Let Pz be the projective plane with trivial 
T action and let X be the union of the mapping cylinders of the maps of 
joins 

1 *f 1*f 1*f 
P2 * S'(1) - P2 * Sl(2) - P2 * S'(4) - * - * . 

Then X is simply connected and acyclic over Z (since 1 *f induces the 
trivial map in homology), and hence Xis contractible. But XT = P2 x [0, CO) 

has B2(XT; Z) = Z,. 
Let x be a fixed point of this T-space X and let Xi be copies of X with xi 

corresponding to x. Attach each Xi to the real line by identifying xi with i. 
Then the resulting space Y is still contractible, but BP( YT; Z) is the direct 
product of infinitely many copies of Z, and hence is not finitely generated. 
This shows that the condition of finiteness of the number of orbit types is 
necessary for 10.13. (It can be shown, however, that this cannot happen 
when X is compact.) 

Remark Theorems of the type considered in this section were first proved 
in Conner [3] and in Floyd [9]. Also see Bore1 [5].  

EXERCISES FOR CHAPTER 111 

1. If Kis a finite-dimensional regular G-complex, G finite, and if H ( K ;  Z) 
is finitely generated, show that H(K/G; Z) is also finitely generated. Gen- 
eralize this in cohomology for finitistic G-spaces. 
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2. Show how to derive 5.1 from 5.2 and similarly for their generaliza- 
tions to finitistic G-spaces (see 7.1 I). 

3. Let K be a finite-dimensional regular G-complex, where G is cyclic 
of prime order p. Suppose that K is a modp homology n-sphere and that 
KG is a mod p homology r-sphere. Show that 

Z, for i = 0, 
for r + 2 5 i 5 n, 
otherwise. 

If K is an integral homology n-sphere, then (with no further assumptions 
on K G )  show that, if n - r is even, then 

Z for i = O  and i =  n, 
for i = r + 2 ,  r + 4 ,  . . . ,  n - 2 ,  
otherwise 

and, if n - r is odd (and necessarily p = 2), then 

Z for i = 0, 
for H,(K/C; Z) = Z, i = r + 2, r + 4 ,  . . . , n - 1, 

{ o  otherwise. 

Moreover, forp = 2, show that n -- r is even iff G acts trivially on H,(K; Z). 
Also restate the problem in cohomology and generalize it to finitistic spaces. 

Show that the sequence 3.1 is exact for arbitrary coefficients when 
L 2 KG and e = u or t, p being the other. Also prove this for arbitrary 
cyclic G acting freely on the set of simplices of K not in L. 

4. 

5. Let K be a G-complex. Consider the condition that whenever (u, v) 
and (guy v) are edges of K then either gu = u or g v  = v. Show that this 
condition implies regularity, but not conversely. Also show that this con- 
dition always holds for the action on the second barycentric subdivision 
of K. 

6. Let 9 be a locally finite regular G-covering of a G-space X .  Show 
that there exists a minimal invariant subcover. If Z! is minimal, show that 
K(%)/G = K(fYG) when gG is self-indexed. 

7. Generalize 7.14 to maps f: ( X ,  A )  -+ (Y ,  B )  of closed pairs of para- 
If f ': A + B is the restriction of f: X +  Y, compact G-spaces. [Hint: 
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then the inclusion ( X ,  A )  + (Mf, u X ,  M f , )  and the retraction (Mf, M f J )  
+ (Y, B )  both induce isomorphisms in cohomology. Consider the exact 
sequence of the triple (Mf, M f ,  u X, Mf,).] 

8. Let G be cyclic of prime order p and let E be a connected, compact, 
free G-space such that @ ( E )  = 0 for 0 < i < N .  Let B = E/G. The equi- 
variant projection ( X  x E, X G  x E) + ( X ,  X G )  induces the map (X x E, 
XG x B )  + ( X * ,  X G )  of orbit spaces (where X is a G-space). If X is para- 
compact, show that the induced map 

is an isomorphism for i < N and a monomorphism for i = N (coefficients 
in Z, or in Z). If X i s  finitistic and f i i ( X ;  Z,) = 0 for i > n, then conclude 
that the restriction 

ftii(X X G E ;  z,) + P ( X G  X B ;  z,) 

is an isomorphism for n < i < N - 1 and an epimorphism for i = n (when 
n < N ) .  (Hint: Use Exercise 7. We remark that this fact is the basis of a 
powerful method for studying transformations of prime period, which we 
shall study later. It requires, however, a knowledge of the theory of spectral 
sequences.) 

9. Let G be a finite group acting on a finitistic space X, and let A c X 
be closed and invariant. Suppose that @(X, A ;  Z) = 0 for i > n. Show 
that @(X/G, A/G; Z) = 0 for i > n. 

10. Show that Z, @ Z, cannot act semifreely on a finitistic modp 
cohomology n-sphere X with fixed set F a mod p cohomology r-sphere with 
-1 2 r < n. (Hint: By suspending twice, one may assume that r 2 1. 
Let G = G, x G,, Gi cyclic of order p .  Note that F is: ( X G ~ ) G s .  Consider 
the orbit map X -  X/G, as a G,-equivariant map and look at the map of 
Smith sequences (of G, actions) induced by this map.) 

11. If G is a finite group which can act freely on a compact integral 
cohomology n-sphere Zn, show that G has periodic cohomology of period 
n + 1 ; that is, Hi(G; Z) is: Hi+n+l(G; Z) for all i > 0. (Hint: By taking 
joins of copies of Zn, G also acts freely on a cohomology N-sphere L" for 
N arbitrarily large. Consider the twisted product Zn x ZN and the projec- 
tions to D I G  and P / G ,  which are fiber bundle maps with fibers ZN and 
P, respectively, and group G. Use the Gysin sequences of these maps.) 
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12. Suppose that the group G = S3 of unit quaternions acts semifreely 
on the paracompact space X .  Derive the following exact Smith-Gysin 
sequence (arbitrary coefficients) 

- - * + Pyx*, XG) -+ @(X)  -+ z;i"-3(X*, X G )  @ I ; i i ( X G )  + @+'(X*, XG) -+. 

Also generalize this to pairs (X, A), where A is closed and invariant. 

13. Let X be a finitistic space such that a * ( X ;  Z) is finitely generated. 
Suppose that G = Z,, p prime, acts on X with trivial action on 8 * ( X ;  Z). 
Then show that x ( X )  = x(XG) .  (Hint: Apply 7.2 and Exercise 1.) 



CHAPTER IV 

LOCALLY SMOOTH ACTIONS ON MANIFOLDS 

In this chapter we begin to study, systematically, actions of compact Lie 
groups on manifolds. With a few exceptions, the results considered in this 
chapter are of a rather general nature. Our study is carried out in the context 
of locally smooth actions, which should be regarded as the analog of the 
category TOP of topological manifolds. (We do not prove many deep 
results about this category of actions, in the sense of results unattainable for 
arbitrary actions of compact Lie groups on manifolds, but it is hoped that 
the study of the locally smooth category may prove to be fruitful in the 
future.) 

Locally smooth actions are defined in Section 1 and it is shown that 
such actions on Rn have only finitely many orbit types. Orientability of 
fixed point sets and related questions are considered in Section 2. The 
concepts of principal, exceptional, and singular orbits are studied in Sections 
3 and 4. In Section 5 a theorem is proved which allows the reduction of certain 
questions to the case in which the principal isotropy group is finite. Section 
6 is devoted to a result of Bore1 concerning actions on a sphere with one 
orbit type. Some general facts about the set of nonprincipal orbits are 
considered in Section 7. In Section 8 we prove a theorem of Montgomery, 
Samelson, and Yang which states that a locally smooth action on Rn is 
orthogonal if it has an orbit of codimension 1 or 2. A theorem of Conner 
and Montgomery, showing that actions on tori are particularly simple, 
is proved in Section 9. In Section 10 we prove a result of Mann which 
states that an action on an orientable manifold with finitely generated 
homology has only finitely many orbit types. 

We shall assume all manifolds to be paracompact, whether or not this 
is explicitly stated. 

1. LOCALLY SMOOTH ACTIONS 

Let M be a G-space, G compact Lie. Let P be an orbit of type G/H and 
let V be a euclidean space on which H operates orthogonally. Then a linear 

170 
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tube about P in M is a tube (G-equivariant embedding onto an open neigh- 
borhood of P) of the form 

If x = v [ e ,  v ]  is in P, then v is stationary under H and, since the trans- 
lation of V moving v to 0 is equivariant, it is no loss of generality to assume 
that v = 0. 

Let S be a slice at  x in M. Then S is called a linear slice if the canonically 
associated tube 

G x c z S + M  

( [g ,  s] b g ( s ) )  is equivalent to a linear tube; that is, if the Cispace S is 
equivalent to an orthogonal G,-space. 

Note that 11.5.2 says that there is a linear tube about each orbit of an 
orthogonal action on R". (In a later chapter we shall show that this is true 
for any differentiable action.) 

We will say that the G-space M is locally smooth if there exists a linear 
tube about each orbit. 

Since G x H  I/ is a V-bundle over G/H, it is a manifold. Thus M must 
be a topological manifold if it is locally smooth. The category of locally 
smooth actions is the analog, in the theory of G-spaces, of the category TOP 
of topological manifolds. 

If the G-space M is locally smooth and if x is a fixed point, then a neigh- 
borhood of x in M is equivalent to an orthogonal action. This shows that 
MG is a topological submanifold of M in this situation. 

If one takes the open cones over the examples of Chapter I, Section 7, 
then one obtains actions on euclidean space whose fixed sets are not locally 
euclidean at  the origin. Thus not all actions on manifolds are locally smooth. 

1.1. Proposition 
closed subgroup, then M is locally smooth as a K-space. 

If M is a locally smooth G-space and if K c G is a 

Proof Let P be a G-orbit of type GIH in M .  Considering G as an orbit 
of the (G x G)-action (by left and right translation) recall that G can be 
embedded as an orbit in an orthogonal (G x G)-action on some R"; see 
Chapter 11, Section 5. Restrict this action to one of K x H, and consider 
the orbit KH of e in G c R". (Note that the isotropy group at e is {(I, 
I - l )  I I E K n H} =: K n H . )  By 11.5.2 an &-ball V, in the normal space to 
K H  in Rn at e is a slice for this K x H action on Rn. Then it is clear that 
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W = V, n G is a slice for the action of K x H on G at e. Now W is equiv- 
alent (as a (K x H)-space) to the intersection of V, with the tangent space 
of G, for E small, and hence is a linear slice at e in G for the action of K x H. 

Put L = K n H. Since K acts from the left and H from the right in this 
action of K x H on G, L = K n H acts on W by (1,  w )  H lwl-l. 

Letting L act by translation on the right of K and on the left of H [and 
hence on W x H by ( I ,  (w ,  h))t+ (lwl-l, Ih)], the above remarks show 
that the map 

q: K X L ( W x  H ) + G  

defined by rp[k, (w, h)] = kwh, is a tube about KH in G for the action of 
K x H. 

Now let 
W :  G X H  U-+M 

be a linear tube about the given orbit P with x = y[e ,  01. (Recall that 
H = G,.) Then the composition 

is a K-equivariant embedding onto an open set, by 11.2.1. But 

(K x . (WX H)) XH U - K X L  ((W x H) XH U )  

K x L (W x (H  X H  U ) )  K X L (W X U) 

and the induced map 

8 :  K X L ( W X  U ) + M  

is just 8[k ,  (w, u)] = y[rp[k, (w,  e)], u] = y [ k w ,  u]. Thus 8 is a K-equivariant 
homeomorphism onto an open neighborhood of the K-orbit of 8[e, (e, O)] 
= y[e, 01 = x. Since Wand U are orthogonal L-spaces with W x U having 
the diagonal action, and since L = K n H = K,, 8 is a linear tube about 
K(x) in M.  I 

Remark This proposition is, of course, a trivial corollary of the fact, 
which we shall prove in Chapter VI, that a differentiable action is locally 
smooth. The reader with good background in differential geometry may 
well prefer that approach. 

Since an orthogonal G-action has only finitely many orbit types (see 
V come Chapter 11, Exercise 2) and since the isotropy types of G on G x 

from those of H on V (see 11.(3.4)) the following fact is clear. 
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1.2. Proposition Let M be a locally smooth G-space and let C be a com- 
pact subset of M.  Then the orbit types of orbits touching C are finite in num- 
ber. I 

Remark This result is true for arbitrary actions on manifolds (and on 
generalized manifolds) by compact Lie groups, but the proof is considerably 
more difficult. The general case is due to Floyd [8], Mann [l], and Mostow 
[2]. For an exposition of this result see Bore1 [5, Chapters VI, VII]. The 
proof of the following result is adapted from Floyd [ll] and contains a 
few aspects of the proof of this general result. 

1.3. Theorem Let M be a paracompact topological manifold with acyclic 
mod p cohomology for  all primes p (e.g., M = Rn). Then any locally smooth 
action of a toral group T on M has only a finite number of orbit types. 

Proof Suppose that xl, x2, . . . is a sequence of points in M with distinct 
isotropy groups. Since the collection of closed subsets of T form a compact 
metric space with the Hausdorff metric 

d(A, B)  = max d(a, B)  + max d(A,  b) ,  

we may assume, by passing to a subsequence, that the TZ, converge to G c T 
(necessarily a subgroup). By 11.5.6 we see that Txl c G for i large, since T 
is abelian. We may as well assume this for all i. Suppose that we could show 
that F(T,,, M )  = F(Tx,, M )  for i, j sufficiently large. Then TZ, fixes x i ,  
so that TZ, c Tzj ,  and similarly Txj c T,,, for i, j large, contradicting our 
assumption. Thus we have reduced the proof to the following lemma. 

1.4. Lemma Let M be as in 1.3. Let G be a compact abelian Lie group 
acting locally smoothly on M and let {Gi I i = 1, 2, . . .}  be a sequence of 
subgroups of G converging to G. Then F(Gi,  M )  = F(Gj ,  M )  for  allsuficiently 
large i and j .  

Proof Let us first note the following fact. If S is a toral group operating 
on M and if Kl c K2 c . . . is a sequence of p-groups (p a fixed prime) 
converging to S, then F(Kl ,  M )  3 F(K2,  M )  3 - - - is a sequence of mod p 
acyclic (and hence connected) manifolds with intersection F(S, M ) .  How- 
ever, dim F(K,,  M )  is eventually constant and hence the F(Ki ,  M )  are 
eventually constant by the invariance of domain. Thus F(S, M )  is a modp 
acyclic manifold (for all p) .  
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Also note that F(G, M )  = n F(Gi,  M ) .  
Now we shall prove the lemma by induction on dim G, and we may 

assume that dim G > 0. By passing to a subsequence, we may assume 
that the F(Gi,  M )  are all distinct. Since the Gi converge to G, it is clear 
that ord Gi converges to infinity (where ord G i  = co when dim Gi > 0). 
(To see this, intersect Gi with the identity component of G and look at 
the projections on some circle factor of this.) Thus we may choose sub- 
groups H i  of Gi of prime power order (for varying primes) such that ord H i  
converges to infinity, (since the largest prime power dividing n converges 
to infinity as n goes to infinity). By passing to a subsequence, we see that 
we may as well assume that the Hi converge to a closed subgroup S of G. 
Then dim S > 0, since ord Hi goes to infinity. By intersecting the H i  
with the identity component of S, we see that we may assume that S is 
connected, and hence is a torus. 

Since G acts locally smoothly, and hence has only finitely many orbit 
types near any given fixed point x,  it follows that F(Hi , M )  coincides with 
F(S, M )  near x for i large. But these are both connected manifolds and 
hence F ( H i ,  M )  = F(S, M )  for i large. Then, for i large, 

F(Gi,  M )  = F(Gi,  F(Hi,  M ) )  = F(Gi,  F(S, M ) )  = F((GJ) /S ,  F(S, M ) ) .  

Since dim G / S  < dim G ,  the inductive assumption implies that the fixed 
sets on the right side of this equality are all equal for sufficiently large i, 
which contradicts our assumption that the F(Gi, M )  are all distinct. I 

Remark In Section 10 we shall prove a result of Mann [2] which shows 
that the conclusion of 1.3 holds for all orientable manifolds having finitely 
generated homology. 

By 1.3 and 111.10.14 we have 

1.5. Corollary If M is a paracompact manifold which is acyclic over the 
integers (e.g., M = Rn) and if the toral group T acts locally smoothly on 
M ,  then MT is also acyclic over the integers. I 

If cp: G x V-+ M is a linear tube with q [ e ,  01 = x, then the representa- 
tion of G,  = H on V is called a slice representation at x .  We do not call it 
the slice representation at x, since it is by no means clear that it is uniquely 
determined by x (up to linear equivalence). It is, in fact, unknown whether 
or not this is the case. (We remark, however, that for diflerentiable actions, 
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where Q, is required to be a diffeomorphism, the slice representation is 
uniquely determined by x . )  In the case of a fixed point x, this question re- 
duces to the question of whether two topologically equivalent representa- 
tions of a compact Lie group are necessarily linearly equivalent, and this 
is unknown in general. 

We conclude this section by remarking on the definition of local smooth- 
ness for manifolds M with boundary. For this we require, for orbits P 
lying in aM,  tubes of the form 

Q,: G X H  V + + M ,  

where y[e, 01 E P and V+ denotes the half space x,  2 0 in V = Rn, where 
x, denotes the first coordinate, and where H acts orthogonally on V+. 
(Of course, for V+ to be invariant, H must leave the x,-axis stationary.) 

2. FIXED POINT SETS O F  MAPS O F  PRIME PERIOD 

In this section we shall prove some results concerning fixed point sets 
of locally smooth actions on M of a cyclic group G having prime order p. 
Our first result shows that if M is orientable and p is odd, then MG is also 
orientable. That this does not hold for p = 2 is shown by the involution 
(xo : x1 : x,  : x,) H (-xo : x,  : x2 : x,) on real projective 3-space P3 whose 
fixed set is the disjoint union of a point and P2. 

2.1. Theorem If G is aJinite group of odd order or is a torus and i f G  
acts locally smoothly on an orientable n-manifold M ,  then each component 
of MG is orientable. 

Proof The toral case reduces to the case of ap-group since each component 
of MG is also a component of the fixed set of some subgroup of order a 
power of p (see the proof of 1.4). Also an obvious induction (using the fact 
that a group of odd order is solvable) reduces the finite group case to that 
of cyclic G of odd prime order p ,  and we now assume this. 

Let x be a fixed point and assume that its component in MG has dimen- 
sion r. Let U be an open n-cell about x on which G acts orthogonally (by 
local smoothness). Let M+ be the one-point compactification of M with 
ideal point co. Since ( M + ,  M+ - U )  is a cohomology n-cell, by excision, 
the remarks following 111.5.2 (translated to cohomology) leading to the 
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isomorphism 111.(5.3), show that there is a commutative diagram (where 
coefficients are in Z, and B = M+ - U )  

&(M+G, B G )  1 fi;+l(M+ , B )  7 - - . 1 fiTn(M+ , B )  
- - - - 

I;i?z(M+ , B )  

(The right-hand vertical map is an isomorphism since M is orientable.) 
Now f in(M+,  00) - Z, and the same argument with Smith sequences 
given under 111.5.2 (and in the proof of 111.9.2) shows that the homomor- 
phism i*: @(M+,  co) + kTn(M+,  co), on the bottom row, is an isomor- 
phism. Thus the diagram shows that &(M+G, (M+ - U)") -+ &(M+G, co) 
is a monomorphism. 

If F is the component of MG containing x and F+ = F v {co}, then the 
map j,: M+G --t F+ taking all other components of MG to co, is a retraction. 
This gives the diagram 

- 
Z, - Hr(F+, F+ - U )  2 &r(M+G, (M+ - U)") 

I Y + + 
fir(F+ , co) jP' f i ( M + G ,  co) 

which shows that kr(F+,  00) # 0, whence Fis orientable (sincep is odd). I 

Note that this discussion also holds with p = 2 (but does not show F 
to be orientable, of course). Let us look at this proof a bit more closely 
in the case for which M is compact (for convenience only). Let 0, denote 
the composition 

(e may be cr when p = 2) .  Then we have shown that 

e,jF* : &(F) + &(M) 

is nontrivial, and hence is an isomorphism, when F is a component of MG 
and M is orientable (or p = 2). Now 

over all components F of MG, with canonical inclusions jF* (and projec- 
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tions, the restriction maps @(MG) + @(F)  induced by the inclusions 
F c MG). 

Let 0 # 1 E &(M) be an “orientation” over Z, and let IFf  E kr(F) 
be the induced orientation of F, where F is a component of MG of dimension 
r. That is, IF‘ is chosen such that 

Put ;IF = jF*( iFf)  E &(MG). Suppose that F l ,  . . . , Fk are the components 
of Ma of dimension r (where r is now fixed) and consider the element 

k 

i-1 
a = C ai;Ip,; ai E Z, 

of kr(MG).  We have 8,(a) = (Cai)l. Now 6*: @(MG) -+ &+l(M) kills 
a only if 8, does, and thus only if x u i  = 0 in Z,. The diagram III.(7.8) 
has the form 

&(M*) - k r ( M Q )  - &+1(M*, MG) 

This shows that a is the image of an element of @(M*) only if 6*(a) = 0 
and thus only if Cai = 0. Therefore we have proved the following theorem. 

2.2. Theorem Let M be a compact, orientable (over Z,) manifold on which 
the cyclic group G of prime order p acts locally smoothly. Then MG is homolo- 
gous to 0 (mod p )  in M* = M/G in the following sense: I f r  is any integer and 
Fl , . . . , Fk are the components of MG of dimension r, then there are nonzero 
classes 0 # 1: E k r ( F i ;  Z,), corresponding to Ai E k r ( M G ;  Z,), such that 

Caiili E Im(kr(M*; z,) -+ k r ( ~ G ;  z,)), 
i f  

then Cai = 0 in Z,. I 

We remark that the corresponding statement in homology would state 
that there are classes 0 # p i  E f i r (Fi ;  Z,) and p‘ E &(MG - U F a ;  Z,) 
(possibly 0) ,  with images pi and p in Rr(MG), such that ,u + Cpui goes to 
o in B,(M*; z,). 
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2.3. Corollary If M is a compact manifold, orientable over Z, , then there 
is no locally smooth action of a cyclic group G ofprime orderp havingprecisely 
one $xed point. I 

2.4. Corollary If M is a compact manifold and i f  T is a locally smooth 
involution on M having only isolated fixed points, then the number of fixed 
points is even. I 

2.5. Corollary Let M be a compact manifold, orientable over Z,, and 
let r be the maximum dimension of the components of MG. Suppose that MG 
has just one component of dimension r,  say F. Then F is not a retract of M*.  

Proof If F is a retract of M*, then k r ( M * ;  Z,) -+ &(F; Z,) is onto, 
since the retraction gives a right inverse to this map. However, k T ( F ;  Z,) 
= I?(MG; Z,) since the other components of MG all have dimension less 
than r, and this contradicts 2.2. I 

Remarks Theorem 2.1 is due to Smith [2]. Mostow noticed the fact that 
Smith's proof of 2.1 also essentially proved 2.3. Theorem 2.2 and its corol- 
laries are from Bredon [3] and we asked there whether these results extend 
to actions of general p-groups. That this is not the case is shown by the map 
(zo: zl: z2) H ( ,To: -Z2 :  ,Tl) on CP2 which has period 4 and exactly one 
fixed point (1: 0: 0). (This is from Conner and Floyd [S].) Also the maps 
(zo: zl: z2: z3) H ( 2 0 :  z2: 2,: zl) and (zo: zl: z2: z3) ++ (zo: zl: z,: wz3) on 
CP3, where o is a primitive cube root of unity, generate a group of order 
34 which has just one stationary point ( I  :O:O:O). However, for differentiable 
actions of cyclic groups of odd prime power order, it was conjectured in 
Conner and Floyd [S] that 2.3 generalizes. This was later proved to be the 
case in Atiyah and Bott [2] and in Conner and Floyd [9]. Whether the more 
general result 2.2 holds for actions of cyclic groups of odd prime power 
order, is still in question. 

We conclude this section by proving a relatively simple global version 
of a result of Yang [2]. It will be generalized considerably in Chapter V. 
To motivate it we recall that the fixed point set of an involution on a sphere 
is a mod 2 cohomology sphere. Also, the examples of Chapter I, Section 
7 show that the fixed point set may have odd torsion in its homology and 
may have codimension 2. The following result shows that this cannot hap- 
pen in codimension 1. 
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2.6. Theorem Let G - Z, act locally smoothly on a compact integral 
cohomology n-sphere Z with Zc of dimension n - 1 .  Then ZG is an integral 
cohomology ( n  - 1)-sphere, and Z* is acyclic over the integers and has a 
global cross section in Z. 

Proof We know that ZG has the mod 2 cohomology of Sn-’. The exact 
sequence 

0 -+ @-1(ZG; Z,) + &(Z, Z G ;  Z,) + Byz; Z,) + 0 

of the pair (Z, Zc) and Alexander duality &(Z, Zc; Z,) - Ho(Z - Zc; Z,) 
show that Z - ZG has two components. Let Ml and M ,  be the closures of 
these components, so that M I  u M,  = C and MI n M ,  = Zc. Consid- 
eration of a neighborhood of a point in Zc shows that G permutes M I  
and M, and hence that Ml - M, ;g~ Z*. The map Z+ Z* - Ml shows 
that Ml is a retract of Z. Thus k*(,Z*; Z) is a direct summand of &*(Z; Z) 
and it follows that Z* is acyclic. PoincarC-Lefschetz duality l?-l(ZG; Z) - ifi(Z*, Zc; Z) - Ifn-@*; Z) implies that ,ZG is an integral cohomology 
(n  - 1)-sphere. I 

3. PRINCIPAL ORBITS 

In this section we shall prove the existence of a maximum orbit type for a 
locally smooth action on a connected manifold, and shall discuss its con- 
sequences. As with most of the results of this chapter, this result can be 
proved for actions which are not locally smooth (see Montgomery [6])  
but it is considerably more difficult in that case. Throughout this section G 
will be a compact Lie group acting locally smoothly on the n-manifold M 
with M* = MIG connected. 

3.1. Theorem There exists a maximum orbit type G / H  for G on M (i.e., 
H is conjugate to a subgroup of each isotropy group). The union M(=) of the 
orbits of type GIH is open and dense in M and its image MTH, in M* = M/G 
is connected. 

Proof The proof will proceed by induction on the dimension n of M .  
Using the inductive assumption, we shall first prove the result “locally” 
on M*. Consider a linear tube 

G XK V + M .  
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Then K acts orthogonally on V and thus its action may be thought of as 
that on the open cone over the action of K on the unit sphere S in V about 
the origin. Now dim S < dim M (in fact dim V < dim M unless K = G) 
and K is locally smooth on S by 11.5.2. By the inductive assumption there 
exists a subgroup H of K with S,,, open and dense and S&) connected. 
(There is one exception to this, when S is the 0-sphere and K acts trivially 
on S; but then all orbits of K on V are the same, namely trivial.) Then 
V,,, and V,*,) are the open cones less the vertex onS,,, and Sy,, , respectively; 
or, when H = K, V,,, = V and V&) = V*. Thus V&) is connected, open, 
and dense in V*, and all other orbits of K in V have strictly smaller type 
(by the inductive assumption or simply by the density of V,,, and by 11.5.5). 
Suppose that K/L  is another orbit type occuring in V. Then, by conjugating, 
we may assume that H c L c K with H # L. Then L and H differ either 
in dimension or number of components and thus cannot be conjugate in G. 
Since subgroups of K which are conjugate in K are, a fortiori, conjugate 
in G, it follows from this that 

Also 

under the homeomorphism (G x K  V)* - V* of 11.3.3, and this is connec- 
ted, open, and dense in (G x 

Thus, for each point x in M ,  we have found a neighborhood Ux* of 
x* and a connected, open, dense subset Wx* of U,* such that all orbits 
in Wx* have the same type and all other orbits in U,* have strictly smaller 

type. 
Now if H is any subgroup of G, let C(,) be the closure of int M & ) .  Then 

x* is in C(,) iff Wx* consists of orbits of type GIH and, in this case, C(,) 
3 Ux*. Thus C(,) is both open and closed and it follows that C(,) = M* 
for some H (now fixed) and C(K,  = 0 if K is not conjugate to H. Then 
M&) is open since MT,) n Ux* = Wx*, and it is also dense. Also all other 
orbits have type strictly smaller than that of GIH. If D is a component of 
M $ , ,  then, since Wx* is connected for each x, we see that b is open (and 
closed) in M*. Hence MTH) = D is connected. 

V)*. 

The maximum orbit type for orbits in. M guaranteed by 3.1 is called the 
principal orbit type and orbits of this type are called principal orbits. The 
corresponding isotropy groups are called principal isotropy groups. If P 
is a principal orbit and Q is any orbit, then there is an equivariant map 
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P - Q. If P - GIH and Q - G/K, then H is conjugate to a subgroup 
of K and, without loss of generality, we may assume that K 3 H. Then 
an equivariant map P + Q is a fiber bundle projection G/H -+ G/K with 
fiber K/H.  If dim P > dim Q (i.e., dim K/H > 0), then Q is called a sin- 
gular orbit. If dim P = dim Q, but P and Q are not equivalent (i.e., P -Q 
is a nontrivial covering map; that is, K / H  is finite and nontrivial), then Q 
is called an exceptional orbit. 

Let us collect some elementary properties which will be used continually. 

3.2. Theorem 
x .  Let v E V. Then 

Let x E M with K = G, and let V be a linear slice at 

(i) K(v)  is principal, exceptional, or singular for K on V according as 
G(v) is principal, exceptional or singular for G on M .  

(ii) Zj” H c K is a principal isotropy group for K on V (and hence prin- 
cipal for G on M ) ,  then G(x)  is nonsingular (i.e., principal or exceptional) 
K / H  isjinite. In this case H is normal in K and is precisely the noneffective 
part of K on V. 

G(x) is principal iff K = G,  acts trivially on V. In this case G x K V 
= ( G / K )  x V .  

(G XK V ) ( R )  = G X R  VK = ( G / K )  x VK.  
If H c K is a principal isotropy group for K on V,  then (G x 

(iii) 

(iv) 
(v) V ) ( H )  
G XK(VUT)). 

Proof Let K(w)  be principal in V and suppose, as we may, that H = K,  
c K,. Since G x V, and consists of orbits of type 
GIH, we see that H is a principal isotropy group for G on M .  Since K(u) 
is principal, exceptional, or singular according as K J K ,  = G,/G, is trivial, 
finite and nontrivial, or infinite, we obtain (i). Part (v) is immediate from 
this. Part (iii) is clear, as is the first part of (ii). If KIH is finite, then K- 
orbits in V are finite and a slice at  a point in V is just a small open neigh- 
borhood of the point in V. Thus (in this case) H leaves an open set stationary 
and hence H acts trivially on V. From this it is clear that H i s  just the non- 
effective part of K on V and, in particular, H is normal in K.  This proves 
(ii). If G(v) is an orbit of type GIK, then K - G,  c K and this implies 
that G, = K (that is, u E VR). This implies (iv). I 

(V,,,) is open in G x 

Note that if M is a sphere, for example, then by 3.2(iii), a principal orbit 
embeds in the sphere M with a product neighborhood. This is known to be 
a strong restriction on the possibilities for the principal orbit. (It implies 
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that the principal orbit is stably parallelizable and hence that all of its 
characteristic classes are zero.) 

We shall now proceed to analyze the orbit structure of a locally smooth 
action a little more closely. 

3.3. Theorem Let K be a subgroup of G and let M ( K )  denote the set of 
points on orbits of type GIK. Then M ( K )  is a topological manifold (locally 

closed in M ) ,  and its closure M ( K )  consists of orbits of type less than or equal 
to type GIK. The orbit map M ( K )  + M ~ K )  is a fiber bundle projection with 
fiber GIK and structure group N(K) /K .  

Proof If x E M(K),  then type G(x)  5 type G / K  by 11.5.5. If equality holds, 

then any orbit in M ( g )  near G(x)  has type greater than or equal to type G(x)  

and hence has type equal to type G(x).  Thus M ( K ,  is open in M,,, and 
hence is locally closed in M .  Let P be an orbit in M ( K ) .  Then P has a linear 
tube of the form G x V. Clearly, the subspace of this consisting of orbits 
of type GIK is just G x VK - (GIK) x VK which is a manifold since VK 
is a linear subspace of V. The last statement follows from 11.5.8 (or directly 
from the discussion above). I 

- 

- 
- 

- 

3.4. Lemma 
nents in the neighborhood of any orbit of M .  

For any K c G, M ( K )  consists of onlyJinitely many compo- 

Proof By induction on dim M this is satisfied for the action on the unit 
sphere in a linear slice. Compactness shows that it holds globally on the 
sphere and then it is clearly satisfied on the associated linear tube. 1 

3.5. Lemma Let C c M be locally closed and invariant. Then dim C 
= max dim(C n M ( K ) )  and dim C* = max dim(C* n M&)), where K 
ranges over the subgroups of G.  

Proof Since dimension has a local character, we may assume that there 
are only finitely many orbit types in C. Then we can prove the lemma by 
induction on the number of orbit types occurring in C.  Let L c G be such 
that C n M(L)  # 0 and such that no larger orbit type occurs in C. Then 
M(L) n C is open and, by induction, dim(C- M ( L ) )  = max{dim(C 
n M ( K ) )  I K + L}. But dim C = max{dim(C - M(L)) ,  dim(C n M ( L ) ) }  by 
Hurewicz and Wallman [l, p. 321, which proves the assertion (the statement 
on C* following in the same way). I 
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3.6. Theorem 
then dim@ - D )  < dim D. Thus 

Let K be any subgroup of G. If D is a component of M&), 

- 
dim(M;C,,- M* (=)I < dim M;) * 

Proof Note that the orbit types in b - D are strictly less than type G/K. 
By 3.5 it suffices to show that if L contains K properly, then dim(b n M&)) 
< dim D. By taking a linear slice at a point of an orbit in b n MTL) this 
is reduced to the case L = G (and to an orthogonal action); that is, to 
showing that dim MG < dim D (where D consists of orbits of nontrivial 
type). However, if S is a sphere in the orthogonal complement of Ma 
(in the orthogonal case), then S* n D c ,!& is a manifold and D is just 
the product of MC with (S* n D) x R+, whence dim D 2 dim MG + 1. I 

For any subgroup K of G we put 

B(R) = { x  E M< I dim G ( x )  < dim G / K } ;  

E(=) = { x  E M ( K )  [ dim G(x)  = dim G / K  but type G ( x )  # type G / K } .  
- 

- 
Note that B(=) and B(=) u E(=) = M(=) - are both closed sets. 

If H is a principal isotropy group, then M(H) = M and thus B(H) is just 
the set of points on singular orbits, and E(H), those on exceptional orbits. 
We put B = B(H) and E = E(H) when H is principal. 

- 

3.7. Proposition For any subgroup K of G we have 

dim B(K)  5 dim M(=) - 2, 

dim E(=) 5 dim M(=) - 1. 

Proof By 3.5 it suffices to show that dim (B(=) n M ( L ) )  5 dim M(=)  - 2 
(and similarly for E(=)). However, B(=) n M ( L )  is a bundle over BYx) n M&) 
with fiber GIL. By 3.6 we have 

dim B(=) n M(L)  = dim(BTK) n MTL)) + dim (G/L) 

5 dim My=) - 1 + dim(G/L) 

5 dim Mf=, - 1 + dim(G/K) - 1 

= dim M(=) - 2. 

The other inequality follows in the same way. I 
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3.8. Theorem I f d  is the dimension of a principal orbit (ie., the maximal 
dimension among all orbits), then dim M* = n - d and dim(B* v E*)  
5 n - d - 1. Also the union of all nonprincipal orbits of dimension at most 
t is a closed set of dimension at most n - d + t - 1. Thus dim B 5 n - 2 
and dim(B u E )  5 n - 1. 

Proof If H i s  the principal isotropy group, then M ( H )  is open and thus has 
dimension n. This is a G/H-bundle over M & ) ,  so that dim MyH, = n - d. 
By 3.6, dim(B* u E*) 5 n -  d - 1 and thus M* = MrH) u B* u E* has 
dimension n - d. The next to last statement follows from the inequality 
dim(B* u E*) 5 n - d - 1 and from 3.5 (see the proof of 3.7). Of course, 
the last statement follows from this, or directly from 3.7. I 

We shall need the following fact later in the section. 

3.9. Proposition Let K be a subgroup of G and suppose that M ( K )  has 
dimension k. Then 

Bk(G(ME)+ ,  m; Z,) # 0. 

Proof Let C = G(MK) which is just the union of all orbits of type less 
than or equal to type GIK. Let N = N(K) and consider the twisted product 
G x ME. This is a manifold since it is a bundle over GIN with fiber Mg. Let 

vz G x N M K - + C  

be the action map v [ g ,  x] = g(x) .  Now G x (MK n M ( E ) )  is an open sub- 
set of G x ME and y takes it homeomorphically onto M ( K )  by 11.5.9. Let 

V c G x N  (MK n M f g ) )  

be an open k-cell and let W be the component of G x N  MK containing 
V (so that W is a connected k-manifold). Let V ’  = v ( V )  be the home- 
omorphic image of Vin M ( K )  c C. The map y (which is proper) and the 
inclusions give a commutative diagram (where + denotes one-point com- 
pactification, as usual, and coefficients are in Z,) 

P ( C + ,  c+ - V’)  -+ kk( w+, w+ - V )  - 
I: 

@ . Bk(W+,Co) I 
Bk(C+ Y co) 

which shows that k k ( C + ,  co) # 0 as claimed. I 
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Remark For later reference let us note that the proof of 3.9 can easily be 
sharpened to yield the following further information. Suppose that A is a 
closed set containing G(ME) and that there exists a k-manifold U which is 
an open subset of A with U c A n M ( K ) ,  where k = dim M c K ) .  Then 
@(A+,  00; Z,) f 0. Moreover, if U is nonorientable, then @(A+,  00; Z) 
contains 2-torsion. 

Suppose that G(x) is an exceptional orbit and let S be a linear slice at x. 
If H c G, is a principal isotropy group for G, on S, then, by 3.2, H i s  just 
the ineffective part of G, on S and thus G,/H is a finite group acting ef- 
fectively on S. If Scz has codimension 1 in S, then G(x) will be called a spe- 
cial exceptional orbit. In this case, G,/H has order 2 and acts by reflection 
across the hyperplane SGz of S. Thus the set SE of points on special excep- 
tional orbits is open in E and has dimension d + dim S - 1 = d + (n - d )  
- 1 = n - 1. If x is on an exceptional orbit which is not special exceptional, 
then, for a slice S at x ,  G(S)(cz, = G(SGz) has dimension equal to dim G(x) 
+ d i m S c ~ < d + ( n - d - l ) = n - l .  Thusitfollows that 

(3.10) 
dim(E - SE) 5 n - 2, 

dim(E* - SE*) 5 n - d - 2. 

3.1 1. Proposition If M is orientable, then principal orbits are orientable. 
If M is orientable and the principal orbits are connected (so that all orbits 
are connected), then the special exceptional orbits are nonorientable. 

Proof If P = G/H is principal, then P has a product neighborhood in M 
which is orientable, and thus P must be orientable. If Q - G/K, K 3 H ,  
is special exceptional and G / H  is connected, then Q has a neighborhood of 
the form 

G XK V- ( G / H )  XK/H V 

and K / H  Z, reverses orientation on V. Since this neighborhood is 
orientable and since G/H is connected, K / H  must reverse the orientation 
of GIH. Hence G / K  = ( G / H ) / ( K / H )  is nonorientable. I 

The following result shows that SE is empty in most cases of interest. 

3.1 2. Theorem If H,(M;  Z,) = 0 and if a principal orbit is connected 
(and hence all orbits are connected), then there are no special exceptional 
orbits (i.e., dim E 5 n - 2). 
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Proof Poincar6 duality implies that kn-l(M+ , 00; Z,) = 0. Let K be 
the isotropy group of a point on a special exceptional orbit. Then M ( K )  
has dimension n- 1 and 3.9 shows that 

Bn-l(D+, co ; Z , )  # 0, 

where D = G(MK).  The exact sequence (mod 2) 

0 = @-'(M+, CO) -+ fin-'(D+, CO) -+ @(M+, D+) + gn(M+,  03) + 0 

of the triple ( M + ,  D + ,  m) then shows that 

H,,(M- D ;  Z,) - fin(M+, D,; Z , )  

has rank at least 2. Thus M - D is disconnected. Since the orbits are con- 
nected, this implies that M* - D* is disconnected. But the set U* c M* 
- D* of principal orbits is connected by 3.1, and is dense in M* (hence 
in M* - D*), so that M* - D* is connected; giving a contradiction. I 

Remark The main results of this section were proved, in more generality, 
in Montgomery, Samelson, and Zippin [I], Montgomery, Samelson, and 
Yang [I], Yang [2], and Montgomery and Yang [2]. Also see Montgomery 
PI. 

4. THEMANIFOLD PART OF M* 

In this section, as in the last, G will be a compact Lie group acting locally 
smoothly on an n-manifold M with M* connected, and d denotes the max- 
imum orbit dimension, so that dim M* = n - d. We shall first investigate 
the question of how closely M* resembles a manifold with boundary. Of 
course, M* need not be a manifold with boundary, the simplest example 
being the antipodal map in R3. However, we shall prove a useful elementary 
result stating that M* is a manifold with boundary outside of some closed 
set of codimension at least 3. 

4.1. Lemma If n - d 5 2, then M* is a manifold with boundary. 

Proof Put k = n - d, the codimension of the principal orbit (i.e., the 
dimension of the orbit space). One can analyze the local structure of M* 
by induction on k as follows. A linear tube in M has the form G x K  V 
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and (G x K  V)* = V*, which is the open cone over S* where S is the unit 
sphere in V. But dim M* = dim V* = dim S* + 1. If k = 0, then M* 
is discrete, and if M is a sphere, then M* is one or two points (admitting 
here the disconnected case). Thus when k = 1, M* has the local structure 
of the open cone over one or two points, and hence is a 1-manifold with 
boundary. When k = 1 and M is a sphere, then M* is a compact, connected 
1-manifold and hence is an arc or a circle. If k = 2, then M* has the local 
structure of an open cone over an arc or a circle, and hence is a 2-manifold 
with boundary. I 

4.2. Lemma Let K c G and let D be a component of M ~ K )  having di- 
mension n - d - 2 at least. Then M* is an (n - d)-manifold (possibly with 
boundary) in the neighborhood of any point of D. 

Proof It suffices to consider a linear tube G x K  V about an orbit cor- 
responding to a point of D. Since 

(G XK V),,) = G x g  V K =  (GIK) X VK 

we see that VK has dimension n - d - 2 at least. Also V* has dimension 
n - d. Let W be the normal plane to VK in V. Then V* rn W* x VK and 

dim W* = dim V* - dim VK 5 (n -  d ) -  ( n -  d -  2) = 2. 

By 4.1, W* is a manifold with boundary and hence (G x K  V)* = V* 
= W* x VK is also a manifold with boundary. I 

4.3. Theorem Let C* c M* be the union of all components of dimension 
less than or equal to n - d - 3 of M;Lg) for  all K c G. Then C* is a closed 
set, dim C* 5 n - d -  3,  and M *  - C* is an (n - d)-manifold with 
boundary. 

Proof By 3.6, C* is the union of the closures of these components and, 
by 3.4 and local finiteness of number of orbit types, this union is locally 
finite. Thus C* is closed. By 3.5, dim C* 5 n - d - 3. The complement of 
C* consists of points on components of M;CII, having dimension at least 
n - d - 2, so that the conclusion follows from 4.2. I 

It is of interest to ask when M* - C* is orientable. The following result 
shows that this is the case for most situations of interest. 
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4.4. Theorem If H l ( M ;  Z,) = 0 and if all orbits are connected, then 
(with the notation of 4.3) Hl(M* - C*; Z,) = 0 and M* - C* is orientable. 

Proof For some base point in M* - C*, consider the diagram (where 
C is the inverse image of C* in M) 

n l ( M -  C )  - H 1 ( M -  c; Z) 

I n# In* 
nl(M* - C*) - Hl(M* - c* ; Z). 

By II.6.3,n# is onto. The horizontal maps are onto by the Hurewicz Theo- 
rem. Thus n* is also onto. Since Hl(- ; Z) ---+ Hl(- ; Z,) is onto by the Uni- 

versa1 Coefficient Theorem (or by the sequence induced by 0 --+ Z --+ Z 
-+ Z, --+ 0) the same argument shows that H,(M - C; Z,) --+ Hl(M* -C*;  
Z,) is onto. Now dim C 5 d + (n - d - 3) = n - 3,  by the proof of 3.7. 
Thus PoincarC duality and the exact sequence of the triple ( M + ,  C + ,  a) 
show that 

2 

H1(M- c; Z,) - &-'(M+, c+; Z,) - @-1(M+, cm; Z,) - H1(M; Z,) = 0. 

Consequently, the homomorphic image H,(M* - C*; Z,) is also 0 as 
claimed. This implies the orientability of M* - C* as follows: If M* - C* 
were nonorientable, then nl(M* - C*) would have Z, as a quotient group 
and thus its abelianization Hl(M* - C*; Z) would have Z, as a quotient 
group. Thus, multiplication by 2 on Hl(M* - C*; Z) would not be onto, 
and the exact sequence 

Hl(M* - c*; z): Hl(M* - c*; Z) + Hl(M* - c*; Z,) 

would contradict the triviality of the group on the right. (Alternatively, 
Poincart duality mod 2 can be used to show that M* - C* is orientable.) I 

4.5. Corollary If H l ( M ;  Z,) = 0 and if all orbits are connected, then 
every orbit of (maximal) dimension d is orientable. 

Proof Note that M is orientable by the remarks at the end of the proof 
of 4.4. A principal orbit G / H  is orientable by 3.11. Let K 3 H and let 
Q - G/K be an orbit of dimension d. Then a linear tube about Q has the 
form 

G x g  V ( G / H )  X K / H  V 
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by 3.2. Since this tube is orientable, the finite group K / H  must preserve 
the orientation of (GIH) x V. If Q = ( G / H ) / ( K / H )  is nonorientable, then 
KIH reverses the orientation of GIH and hence of V. By 3.12 the complement 
of (G x g  V ) ( H )  = G xK(V&) has codimension at least 2, and the same 
must then be true of V - V(=) in V. Thus V(=) is open, connected, and dense 
in V and thus KIH reverses its orientation. Thus (G XK V ) ( H )  - V;C,, is 
nonorientable. However, this is an open subset of M* - C* which is orien- 
table by 4.4. I 

Remarks More general versions of 4.1 and 4.3 can be found in Bredon 
[l, 51. In the cases M = Rn or S", 4.5 was proved in Montgomery [5,6] by 
a somewhat different method, and 4.4 is similar to a theorem proved there. 

Examples Let G = S0(3), let H = S0(2), and let N = N(H) .  Then 
GIH = S2, GIN = P2 and NIH - 2,. Let N act on S2 via N -+ N / H  and 
the antipodal action of NIH on S2. Let 

M = G X N S2 = ( G / H )  X z, S2 S2 X z, S2 

(where Z, acts antipodally on both factors of S2 x S2). Then M is orien- 
table since Z, preserves orientation on S2 x S2,  but M* = S2/N - P2 is 
nonorientable. This shows that orientability of M is not enough for 4.4. 

Now let N act on S3 via N -+ NIH and the action of N / H  on S3 by re- 
flection across a 2-sphere. Put 

M = G XNS3 = ( G / H )  Xz, S3 S2 Xz, S3 

which is orientable. Also M* = S3/N = D3 is orientable. However, the 
orbits of G on M have the types GIH = S2 which is principal and GIN - P2 which is (special) exceptional. This shows that orientability of M 
and M* - C* is not enough for the conclusion of 4.5 in the presence of 
special exceptional orbits. If SE = 0 however, the proof of 4.5 shows 
that orientability of M and M* - C* is sufficient for the conclusion of 4.5. 

The next result shows that quite often M* is a manifold with boundary 
outside a set of codimension 4 rather than 3. 

4.6. Theorem Suppose that H , ( M ;  2,) = 0 and that all orbits are con- 
nected. Let C* be the union of all components of dimension less than or equal 
to n - d - 4 of M$) for  all K c G. Then C* is a closed set, dim C* 5 n 
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- d - 4, M* - C* is an orientable (n - d)-manifold with boundary and 
Hl(M* - c*; Z,) = 0. 

Proof Recall the proof of 4.3. We shall only show how to modify it to 
obtain the present improvement. Suppose first that we are given a locally 
smooth action on a sphere S with orbit space S* of dimension 2. Then by 
4.1, S* is a 2-manifold with boundary and, by 11.6.5, Hl(S*;Q) = 0. 
This implies that S* is either S2, D2, or P2. Recalling the proof of 4.2 we 
see that if M* - C* is not a manifold with boundary, then there is a point 
in it with a neighborhood homeomorphic to the product of the cone over P2 
with a euclidean space. Removal of a set of codimension 3 in this cannot 
alter the fact that it is nonorientable and this would contradict 4.4. I 

4.7. Corollary Suppose that d = n - 3,  that M is compact and simply 
connected and that all orbits are connected. Then M* is a simply connected 
3-manifold with or without boundary. I 

5. REDUCTION TO FINITE PRINCIPAL ISOTROPY GROUPS 

In this section we shall prove a theorem from Bredon [2, 51 which allows 
the reduction of certain questions about actions on spheres or euclidean 
space to the case in which the principal isotropy group is finite. 

We assume throughout that G is a compact Lie group acting locally 
smoothly on an n-manifold M with M* connected, and d denotes the 
maximum orbit dimension. 

First let us note the following technical fact. 

5.1. Lemma If K c G, then N(K) acts locally smoothly on M K .  

Proof Since N(K) acts locally smoothly on M by 1.1, we may as well 
assume that K is normal in G. If x is fixed by K and L = G, (so that K c L), 
then a linear tube about G(x) has the form G x V. Since K is normal, we 
have K[g, v] = [Kg, v] = [gK, v] = [g, Kv], and it follows that 

(G X L  V ) g  = G X L  ( V g )  

which is a linear tube about G(x) in MK. I 

The following theorem is our main result. 
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5.2. Theorem Let H be a principal isotropy group and let T be a maximal 
torus of H. Let MOT denote the union of those components of MT which in- 
tersect M,H, nontrivially. Then the natural map 

9,: MoT/N(T) + M / G  

is a homeomorphism and takes the set of principal orbits for N(T) on MOT 
onto the set of principal orbits for G on M .  

Proof Let N = N(T). A linear tube about a principal orbit has the form 
G x V - ( G / H )  x V and the fixed set of T on this is 

- x  V - -  x v  NH 
H N n H  

by the remarks in Chapter I, Section 5. Thus (N/(N n H ) )  x V is a linear 
tube for N on MOT. This shows that M&,/N = M,,,/G (which is connected, 
open, and dense in M*). The closure of M&, is contained in MOT and 9, 
maps this to a closed set containing M&) and hence onto M*. Also M&) 
is open in MOT and consists of N-orbits of type N/(N n H ) .  Since, by 
definition, MG, touches each component of MOT and since M&,/N is con- 
nected, it follows that MOTIN is connected. Also, N/(N n H )  is the prin- 
cipal orbit type for N on MOT. (In particular, each component of MOT has 
dimension m = n - d + dim N/(N n H )  = n - d + dim NIT.) If K 3 H 
is an isotropy group of the same rank as H,  so that T is also a maximal torus 
of K, then N is transitive on (G/K)T.  Hence QI is one-one on the set of all 
such orbits. 

Now let D c M be the set of points x for which G, has larger rank than 
does H. Then D is contained in the singular set B for G on M .  Also, if x E D 
n MOT, then G, n N contains a maximal torus of G, containing T (and 
hence has rank larger than that of H )  so that N(x) is singular for N on MOT. 

By 11.5.7, N has only finitely many orbits on each (G/K)T,  K 3 H. This 
means that q~ is finite to one and, as remarked above, QI is one-one on (MOT 

Since 9, has a natural extension to the one-point compactifications, 
it is proper, and hence closed. Thus to show that QI is a homeomorphism, 
it suffices to show that it is one-one. Let x* be in D* and let QI-~(x*) 
={xl, . . . , x k } ,  k > 1. Let u,, . . . , uk be pairwise disjoint neighbor- 
hoods of the x i  in MoT/N. Since QI is closed, there exists an open connected 
neighborhood V* of x* in M* such that y-l(V*) c U, b . . . u U,. 
Put Vi = ~ - l (  V*)  n U i .  Let T Z :  M + M* be the orbit map and let 

- D)/N + M* - D*. 
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V = n-l( V*).  Since D n MOT is in the singular set for N,  we see that each 
Vi - (DIN) is nonempty, so that u i ( V i  - ( D / N ) )  is disconnected. Since 
v is proper and one-one on MoT/N - DIN -+ M* - D*, it is a home- 
omorphism there. Thus V* - D* @ v-l(V* - D*) = u i (Vi  - (DIN) )  is 
disconnected. However, V* is connected and D n V is in the singular set 
for the action of G on V. But the set V&, of principal orbits in V is con- 
nected and dense in V*, and hence dense in V* - D'. Thus V* - D* 
is connected, a contradiction. Thus 

It remains to show that principal orbits correspond under e;. The discus- 
sion has already shown that'Q E MoT/N is principal when v(Q) E M* is 
principal. Suppose that Q is principal for N and consider v(Q) E M*. 
Then q(Q) = G(x)  for some point x and we may take x such that H occurs 
as an isotropy group H = Gv = Kv of K = G,  on a linear slice S at x .  Then 
T fixes the segment in S between x and y so that x E MOT and hence Q 
= N(x).  Also K / H  is principal for K on S so that K / H  is orientable by 3.1 1. 
Since Q is principal, N n H = N n K ,  and we must show that K = H. Now 

is a homeomorphism. 

( N n  K ) H  N n  K 
N n H  

- - = a point. ( K / f a T  = H 

If dim H = dim K ,  then (K/H)T = K / H ,  so that H = K. If dim K > dim H,  
then each component of KIH has positive dimension. Since the elements 
of prime order in Tare dense, there exists one, say t ,  not occurring in any 
of the (finite number of) proper isotropy subgroups of T on K/H. However, 
t then has the same fixed set as does Ton  KIH, namely one point, and this 
contradicts 2.3. (There are also other, more Lie group theoretic, proofs of 
this fact.) I 

Remark The singular orbits for N(T)  on MOT clearly correspond, under e;, 
to those orbits of G on M whose isotropy group has larger rank than does 
H. Thus y takes singular orbits into singular orbits. However, it may also 
take some exceptional orbits of N(T)  on MOT to singular orbits of G on M .  

Since T is the identity component of H n N,  we see that the induced 
act'on of NIT on MOT has finite principal isotropy group ( H  n N)/T .  

Example It is not generally true that MOT coincides with MT.  This is 
shown by the action of U(2) on CP2 = M given by the standard inclusion 
U(2) c U(3); that is, G = U(2) acts on the first two homogeneous coor- 
dinates of points z = (zo: zl: z2) of CP2. Taking C I zi l 2  = 1 as we may, 
we note that the orbits of G correspond exactly to I z2 I in [0, 11. That is, 
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- 
z H I z2 I induces a homeomorphism CPZ/G 1 [0, 11. The orbit I z2 I = 0 
is just CP' = S2 with isotropy group U(1) x U(1). The orbit I z, I = 1 is 
just a point. The orbits with 0 < 1 z, I < 1 are just 3-spheres with standard 
G = U(2) action and isotropy group U(1) x { I } .  The latter are the principal 
orbits and thus the principal isotropy group H = T = U(l) x {I} is its 
own maximal torus. Note that T has a circle of fixed points on each prin- 
cipal orbit S3 = U(2)/U(1), and it is easy to see that T has exactly two 
fixed points on the 2-sphere orbit I z, I = 0. Thus it is not hard to conclude 
(or to observe directly) that the fixed set of T on CP2 = M consists of a 
2-sphere (which is MOT) together with a disjoint point. Thus MT/N(T)  is 
an arc (homeomorphic to MIG) together with one extra point. 

Note, however, that if M = Sn or M = Rn (for example) then 111.10.10 
and 1.3 imply that MT is connected, so that MOT = MT in these cases. 

Example Suppose that G is connected and let G act on itself M = G 
by conjugation. The isotropy group of a point is its centralizer and this 
has maximal rank in G. Since there are points, called regular points, whose 
centralizer is a maximal torus, it follows that a principal isotropy group is 
a maximal torus T of G, and also that regular points are just points on prin- 
cipal orbits. Now MT is the centralizer of T and hence is just T itself, and 
N(T)/T is called the Weyl group of G and is effective on T. Since T = MT 
is connected, we have MOT = MT and thus 5.2 implies that if two elements 
of Tare  conjugate in G, then they are conjugate by an element of the Weyl 
group. Also 5.2 shows that a regular point of T is just a point with trivial 
isotropy group under the action of the Weyl group. Of course, this is a 
well-known fact about compact Lie groups and can, and should, be proved 
directly. (Note, however, that since the principal isotropy group, and hence 
all isotropy groups, have maximal rank in this example, most of the compli- 
cations in the proof of 5.2 are unnecessary for this result.) This example 
is mentioned here only to point out that 5.2 should be regarded as a gener- 
alization of this classical result. 

Recall that dim MC 5 dim(B* u E*)  9 n - d - 1.  Also, if T' is a 
maximal torus of G and the action is eflective, then an easy induction using 
111.10.12 and 111.10.2 (or standard representation theory) applied to the 
unit sphere in a linear slice about a fixed point of T', we see that dim MT' 
2 n - 2 rank T'. The following result, from Bredon [5], improves both 
of these inequalities (see 5.4 below) and illustrates the use of the reduction 
to finite principal isotropy groups. 
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5.3. Theorem Let H be the principal isotropy group of the locally smooth 
action of G on the n-manifold M with maximal orbit dimension d = dim G/H. 
Put r = rank G - rank H .  Let T' be a maximal torus of G. Then 

dim MT' 5 n - d - r. 

If M is a rational homology n-sphere, then this inequality also holds when 
MT' = 0, where dim MT' is taken to be -1. 

Proof We shall prove the inequality by induction on n = dim M. First 
we shall reduce the inequality to the case in which H is finite. Let x be a 
point of the component of MT' having the largest dimension. We can take 
H c G,  to be a principal isotropy group which occurs as an isotropy group 
of a point in a linear slice at x, and T a maximal torus of H .  Then x is in 
M&, so that the component of MT' containing x is contained in MOT. 
Let N = N(T). By applying the inductive assumption to the action of NIT 
on MOT we see that [since ( N  n H ) / T  is finite] 

dim MT' = dim(MoT)T"T 5 [n - d + dim(N/T)] - dim(N/T) - r 

= n - d - r  

as claimed. If MT' is empty and M is a rational homology sphere, then 
MT = MOT is also a rational homology sphere by 111.10.10 and the same 
remarks apply. 

Thus we may assume that H is finite and hence that d = dim G and r 
= rank G. First suppose that MT' # 0 and let x be a point in a component 
of MT' of maximal dimension. Let S be a linear slice at x and note that 
T' c G, so that rank G, = r. By the inductive assumption, applied to the 
unit sphere in S, we have 

dim ST' 5 [n - dim G(x)] - dim G, - rank G, = n - d - r. 

Let ns: S-+S/G, denote the orbit map and so on. If K has maximal rank, 
then N(T') is transitive on (G/fQT'. Thus 

ns(ST') - P ' / ( N ( T ' )  n G,)  

and, since N(T')/T' is finite, it follows that dim F' = dim ns(ST'). Similarly 
dim MT' = dim nM(MT'). Now nM(MT') consists exactly of those orbits 
whose isotropy group has rank r, and it follows that ns(ST') GS n ~ ~ ( ( G s ) ~ ' )  
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under the canonical homeomorphism S/G, = GS/G. Thus 

dim MT' = dim(GS)T' = dim Z ~ ~ ( ( G S ) ~ ' )  = dim nS(ST') 

= dim ST' 5 n- d- r 

as claimed. 
Now suppose that MT' = 0 and that M is a rational homology sphere. 

Then the case r = 1 is trivial and we may assume that r > 1 .  By 111.10.12 
(or as an easy consequence of 111.8.1) there exists a subtorus T" of T' of 
codimension 1 such that MT" # 0. Let x be a point of MT" and note that 
rank G, = r - 1 with T" a maximal torus. Let S be a linear slice at  x. 
Again nS(ST") - ST"/(N(T") n G,) has the same dimension as does ST". 
The inductive assumption applied to G, on the unit sphere in S gives 

dim 9" 5 [n - dim G(x)] - dim G, - ( r  - 1 )  = n - d- r + 1 .  

Again, since nG8((GS)T")consists exactly of those orbits in GS with isotropy 
group of rank r - 1 (= rank Gz), it is canonically homeomorphic to nS(ST"). 
Also 

Z ~ ~ ( ( G S ) ~ " )  - (GS)T"/N(T") 

and hence this has the same dimension as does MT"/N(T"). Thus 

dim MT"/N(T") = dim T C ~ ~ ( ( G S ) ~ " )  = dim ~~(9'') 

= dim ST" 5 n - d - r + 1. 

If k is the maximum orbit dimension for N(T") on MT", then 

dim MT" = dim (MT"/N(T")) + k 5 n - d - r + 1 + k. 
Thus by the inductive assumption applied to the action of N(T") 2 T' 
on MT" we have 

-1  = dim MT' 

= dim(MT")T' 5 (n - d-  r + 1 + k )  - k - 1 = n - d- r 

asclaimed. I 

5.4. Corollary If G is effective on G/H, then 

dim G/H 2 rank G + rank H. 
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Thus, i f  G acts effectively on M in the situation of 5.3, we have 

n - d -  r 5 n - 2rank G.  

Proof The second part is just a rewriting of the first inequality which 
holds since G always acts effectively on a principal orbit in an effective 
action. (Otherwise, there would be a normal subgroup leaving an open dense 
set stationary.) For the first inequality, we apply 5.3 to the action of the 
maximal torus T of H on G/H.  Since (G/H)T = N(T)H/H we have 

N ( T )  
N(T)  n H 

rank G - rank H 5 dim 

= dim (G/H)T 

5 dim G / H  - dim T - rank T 

= dim G / H  - 2 rank H.  I 

6. ACTIONS ON Sn WITH ONE ORBIT TYPE 

We shall now consider the case of an action of a compact Lie group 
G on a sphere having precisely one type of orbit. Although we shall assume 
local smoothness, it is used only minimally and can easily be dispensed 
with. Our immediate use (in the next section) of the results in this 
section will be in the case of orthogonal actions and in that case the 
proof simplifies somewhat. For this reason we shall first give the proof 
of the following result in the orthogonal case and then consider the modifi- 
cations necessary for the general case. 

6.1. Theorem Let G be a compact connected Lie group acting effectively 
and locally smoothly on an n-manifold M which is a simply connected rational 
homology n-sphere. Assume that there is precisely one orbit type. Then G is 
either transitive on M or G is the circle group S', the 3-sphere group S3, or 
SO(3) and acts freely on M. If M is also a mod 2 homology n-sphere, then 
G # SO(3)  in the nontransitive case. 

Proof As noted above, we shall first treat the case in which G acts or- 
thogonally on M = Sn and we shall use S for M in this case for clarity. 
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Suppose that the orbits have type G/H and let N = N(H) and K = N/H. 
By 11.5.10 and 11.5.1 1, SHIN - S/G = S* and SH -+ S* is just the principal 
K-bundle associated with the (G/H)-bundle S -+ S*. Since G/H is connected 
and since S is simply connected, we see from the homotopy sequence of 
SH - S* that K is connected. Since K acts freely on the sphere SHY it is 
either trivial, S1, or S3 by 111.8.5. The free actions of K on G/H and on SE 
give a free (K x K)-action on (GIH) x SH. The orbit space of the diagonal 
subgroup is just (G/H) xg SH - S (by 11.5.9). Thus the inclusion of the 
(diagonal) K-orbits in the (K x K)-orbits gives a map 

9: S +  ((G/H)/K) x (SH/K) = GIN x S* 

which is clearly a fiber bundle projection with fiber K x K = K and struc- 
ture group K x K (see Chapter 11, Exercise 7). If K is trivial, then S - G/N 
x S*, which implies that G = N = H. If K is S1, then a standard argument 
using the mod2 Gysin sequence of shows that the cohomology ring 
H*(G/N x S*; Z,) is generated by one element u of degree 2; that is, 
1, u, u2, . . . , ur are the nonzero elements of H*(GIN x S*; Z,) and 
u7f1 = 0 (see Spanier [l,  p. 2641). The Kunneth Theorem then implies that 
(with Z, coefficients) 

=(GIN x S*)  - [W(G/N) @ Ho(S*)] @ [Ho(G/N) @ H2(S*)] 

P ( G / N )  0 H2(S*), 

where the summands are induced by the projections of GIN x S* to its 
factors. If W(G/N) # 0, then u is in the image of H2(G/N) + H2(G/N x S*). 
However, then u7 is also in this image (in degree 2r) which shows that 
dim GIN = dim(G/N x S*). Thus S* must be a point and G is transitive 
on S. If G is not transitive, then the opposite argument shows that GIN 
is a point. Thus G = Nand  H, being normal and hence an isotropy group 
of every point, is trivial. Hence G = K = S1. The case K = S3 is exactly 
the same with u of degree 4. 

This completes the orthogonal case and we now consider the general 
case. In this case, MH need not be a sphere, or even connected, so that we 
must give another argument. Thus we shall first consider MT instead, 
where T is a maximal torus of H. Now N(T)/T has one type of orbit on 
MT by 5.2 and hence has finite isotropy groups. From 111.10.12 it follows 
that N(T)/T must have rank 0 or 1. That is, either rank G = rank H or 
rank G = 1 + rank H, and it follows that K = N(H)/H has rank 1 or 
is finite. If K is finite, then MH is a covering space of M*. Since M* is simply 
connected by 11.6.3, a component of MH is a cross section for the orbit map 
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M +  M*. However, then H*(M*) would be a direct summand of H*(M) ,  
showing that dim M* = dim M .  Thus K = N(H) /H has rank 1. Let MIH be 
a component of MH and let Kl be that subgroup of K preserving it. Then 
MIH/Kl - MH/K = M* (since this is connected). Let Nl be the inverse 
image of Kl in N = N(H) .  Then the map q~ above can be modified as 

y :  M + G / N l  x M* 

which is a bundle with fiber Kl . Now since M* - MIH/Kl is simply connec- 
ted and MIH is connected, Kl is connected. Since Kl has rank 1, Kl must be 
S', S3, or SO(3) (which is a rational homology 3-sphere). The homotopy 
sequence of the fibering y shows that GIN, x M* is simply connected. Thus 
GIN, and M* are orientable. Then the Gysin sequence of y with rational 
coefficients can be used to show that H*(G/Nl x M * ;  Q )  is generated by 
one element u as a ring. The same considerations as in the orthogonal case 
now imply that G = Nl and hence that H is trivial and G = Kl is S', S3, 
or SO(3). If M is a mod 2 homology sphere, then G # SO(3) since SO(3) 
contains Z, @ Z, which cannot act freely on M by 111.8.1. 

Remarks This theorem is due to Borel [5] (with somewhat weaker hypoth- 
eses). There is a generalization by Conner [7] (also see Borel [5]) in which 
the assumption of one type of orbit is weakened to the assumption that all 
orbits have the same dimension (i.e., B = 0). The conclusion is also weaker 
in that it can only be asserted that all isotropy groups are finite. The proof 
of this generalization seems to require the use of considerably deeper re- 
sults from algebraic topology, although it is quite close to the proof given 
for 6.1, and hence we shall not give it here. Another proof of Conner's 
result, which proves it without the assumption of simple connectivity, can 
be found in Bredon [6]. Even though the latter proof is completely different 
from Conner's proof and is conceptually simple (being in the spirit of 5.2), 
it is quite involved and also makes use of some deep results beyond our 
present scope. 

We shall now show how to remove the connectedness condition from 6.1. 
Note that the following result also essentially generalizes 111.8.5. 

6.2. Theorem Let the compact Lie group G (possibly disconnected) act 
effectively and locally smoothly on Sn. Assume that dim G > 0 and that there 
is precisely one orbit type. Then either G is transitive on Sn or G acts freely 
on S". (Hence, in the latter case, G is either S1, S3, or the normalizer N(S1)  
ofS1 in S3.) 
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Proof Put M = Sn. Assume that the action is not transitive. In view of 
111.8.5 it suffices to prove that G acts freely. Let Go be the identity component 
of G. Let H be an isotropy group of G. A tube about any orbit has the form 
G/H X V. Since Go/(Go n H )  x Vis open in this, it is a tube for the action 
of Go on M .  Thus Go n His the principal isotropy group for the action of 
Go. For any g in G, Go n (gHg-l) is also principal for Go for the same reason, 
and hence it is conjugate, in Go ,  to Go n H .  Thus Go acts with one type of 
orbit Go/(Go n H )  and, by 6.1, Go n H = { e } .  Similarly, GoH is a sub- 
group of G and (GoH/H) x V is a tube for the action of GoH. Thus remarks 
similar to those above show that GoH acts with one type of orbit GoH/H - Go - S1 or S3. Since we need only show that H is trivial it suffices to 
consider the case G = GoH, which we now assume. 

Now G/H rn S1 or S3 and M* is (now) simply connected by 11.6.3. Thus 
the Gysin sequence of the spherical fibration M -+ M* shows that H*(M*)  
is generated as a ring by an element u of degree 2 or 4 (according as G/H 
= S1 or S3). Let p be any prime dividing ord H and let P be a p-Sylow sub- 
group of H. (We note here that if the action is orthogonal, then we can take 
H rather than P in the following argument.) The Sylow Theorems imply 
easily that 

and this must be a mod p homology sphere of dimension 0, 1, 2, or 3 in- 
side G/H = S1 or S3. It follows that N(P) / (N(P)  n H )  - - Si for some 
O S i I 3 .  Now 

is a bundle with fiber N(P) / (N(P)  n H )  and its total space M p  is a mod p 
homology sphere. Since M* is not a point, MP is connected. Since M* 
is simply connected, N(P) / (N(P)  n H )  is connected. Thus N ( P )  n Go is 
transitive on N(P) / (N(P)  n H )  and, since H n Go = { e } ,  we conclude that 
N(P)  n Go = N(P) / (N(P)  n H )  is either S1 or S3 (since it is a group). It 
also follows that M p  is a principal N ( P )  n G,-bundle over M*. Now 
N ( P )  n Go must be S1 when Go - G/H is S' and N ( P )  n Go is either S' or 
S3 when Go rn G/H is S3. Suppose that G/H is S3 and that N ( P )  n Go is 
S1. Then the mod p Gysin sequence of the N ( P )  n Go-bundle M p  + M* 
would show that H2(M*;  Z,) # 0 contrary to the previous remarks using 
the Gysin sequence of M + M*.  Thus we conclude that N ( P )  n Go = Go; 
that is, Go c N(P) .  However, a connected group cannot act nontrivially 
by automorphisms on a finite group. Thus each element of Go commutes 
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with every element of P, that is, P is contained in the centralizer Z of Go.  
Since 2 n H contains every Sylow subgroup of H, it has the same order as 
does H, and hence equals H. Thus H commutes with Go and hence H i s  
normal in GoH = G. Since then His the isotropy group of each point of M 
we conclude that H is trivial, as desired. I 

Of course 6.2 also holds when G is jni te .  That is, if a finite group G acts 
on a sphere with only one type of orbit, then it acts freely. However, this is 
trivial in this case, since the principal isotropy group of ajn i te  group action 
is trivial (see 3.2). 

6.3. Corollary Suppose that G is a compact Lie group acting locally 
smoothly on M. Let x E M and assume that there are precisely two types of 
orbits in some neighborhood of G(x). Let y be a point on a principal orbit 
in a linear slice V at x. Put K = G ,  and H = G,. Then one of the following 
possibilities must occur; 

(i) K is transitive on the unit sphere (homeomorphic to KIH) in the or- 
thogonal complement to VK in V and M* is a manifold with boundary M&) 
near x*. 

(ii) H is normal in K and is the inefSective part of K on V. Also, KIH is 
either finite, S1, S3, or the normalizer of S1 in S3. 

Moreover, the set of points x in M which satisfy the hypothesis is open and 
dense in B v E. 

Proof By 3.2, (G X K  V ) ( K )  = G X K  ( V K )  and (G X K  V ) ( H )  = G xK(V(H))  
and, by assumption, these fill out G(V). Hence V = VK u V,,, , which 
means that K has only two types of orbits on V, one type consisting of fixed 
points. If W is the orthogonal complement to VK in V, then K acts with 
one type ( K / H )  of orbit on the unit sphere in W. Thus 6.2 implies that either 
(i) or (ii) must hold. Clearly, the set of points x in M which satisfy the hy- 
pothesis is just the set of those points of B u E whose orbit type is locally 
maximal (in B u E).  Since the number of orbit types is locally finite, the 
set of such points is clearly open and dense in B u E. I 

7. COMPONENTS OF B u E 

In this section we shall apply 5.2 to obtain some results on the set B u E 
of nonprincipal orbits of a locally smooth action on euclidean space Rn. 
Our first result states that if a stationary point exists, then B u E is con- 
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nected. This is also shown to be the case when the principal isotropy group 
does not have maximal rank in G. The most general conditions under which 
such a result holds are not known, but it does not always hold, as we 
shall note below. We shall also study the question of whether B u E can 
have a compact component. We shall show that such a component is a 
single orbit. Moreover, if this orbit is singular, then it is a stationary point 
and G acts freely outside it when dim M* > 1. 

As usual, we assume throughout that M is an n-manifold on which the 
compact Lie group G acts locally smoothly with maximum orbit dimen- 
sion d. 

We shall need the following lemma. 

7.1. Lemma Let G be a compact Lie group and T’ a maximal torus of C. 
I f P  c G is any p-group, then P is conjugate to a subgroup of N(T’) .  

Proof Put N = N(T’).  Consider (G/N)T’. If T‘gN = gN, then g-lT‘g c N 
which implies that g is in N since T‘ is just the identity component of N.  
Thus (G/N)T’ = N / N  is a point. By 111.10.9 we conclude that x ( G / N )  = 1. 
(We remark that, in fact, GIN is acyclic over the rationals.) Now X ( ( G / N ) ~ )  
= x ( G / N )  = 1 (modulo p )  and hence ( G / N ) p  # 0, which is equivalent 
to the statement that P is conjugate to a subgroup of N.  I 

7.2. Theorem Let M be acyclic over the integers (e.g., M = Rn) and 
assume either that a stationary point exists for  G on M or that the principal 
isotropy subgroup has nonmaximal rank in G .  Then B u E is connected. 

Proof Let H be a principal isotropy group and assume that rank H 
< rank G.  Let T be a maximal torus of H and T‘  2 T, a maximal torus of 
G. Consider MT’ which is acyclic, and hence connected, and is contained in 
B. Note that G(MT’)  consists exactly of points of M whose isotropy group 
has maximal rank. However, if Go is the identity component of G, Go(MT‘) 
also consists exactly of these points. Hence G(MT’)  = Go(MT’) is connected. 
Now suppose that the theorem is true when His  finite. Then by 5.2 we would 
deduce that ( B  u E )  n MT is connected. Thus 

g [ ( B  u E )  n MT] u G(MT’) 

would be connected for each g in G. The union of these over all g is just 
B u E u G(MT’)  = B u E (by 5.2) and hence B u E is connected as 
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claimed. Thus it suffices to prove the case in which H i s  finite. In this case, 
suppose first that x E B. Then G, contains a circle subgroup S and this 
is contained in some maximal torus T" of G. Then M s  2 MT" and Ms is 
connected. Then Ms u G(MT') = Ms u G(MT") is a connected subset 
of B containing x and G(MT'). Now suppose that x E E so that G,  is finite. 
Let P be a Sylow p-group in G, whose order does not divide the order of 
H.  Then P is not conjugate to a subgroup of H so that M p  c B u E. 
Now P c N(T") for some maximal torus T" of G by 7.1. Thus MT" is 
invariant under N(T") and hence under P. By 111.7.11 (with A = (3 and 
n = 0) we have that (MT")P = MT" n M p  is nonempty, and also M p  is 
connected. Since G(MT") = G(MT') it follows that M p  u G(MT') is a con- 
nected subset of B u E containing x and G(MT').  It follows that every 
component of B u E contains the connected subset G(MT') and hence 
that B u E is connected. 

The case in which a stationary point x,, exists (but H may have maximal 
rank) can be proved in exactly the same way, but somewhat more easily, 
by replacing G(MT') by xo. I 

Remark This result does not hold without the existence of a stationary 
point when G is finite. In fact, consider the example (1.8.3) of an action of 
Z, = Z, @ Z, on M = Rn with no stationary points. By the Smith Theorem 
111.7.11, MZs and Mz3 are both nonempty. They are also disjoint, and their 
union is precisely the set of nonprincipal orbits. However, it does seem rea- 
sonable to expect that if stationary points do not exist, then B u E can have 
no compact components. The following theorem is a partial result in this 
direction. (The case d = n - 1 is omitted from the following theorem for 
technical convenience. In Section 8 we shall analyze this case completely.) 

7.3. Theorem Let M be acyclic over the integers and suppose that d < 
n - 1. Let C be a compact component of B u E. Then C consists of exactly one 
orbit G(x )  and rank G, = rank G. If G(x )  is singular (e.g., if G has larger 
rank than that of the principal isotropy group), then x is a stationary point, 
G acts freely outside x ,  and G is isomorphic to S', to S3, or to the normalizer 
of S1 in S3  (assuming that G acts effectively). 

Proof Let x be in C. We may assume that there are precisely two types of 
orbits near G(x) since, by 6.3, such points are dense in B u E and hence 
in C.  Let K = G, and let H c K be a principal isotropy group for K on 
a slice at x (and hence for G on M ) .  Let T be a maximal torus of H .  We may 
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assume that there are precisely two types of orbits of N(T)  near N(T)(x)  
(by passing to a nearby point if necessary). By 5.2, to show that C consists 
of exactly one G-orbit, it suffices to show that C n MT consists of exactly 
one N(T)-orbit, and hence it suffices to consider the case in which H is 
finite (by 1.5). This case also clearly suffices to prove that rank K = rank G. 

If H i s  finite and dim K > 0, consider MT', where T' is a maximal torus 
of K. Since MT' is connected and does not touch principal orbits, it is 
contained in C, and hence is compact. Since MT' is acyclic, it consists 
of exactly one point. However, orbits in C near G ( x )  have type C / K  and 
hence contain fixed points of T'. Thus C = G(x).  Since 

N(T') (G/K)T' = N(T')K - - 
N(T') n K 

is just one point and since N(T' )  contains a maximal torus of G,  we also 
conclude that K has maximal rank in G (and that it contains N(T')  in 
this case). 

Now suppose that H and K are both finite. Let P be a p-Sylow subgroup 
in K whose order does not divide ord H .  Just as above, we see that C = G(x)  
and ( G / K ) p  consists of one point. If dim G > 0, then the euler characteristic 
of G/K is zero, since that of its covering space G is zero. Thus 

0 = x(G/K) = x ( ( G / K ) ~ )  = 1 (modp) 

gives a contradiction. Thus G must be finite, showing again that rank K 
= rank G. 

This completes the proof that C = G(x) and that K = G, has maximal 
rank in G.  Now suppose that G(x) is singular. Let V be a linear slice at  x. 
Then, by 6.3, there are the following two possibilities : 

(i) K is transitive on the unit sphere in V. 
(ii) H is normal in K and acts trivially on V. Also, KJH acts freely on 

V -  {x} and K / H  a S1, S3, or the normalizer of S1 in S3 (since dim K / H  
> 0). 

In case (i), V* has dimension 1, so that dim M* = 1 also. Thus n - d = 1, 
which is the case we have excluded. Thus case (ii) holds and hence rank G 
= rank K = 1 + rank H. 

Suppose that x is not stationary and that rank G > I .  Consider the ac- 
tion of a maximal torus T' of K (and hence of G) on G/K. Its fixed set is 
N(T')/(N(T') n K ) ,  which is finite. By looking at  a sphere about a fixed 
point and applying 111.10.12 we see that there exists a subtorus Tl of T' of 
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codimension 1, such that dim(G/K)T1 > 0. However, then MT1 is an acyclic 
manifold of positive dimension, hence noncompact. Since MT1 is con- 
nected, it must touch a principal orbit near G(x). This means that Tl is 
conjugate to the maximal torus T of H, and we may as well take Tl = T. 
Thus 

dim(G/K)T > 0. 

By 5.2, N(T)  is transitive on (G/K)T. Since dimN(T)(x) > 0, x is not sta- 
tionary for the action of N(T)/T on Mp.  Since rank K = 1 + rank H, x 
is also singular for this action. Thus to show that x is stationary, it suffices 
to consider the case in which H is finite. If x is stationary for the identity 
component Go of G, then it is the unique such point, since x is the unique 
fixed point of T'. Since G permutes the fixed points of Go it would follow 
that G would have to leave x stationary. Thus it suffices to consider the case 
in which G is connected in order to show that x is stationary. 

Thus suppose that H i s  finite and that G is connected (and hence rank G 
= 1 = rank K). Supposing that x is not fixed, and hence that K # G, we 
must then have that G = S3 or G = SO(3). Since (G/K)T' is one point, 
K 3 N(T'), and hence K = N(T'). If G = S3, consider its center L = (1, 
- I }  c K. Then (G/K)L = G/K 25 P2. Since ML is mod 2 acyclic, this 
implies that ML must touch a principal orbit near G(x). However, then 
L c H ,  which implies that L acts trivially on M, since L is normal in G. 
Thus G, effectively, must be S0(3), K = N(T'), and T' = SO(2). If k is 
in the component K - T' of K, and if t is in T', then kt-lk-l = t .  Thus 
tkt-I = t2k, which implies that T' acts transitively by conjugation on the 
circle K - T'. Thus the normal finite subgroup H c K must be contained 
in T'. However, K / H  is then easily seen to be isomorphic to N(T')and this 
is not isomorphic to the normalizer of S1 in S3. (For example, it contains 
Z2 @ Z, whereas the normalizer of S1 in S3 does not.) Thus the hypothesis 
that x is not stationary is untenable. 

By 6.2, we now know that G = K is S1, Ss, or the normalizer of S' in S3, 
and it acts freely outside x locally near x. It remains to show that this is 
true globally; that is, that all other orbits are principal; but this now fol- 
lows from 7.2. I 

We shall now Iist some unsolved problems which have a vague connection 
with the material in this section. These problems are all interrelated and seem 
to be of a rather deep nature. Let G denote a compact Lie group (possibly 
finite). The problems are of interest even for the case of cyclic G (but not 
of prime power order). 
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Problem 7 If G acts on the disk D" with the origin as a stationarypoint, 
then for H # G with DYE) # 0, is Sy& # 0? Is this the case when the 
action on the boundary Sn-l is orthogonal? 

Problem 2 If G acts on Dn and if F(G, D") c intDn, does F(G,Dn) 
contain at most one point? 

Problem 3 If G acts on Sn x I ,  then can the set F of stationary points 
touch S" x (0) without also touching S" x {l}? Can this happen when 
the action on both ends is orthogonal? (Note that if the latter can happen, 
then there would exist an action on Sn+l such that F(G, Snfl) has components 
of unequal dimension.) 

Problem 4 (Due to Raymond) Let G act on Rn with a stationary point 
x. If R&) # 0, must x be in the closure of R&)? 

8. ACTIONS WITH ORBITS OF CODIMENSION 1 OR 2 

In this section we shall consider locally smooth actions on a connected 
n-manifold M with principal orbits of codimension 1 or 2 ;  that is, with 
orbit space of dimension 1 or 2.  We shall show that such actions on euclidean 
space are equivalent to orthogonal actions. 

Let us first discuss the case in which the maximal orbit dimension d is 
n - 1. Then, by 4.1, M* is a I-manifold, possibly with boundary. The space 
U* of principal orbits is open, connected, and dense and U* must also be 
connected locally in M* (by restricting one's attention to the part of M over 
an open connected subset of M*). Thus U* must consist exactly of the in- 
terior of the connected I-manifold M* with boundary. 

8.1. Theorem Suppose that M is noncompact and d = n - 1. If every 
orbit is principal, then M - G / H  x R with trivial action on R. Otherwise, 
M is equivalent to G x V, where V is a euclidean space and K acts orthog- 
onally on V and transitively on the unit sphere in V. I f M  is euclidean space, 
then K = G and M - V. 

Proof By the above remarks, M* - R iff every orbit is principal. In this 
case M is a bundle over R with fiber G / H .  Since such a bundle must be trivial, 
the first case follows. Otherwise, M* must be a ray [0, co) and only the end 
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point is nonprincipal. A linear tube about the nonprincipal orbit has the 
form G x V and, since V* is 1-dimensional, K is transitive on the spheres 
in V about the origin. Since M* is conical with vertex being this non- 
principal orbit, 11.8.5 implies that M is equivalent to this tube. Now 
G x V, so that if M is a euclidean space 
(or just mod 2 acyclic), then G/K must be a point. I 

(0 )  - G/K is a retract of G x 

Remark Suppose that we are in the second case of 8.1 and let D be the 
unit disk in V. Then the boundary of D is an orbit of K ;  say of type K/H. 
Then G x D is a disk bundle over G/K and the total space of the bound- 
ing sphere bundle is G x (KIH) - G/H. The projection G/H+ G/K 
in this bundle is just the canonical equivariant map. This shows that G x D 
is just the mapping cylinder of the equivariant map G/H -+ G/K. 

8.2. Theorem Suppose that M is compact and d = n - 1. If every orbit 
is principal, then M is a GIH-bundle over M* - S1 with structure group 
N(H) /H.  Otherwise, there are two nonprincipal orbits of types G/Ki ,  i = 0,1, 
say, with Ki 3 H ( H  being the principal isotropy group). Moreover, the Ki 
may be chosen so that M is equivalent to the union of the two mappingcyl- 
inders of G/H -+ G/Ki ,  i = 0,l. 

Proof The first case is dear and coincides with the case M* - S1. Other- 
wise, M* = [0,1]. In this case, let G/Ki be the typecorresponding to i = 0,l 
in M* = [0,1]. The part of M over [0,1) satisfies 8.1 and it follows easily 
from the remark following 8.1, that the part of M over [0,9] is equivalent to 
a mapping cylinder Mfo off,: G/H+ GIK,. Similarly the part of M over 
[&, 11 is equivalent to a mapping cylinder M,, of fi : G/H + G/K, . Thus 
M is equivalent to 

MI, u, Mfl 

where cp: G/H + G/H is some equivalence. Now cp must be right translation 
h H s H :  g H  e gn-lH by some element n of N ( H ) ;  see 1.4.3. Put K,' = n-lK,n 
3 H and definef,' by commutativity of the diagram 

G/H - G/Kl' 

I Rn I fl 

,=R, 

G/H - G/K, 

(Recall that the vertical map on the right is gK,' H gK,'n-' = gn-lK,. ) 
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- - 
This gives an equivalence y :  Mf; + Mfl which equals q~ on the top face 
G/H. Thus 

M - Mfo u, Mr, - Mfo u Mf;  

and we obtain the desired result upon replacing Kl by its conjugate Kl‘. I 

Now we shall turn to the case d = n - 2. If V is a linear slice at x in M 
and S is the unit sphere in V, then, near x, M* is the open cone over S*. 
Thus the orbit structure is “locally conical.” Note that when d = n - 2 
and G(x) is singular, then dim S > 1 so that S* must be an arc (since S 
does not fiber over a circle). On the other hand, if G(x) is exceptional, 
then S is a circle and G, (effectively) acts as either a cyclic group of rotations 
or a dyhedral group (the symmetry group of a regular polygon), since 
these are precisely the finite subgroups of O(2). If G, acts cyclically on the 
circle S, then S* is a circle. Otherwise S* is an arc and it is clear that x is in 
the closure of SE. Thus we have the following proposition. 

8.3. Proposition If d = n - 2,  then the boundary of the 2-manifold 

M* consists exactly of B* u Z*. I 

Let C* denote the set of those points x* E dM* such that the type of 
orbits in dM* near x* is not constant. Since the orbit structure is locally 
conical, we see that C* is discrete. 

8.4. Lemma If x* E C* - %*, then the dimension of the orbit x* is 
strictly smaller than that of any other nearby orbit. 

Proof By passing to a slice we may as well assume that x is a stationary 
point and that M is euclidean space with orthogonal G-action. Then let 
Go be the identity component of G. If the lemma is false, then MGo is 1- 
dimensional and M = MGo x W, where W is the orthogonal complement 
to MGo at x, with Go transitive on the unit sphere in W. Moreover, GIG, 
must act nontrivially on MGo. However, this clearly implies that W consists 
of special exceptional orbits (outside of the origin) of G on M ,  contrary 
to the assumption. I 

We now come to the main result of this section. 
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8.5. Theorem Suppose that d = n - 2 and that M is acyclic over the 
integers. Then M - Rn and the action is equivalent to an orthogonal action. 

Proof Let H be a principal isotropy group. We first claim that B* u E* 
is connected. If rank H < rank G, then this follows from 7.2. When rank H 
= rank G it suffices, by 1.5 and 5.2, to prove it in the case n = 2 and G 
finite. In this case M - R2 by known characterizations of the plane, and we 
shall assume such results (see Wilder [I]). Suppose that a* and b* in M* 
are nonprincipal and let u be an arc from a* to b* whose interior lies in the 
space U* of principal orbits. (In this case, recall that “principal” means 
trivial isotropy group.) If n is the orbit map, then w = n-l(u) is a graph 
in the 2-plane M with vertices being the elements of the orbits a* and b*. 
Since a* and b* are nonprincipal, it follows that there are at least two edges 
of w emanating out of each vertex. Thus w must contain asimple closed curve. 
It follows that w separates M and that at least one component of M - w 
is bounded. Since G permutes the bounded components of M - w, it 
follows that the union V of the bounded components and the union W 
of the unbounded components of M - w are saturated sets. Thus M* - u 
= V* u W* and V* n W* = 0. Thus u separates M*. Since theinterior 
of u lies in the interior of M* we conclude that both a* and b* must be 
boundary points. However, V* u u is compact and this clearly implies 
that a* and b* lie on the same boundary component of M*. Since dM* 
consists of nonprincipal orbits, this proves our contention. 

We shall now continue the proof for the case in which G is connected, 
and shall later show how to remove this restriction. 

When G is connected we have H,(M*; Z,) = 0 by 4.4. Also M* either 
has no boundary or has precisely one boundary component. This is enough 
to conclude from classical facts about 2-manifolds, that M* is homeomor- 
phic to either the plane or the half plane. We shall assume this. 

If M* is the plane, then, by the remarks above, it is clear that B* u E* 
consists of exactly one orbit, say of type G/K.  In this case, the orbit structure 
of M* is conical with vertex being this orbit, and it follows from 11.8.5 that 
M - G x K  V whence G = K acting orthogonally. By 8.3, this cannot 
happen when G is connected. 

Thus M* is the half plane (y 2 0 in the x-y plane) and B* u E* consists 
of the boundary y = 0. By 8.3 and 3.12 we see that E* = 0. 

Again, it suffices to show that M* has conical orbit structure. That is, 
we must show that B* contains a point a* such that the orbit type is constant 
on each of the two components of B* - {a*}. 

Recall that C* c B* consists of those points near which the orbit type 
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on B* is not constant. Let (T be an arc in B* whose end points a* and b* are 
in C* and whose interior does not meet C*. Let G / K  be the type of orbits 
corresponding to interior points of (T, let k = dim G/K,  put A = n-l(a), 
put d A  = n-l(a*) u n-l(b*), and let A' = A - dA.  By 8.4 we have that 
dim dA < k. Now A' is a connected (k + 1)-manifold so that 

IP+l(A,  d A ;  Z,) = z,. 

Since dim d A  5 k - 1 we have the diagram (coefficients in Z,) 

@+l(B+, B+ - A') -?-, fik+l(B+, co) 

- 
t Hk+l(A)  

I =  
@+,(A, a A )  - 

where all maps are induced by inclusions. [Since A is compact we substitute A 
for ( A + ,  co).] Let p A  E @+l(B+, 00) denote the image of the nontrivial 
class in kk+'(B+, B,  - A') under j*. Then id*(pA) # 0. 

If A, is the inverse image of another such arc in B*, then 

kk+'(B+, B+ - A') - Rk+l(B+, ~ 0 )  

if, 

0 = Rk+l(A,, A , )  - Bk+'(A,) 
I I 

shows that i&(,uA) = 0. Thus the elements p A  are all distinct. 
Now, by Lefschetz duality (with q 5 n - 2) 

Bg(B+, 00) I;iP+l(M+, B+) = Hn-q-l(M - B)  = H,+q-l(G/IY) 

since M - B fibers over M* - B* - R2 with fiber G / H  and hence has GIH 
as a deformation retract. Since H,(G/H; Z,) is finitely generated, it now 
follows that C* is finite. 

Since C* is finite, there is an arc (or a point) t in B* whose end points 
are in C* and which contains C*. 

Let D be a 2-cell neighborhood of t in M*; see Figure IV-1. Then D 
is a strong deformation retract of M* by a deformation which preserves 
the orbit structure. By the Covering Homotopy Theorem 11.7.3, n-lD is 
a deformation retract of M and hence is acyclic. Since, for varying D, the 
n-lD form a fundamental neighborhood system of n-l(t), it follows that 
@(n-l(t); Z,) = 0 for q > 0. By the above remarks, this implies that C* 
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is either a point or is empty. Thus the orbit structure of M* is conical and 
the theorem follows from 11.8.5. 

We still must treat the case for which G is disconnected. Consider the 
action of G/Go on MIGO. Since this preserves the local conical structure of 
M/Go and since the actions of a finite group on arcs and circles are easily 

\l*+ 
FIGURE IV-1 

analyzed (see Exercise 3), we see that this action is locally smooth. First, 
let us assume that Go acts nontrivially, so that M/Go is a halfplane. On the 
boundary of MIGO, GIGo must effectively be either trivial or a reflection. 
If an element g E G leaves B(M/Go) fixed, then it must leave all of M/Go 
fixed by an easy argument using local smoothness (or by extending it triv- 
ially to the other halfplane and using Newman's Theorem 111.9.5). Thus 
GIGo is effectively either trivial or Z, on MIGO. If this action is nontrivial, 
then there is a unique fixed point on d(M/Go).  (Note that MGo is either a 
point or is all of B(M/Go) and, in the first case, G must preserve this point.) 
Local smoothness shows that (MIGO)" is then a 1-manifold with boundary 
being one point, its intersection with &MIGO). Since M/G = (M/Go)/(G/Go) 
is simply connected by 11.6.3, it is a halfplane and its boundary is clearly 
the union of two rays, one the orbit space of B(M/G,) under GIG,, and the 
other, the fixed set of GIGo on M/Go (either by the Smith Theorems or by 
the fact that B* u E* is connected). From this it is again clear that the orbit 
structure of M/G is conical, which implies the desired result. This is also 
clear when GIGo acts trivially on MIGO. 

If Go acts trivially on M so that, effectively, G is finite and M - R2, 
then a similar analysis can be made by first considering the action of the 
subgroup G, preserving orientation, and then the actiun of GIG+ (trivial or 
Z,) on MIG,. (Note that M/G+ is a plane and that G, acts freely outside 
of a unique point, by our previous remarks.) The details of this case are 
left to the reader as Exercise 4. I 
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Remarks The case d = n - 1 is treated in Hofmann and Mostert [2], 
Montgomery and Zippin [2,4], and Mostert [l] (without local smoothness). 
Theorem 8.5 was proved in Montgomery, Samelson, and Yang [2]. A similar 
investigation of the case d = n - 3 on Sn with a stationary point is carried 
out in Montgomery and Yang [3]. 

We now focus our attention on actions on compact manifolds with 
d = n - 2.  The proof of the following result is essentially from Montgomery, 
Samelson and Yang [2] and could be used as an alternative approach to 
part of the proof of 8.5. 

8.6. Theorem Suppose that G is connected and that d = n - 2. Also 
suppose that M is compact and connected with H,(M; Z) = 0, and that a 
singular orbit exists. Then E* = 0 and M* is a 2-disk with boundary B*. 

Proof By 11.6.5 M* - D2, S2, or P2. From 3.12 and 8.3 we know that 
dM* = B* # 0. Thus M* - D2 and it suffices to show that E* = (3. Let 
t be an arc in M* from a point of B* to a point of E* and otherwise passing 
through principal orbits. Consider the set A = n-'(t). It is clear from the 
proof of 8.2 that A is the union of mapping cylinders 

A = MC u Mv, 

where q: P + Q and y : P + S are equivariant maps from a principal orbit 
P to an exceptional orbit Q and a singular orbit S .  By 4.5, P and Q are orien- 
table. If is a k-fold covering map, then we have the exact sequence 

of q [i.e., of the pair (Mp,P)] .  The first two groups displayed are infinite 
cyclic, since P and Q are connected, orientable (n  - 2)-manifolds, and the 
map between them is essentially multiplication by k since deg q = k. Thus 
fin-l(A, My; Z) - f in- l (Mp,P;Z)  =i Z k .  However, Mv has S as a deforma- 
tion retract and dim S 5 n - 3 .  Thus f in- l (A;  Z) - Z k .  Since f in- ' (M;Z) - H , ( M ;  Z )  = 0, the exact sequence 

O = H  "n-1 ( M ;  Z) + B y A ;  Z )  + P ( M ,  A ;  Z) + * - * 

shows that H,(M - A ;  Z) = @ ( M ,  A ;  Z )  has torsion, which is impos- 
sible. I 
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By similar arguments, we shall now show that, for general compact 
orientable M with MG # (3 (for example), quite strong information on the 
set of exceptional orbits can be obtained. 

8.7. Theorem Let G be connected and let M be compact, connected, 
and orientable. Suppose that the inclusion of a principal orbit P in M induces 
the trivial homomorphism H,(P; Z )  -+ Hl(M;  Z ) .  (This holds i fH l (Q;  Z )  =O 
for some orbit Q ;  e.g., if MG # (3.) Also suppose that d = n - 2. Then we 
have the following facts: 

(i) I f  H l ( M ;  Z) has no 2-torsion, then there are no special exceptional 
orbits. 

(ii) If there is a singular orbit but no special exceptional orbits, then 
rank H l ( M ;  Z )  = dim Hl(M*; Z2), and, i f  Q,, . . . , Q, are the exceptional 
orbits (in int M*)  and the canonical map P -+ Qi is a ki-fold covering, then 
the torsion subgroup of H l ( M ;  Z )  is z k l  @ . - - @ Zk,. 

Proof The parenthetical remark holds because the inclusion P c M factors 
through any orbit Q, since P can be assumed to lie in a linear tube about 
Q and this tube deforms into Q. Note that the theorem has no content 
unless the 2-manifold M* has a boundary, i.e., B* u =* # 0. Consider 
the set A* c M* consisting of the boundary curves of M*, together with 
s arcs with end points in dM* and together with m arcs from dM* to the m 
exceptional orbits in int M* with the interiors of these m + s arcs lying 
in the set of principal orbits. Furthermore, we choose the s arcs so that 
M* - A* = R2. Then s = dim Hl(M*;  Z2), as is well known and easily 
computed, whether M* is orientable or not. (See Figure IV-2.) Let A 
= z 1 ( A * ) .  Then M - A - (M* - A*)  x P - R2 x P and, by hypoth- 
esis, this implies that H l ( M  - A ;  Z) + H,(M; Z) is trivial. By PoincarC- 

FIGURE IV-2 rn = 3, s = 2. 
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Lefschetz duality, f@-l(M, A ; Z) -+ @-l(M; Z) is trivial. Similarly, 
@(M, A ;  Z) -+ f i n ( M ;  Z) is an isomorphism, since M - A is connected. 
Thus the restriction 

H,(M; Z) - R y M ;  Z) - & y A ;  Z) 

is an isomorphism. 
If SE # 0, then by 3.11 we see that A contains a set of the form I x Q ;  

Q special exceptional, nonorientuble. By the remark following 3.9 this implies 
that &-l(A ; Z) contains 2-torsion; proving (i). 

In the situation of (ii) we have B* = aM*. If A ,  denotes the portion of A 
over B* and A , ,  that over the added arcs, then dim(A, n A, )  5 n - 3 
and dim A ,  5 n - 2. Thus the Mayer-Vietoris sequence implies that 
k n - I ( A ;  Z) - @-,(A, ;  Z) and, similarly, this is the direct sum of the pieces 
corresponding to each arc. Recall that P is orientable by 3.11. From the 
proof of 4.5, using the fact that each Qi is isolated in E* and that M* is 
orientable in its neighborhood, we see that each Qi is orientable. Thus it 
follows from the proof of 8.6 that the arc from B* to Qi contributes a sum- 
mand Zk,  to Bn-l(A; Z). It is easy to see, in a similar manner, that each 
arc with end points in B* contributes an infinite cyclic summand, and the 
theorem follows. 1 

Remark It should be clear that, for explicit groups G, the analysis of actions 
with d = n - 2 can be carried considerably further. In fact, Raymond [2] 
and Orlik and Raymond [I] have completely classified actions of the circle 
group on 3-manifolds, and in Orlik and Raymond [3] a similar study is 
made of actions of the 2-torus on 4-manifolds. 

Let us now discuss briefly the case of a locally smooth action of a con- 
nected, compact Lie group G on M = Sn (n > 2 )  with d = n - 2. If n f3 ,  
it can be shown that a singular orbit exists, and we will assume that this is 
the case. Then, by 8.6, M* ;2: D2, B* - dD2, and E* = 0. Consider the 
set C* of points in B* = dD2 near which the orbit type on B* is not con- 
stant, and let c be the number of points in C*. 

The examples of Chapter I, Section 7 of SO(n)  on ZP-' (n 2 3) show 
that c can be zero, and that the action may be nonorthogonal. 

For an example with c = 1, let G = U(2) and recall that there is a ho- 
momorphism G -+ SO(3) whose kernel is precisely the center of U(2). 
Through this homomorphism, G acts on R3 and, through the usual represen- 
tation of U(2), it also acts on R4 = C2. Thus we have the diagonal action 
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of G = U(2) on S6 c R3 x R4. The action on R3 is transitive on S2 with 
isotropy group a maximal torus U(1) x U(l) of U(2). The action on R4 
is transitive on S3 with isotropy group U(l)  = U(l) x {I} - S'. Since 
G(z,,, = G, n G, we see that this is either finite or equals S1 when x # 0. 
However, G is transitive on (0) x S3 c S6 with isotropy group U(l) x U(1). 
Since some conjugate of U(l)  can be seen to have trivial intersection with 
U(l) x U(l) we see that the principal isotropy group is trivial. By the gen- 
eral results 8.3 and 8.4 and the fact that E* = 0, it now follows that the 
orbit structure is as shown in Figure IV-3 (in which the isotropy groups 
are indicated). 

FIGURE IV-3 

An example with c = 2 is given by SO(n) x SO(m) on Sn+" c Rn 

x Rm x R as is easily seen. Another example is the compactification of 
the example given in Chapter I, Section 4. 

An example with c = 3 is given by SO(n) x SO(m) x SO(r)  on 
p + m + r - l  

It was conjectured by Montgomery and Yang that c 5 3 in general. We 
also conjecture that the examples of Chapter I, Section 7 are the only lo- 
cally smooth, but nonorthogonal, actions on S" with d = n - 2. (If c = 0, 
then this was shown to be the case in Bredon [I 1, 121. We shall discuss special 
cases of this in Chapter V.) 

Rn x R m  x R7. 

9. ACTIONS ON TORI 

Although actions on spheres can be quite complicated, we shall show, 
in this section, that an action on a torus T k  has a very simple nature. Spe- 
cifically, if G is a compact, connected, Lie group acting on Tk,  then we shall 
show that G is a toral group, that G acts freely, and that the orbit map is a 
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trivial principal fibration. These results are due to Conner and Montgomery 
[l], who treated the more general case of actions on compact aspherical 
manifolds (vanishing higher homotopy groups). More recently, Conner and 
Raymond [I] have extended these investigations considerably, and have 
repaired a gap in the original work of Conner and Montgomery. We shall 
restrict our attention to actions on tori in order to make available a relatively 
simple approach to these matters using Newman’s Theorem (Chapter 111, 
Section 9). We need not assume local smoothness in this section, and, in fact, 
this section is independent of the rest of this chapter. 

9.1. Proposition Let G be an arcwise connected group acting on a space 
X and let H c G have a stationary point x E X .  Then the action of H on 
n l ( X ,  x) is an action by inner automorphisms. 

Proof If p is a loop at x, and h E H ,  then, since G is connected, hp is 
freely homotopic to p. But this is equivalent to the statement that the homo- 
topy classes h J p ]  = [hp] and [p] are conjugate in nl(X, x). I 

9.2. Theorem If G is a compact Lie group acting eflectively on M = Tk 
with a stationary point x E M ,  then G acts effectively on n,(M, x). 

Proof Recall that the identity component of G acts trivially on n,(M, x), 
and thus the subgroup acting trivially on n,(M, x )  is open and closed. Hence 
we may assume that G acts trivially on ndl and must prove that G is trivial. 
Now Rk is the universal covering space of M and we may assume that 0 
projects to x. The G-action may be lifted to an action on Rk with 0 stationary, 
by 1.9.2. The action of G on q ( M ,  x) may be identified with conjugation 
by G on the group d i=s Zk of deck transformations. Thus the assumption 
implies that G commutes with A .  If I = [O,l], then Ik c Rk is a fundamental 
domain for A .  Let A = GOk) c Rk which is a compact invariant subset. 
Let y E Rk. Then y = D(z)  for some z E Ik and D E A .  Then 

G ( y )  = G ( D ( z ) )  = D(G(z ) )  c D(A).  

Thus 
diam G ( y )  5 diam D(A)  = diam A 

for a l l y .  Since this gives a uniform bound for the diameters of the orbits 
in Rk, it contradicts Newman’s Theorem 111.9.7. I 
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9.3. Theorem If G is a compact, connected, Lie group acting efectively 
on M = Tk, then G is a torus and the action is free. 

Proof If H is the isotropy group of a point x E M, then, by 9.1, H acts 
trivially on n,(M, x), since this is abelian. Then, by 9.2, we conclude that 
H is trivial. Hence G acts freely. The action may be lifted to an effective 
action of some covering group G' of G on Rk, by 1.9.1. If G contains a 
compact subgroup, then it contains a cyclic subgroup H of prime order. 
Then H has a stationary point on Rk by 111.7.1 1 , and hence has a stationary 
point on M. Thus H acts trivially on My since G acts freely, and hence is in 
the kernel of G' --+ G which is contained in A - Zk; a contradiction. Since 
the simply connected covering group of a semisimple compact Lie group 
is again compact, it follows that G can contain no such subgroup, and hence 
that G is a toral group; see 0.6.10. I 

9.4. Lemma I f S  is a circle group acting effectively on M = Tk, then, for 
any x E M ,  the inclusion S(x) -+ M induces a monomorphism n,(S(x)) - Z I  (M). 

Proof Let S' acting on Rk be the unique effective covering action as given 
in 1.9.1. Then S' cannot be a circle, by the proof of 9.3, and hence S' - R. 
Then the kernel 2 of R -+ S is a subgroup of the group A of deck transforma- 
tions of Rk --+ M ,  by 1.9.1. However, the inclusion Z c A can be identified 
with the map q(S) + n,(M) [via S -+ S(x)] once the base point x is given, 
and hence this map is a monomorphism. 

Remark The preceding results clearly hold, more generally, when M is 
any space such that Tr  x M is a torus for some r (or, indeed, if X x M 
= Tk for any X), since the results can be applied to the action on Tr  x M y  
trivial on TT. This is just a minor generalization, but it will be convenient for 
use in inductive arguments below. We also note that singular and Cech 
theories coincide for such spaces, since they are ANRs. We shall assume 
this. If the reader wishes, he may assume that the action is locally smooth, 
so that these spaces will be manifolds. 

9.5. Theorem I f G  is a toral group acting on M = Tk, then the orbit map 
M + M* is a trivial principal G-fbration; that is, M - G x M* with trivial 
action on M*. 
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Proof First let us reduce the theorem to the case in which G is a circle 
group. Let G = G' x S, where S is a circle factor. Suppose we know that 
there is an equivalence M - G' x M', where M' = M/G'. Then S acts 
freely on M' (by inspection, or by the above results and the remark, since 
G' x M'is a torus). Thus if M' - S x (M'IS),  then M - G' x S x (M'IS) - G x M*. 

Thus we may assume that G = S1 is a circle group and that M becomes a 
torus upon multiplying by some torus. In particular, n l ( M )  is free abelian 
and n i (M)  = 0 for i > 1. Since S1 acts freely on M ,  M + M* is a principal 
Sl-fibration. By 9.4 and the exact homotopy sequence 

0 + n,(M*) + nl(S1) -+ n l ( M )  -+ n,(M*) + 0 

we see that ni(M*) = 0 for i > 1. Since n l (M)  is abelian, so is nl(M*).  
Now the universal covering space of M* is acyclic and finite-dimensional, 
and hence, by Smith theory, its group of deck transformations contains no 
elements of finite order. Thus nl (M*)  is free abelian and 

0 + nl(S1) -+ n l ( M )  + nl(M*) + 0 

must split. Since these are abelian, we may substitute Hl for nl. Applying 
Hom( - , Z) to this gives a split exact sequence and, using H 1 ( .  ; Z) = 
Hom(Hl(.), Z), we see that 

0 --+ Hl(M*; Z) + W ( M ;  Z) -+ Hl(S1; Z) + 0 

is exact. In particular, the inclusion S1 + M of a fiber induces an epimor- 
phism on cohomology. 

Now consider the Gysin sequence (coefficients in Z) and the diagram 
induced by inclusion of a fiber 

W ( M * )  + W ( M )  -+ HO(M*) 22 HZ(M*) + 

0 = HI(*) + H'(S1) + HO(*) -+ W(*) = 0. 
I / I = I  

This shows that CIJ = 0. 

N ) .  There is a classifying map M*+CP" and a natural diagram 
Now consider a universal S1-bundle S" + CP" (or use SZNf1 for large 

M -  S" 
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The induced map of Gysin sequences gives a diagram 

which shows that y* = 0. By standard obstruction theory, since CP" 
is a K(Z, 2), homotopy classes of maps of M* into CP" correspond to ele- 
ments of P ( M * )  and, in fact, the correspondence takes [y] to y*(u), where 
u is some generator. Thus y is homotopic to a constant map which means 
that M --+ M* is a trivial bundle. I 

Remark Clearly a large part of the above proof is standard material, and 
the reader with an extensive background on topology should see how to 
condense it. A more efficient version of essentially the same proof is given 
in Conner and Montgomery [l]. 

10. FINITENESS O F  NUMBER OF ORBIT TYPES 

We shall now prove a theorem due to Mann [2] which states that, on an 
orientable manifold M having finitely generated homology, an action has 
only finitely many orbit types. As usual, we shall restrict our attention to 
the locally smooth case, although the result can be proved without this re- 
striction. We will say that M has finite type if each H i ( M ;  Z) is finitely 
generated. 

10.1. Lemma Let M be orientable and of finite type. If C is a compact 
neighborhood of infinity in M+,  then there is a neighborhood C' c C oj 
infinity with Z?*(C, co; Z) + 8*(C' ,  00; Z) trivial. (That is, M+ is clc at 00.) 

Proof If C' c int C, then it is well known that the image of H*(M+, C )  
+ I?*(M+, C') is finitely generated. [This holds since M is cohomologically 
locally connected in each degree (clc), and a proof can be found, for example, 
in Bredon [13, p.771. Here we shall be satisfied with the remark that this is 
easily proved when M is triangulable. For this case, a subdivision will pro- 
vide a finite polyhedron Kin  M with K c M+ - C' and M+ - C c int K.  
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Then B*(M+,  M+ - int K )  - B*(K, a K )  is finitely generated, and the 
homomorphism in question factors through this.] 

Now @(M+,  00) - H,-,(M) is finitely generated, by assumption, and 
the diagram 

P ( M +  , 00) -+ &(C, co) + @+l(M+, C) 

@ ( M + ,  00) -+ &(C’, co)+ @+l(M+, C’) 
I =  I I 

implies that @(C, 03) + &(C‘, 00) has finitely generated image. Now 

lim #(c, 00) = Bi(co,co) = o 
+ 

by continuity of Cech theory. Thus any element of the image of @(C, co) 
+ Bi(C’, co) can be killed by further restriction to a smaller neighborhood 
of co. By finite generation of this image we can, in fact, kilI all of it at once. I 

10.2. Corollary The conclusion of 10.1 holds for  coeficients in Z,, uni- 
formly in p .  

Proof Suppose that 10.1 holds for the two inclusions Cf f  c C‘ c C.  The 
coefficient sequence 0 -+ Z + Z -+ Z, + 0 gives the diagram 

Ai(C, co; Z,) + Bi+yc, co; Z) 

@(C’, 00; Z) -+ Ai(C’, co; Z,) + Ai+l(C’, 03; Z) 

Hyc”, co; Z) -+ P ( C ” ,  co; Z,) 

I l o  
lo  I 

and a diagram chase shows that @(C, co ; Z,) + @(C”, 03 ; Z,) is trivial. I 

We remark that, since the universal coefficient sequence is valid in the 
present context, a similar proof gives 10.2 for arbitrary coefficients, but we 
shall not use this fact. 

10.3. Lemma Let M be an arbitrary n-manifold. Suppose that G = Z, 
acts on M and that Co 3 C, 3 3 C,+, are compact invariant neighbor- 
hoods of infinity in M+ such that B*(Ci, co; Z,) + &*(Ci+l, 00; Z,) is 

. 
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trivial for all i .  Then 

fi*(CO@, 00; qJ -+ a*m+1, co; Z,) 

is trivial. 

Proof In fact, we claim that (with coefficients in Z,) 

a;-c+yco , co) @ P - i + l  (COG, co) -+ ay+yci, m) @ an-i+yc.c  z 7 0 )  

is trivial for both p = z and p = 6. This holds vacuously for i = 0 and will 
be proved in general by induction on i. The Smith sequences give the 
diagram 

fi;-i(C0, m) @ IT"-i(C0G, m) --+ a;-i+yco , m) 

+ k;-i+yct , m) ayci ,  co) + a;-yci, m) @ fin-ycic, m) 

f in-yc i+ ,  y 00) -+ fi;-i(Ci+, ,m) @ IP-i(C& , 0) 

l o  I 
l o  I 

from which the conclusion follows by a diagram chase. 1 

10.4. Theorem Let G be a compact Lie group acting locally smoothly 
on the orientable manifold M offinite type. Then there is a compact subset 
K of M which touches every component of the fixed point set of every finite 
p-group in G,  uniformly for all primes p .  

Proof Let M+ = C, 3 C, 3 - .  - be compact neighborhoods of infinity 
in M+ such that 8 * ( C i ,  co; Z,) -+ k*(Ci+l, m; Z,) is trivial for all i 
and all p .  By 10.2 these exist, and it is clear that they may be chosen so as 
to be invariant under G.  Let P c G be a p-group. It will suffice to show that 
no component F of M p  is contained in C(n+l)n. Let Mo be the component of 
M containing F. Since P has a composition series consisting of normal 
subgroups, it follows that there is a normal subgroup P, of P which is ef- 
fectively of order p on M,.  Let Ml be the component of MT1 containing F. 
Then P acts on M ,  (with PI acting trivially) and we repeat this process to 
obtain a normal subgroup P, 3 P, effectively of order p on M , ,  and let 
M2 be the component of M F  containing F. Since the Mi have decreasing 
dimension, this process stops with Mk = F for some k 5 n. Now an ob- 
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vious induction on 10.3 shows that 

is trivial. Hence 

8*(F+,  m; Z p )  -+ p*(C n F,, 00; Z,) 

is trivial, where C = C(n+l)n. Since F is orientable (or p = 2) by 2.1, we 

have Rm(F+, 00; Z,) - H,(F; Z,) # 0, where m = dim F. Thus F + C. I 

10.5. Theorem Let T be a toralgroup acting locally smoothly on the orien- 
table manifold M offinite type. Then T has onlyjinitely many orbit types on M. 

Proof By induction on dim T we may assume that each proper subtorus 
S of T has only finitely many orbit types on M and, from 111.10.13 and 
Poincark duality, this implies that F(S, M )  has finite type. Suppose that 
K c M is as in 10.4. Let PI c Pz c . - * be p-groups (p fixed) converging to 
a torus S c T. Then F(P, , M )  3 F(P, , M )  2 is a sequence of manifolds 
with intersection F(S, M) .  Since each component of F(Pi, M )  touches K, 
it follows that the F(Pi,  M )  are eventually constant. In particular, each 
component of F(S, M )  touches K. The proof now follows the lines of that 
of 1.3 (and 1.4), with only minor modifications which the reader should be 
able to supply without difficulty. I 

Remark There is a purely Lie group theoretic theorem of Mostow [2] 
which implies that results such as 10.5 also hold for actions of any compact 
Lie group G when they hold for tori. This result states that if $? is any 
class of subgroups of a given compact Lie group G, if 8 is closed under 
conjugation, and if { C  n TI C E a} is finite, where T is the maximal 
torus of G ,  then 8 contains only finitely many conjugacy classes. An expo- 
sition of this result may be found in Bore1 [5, Chapter VII] and will not be 
repeated here. 

Remark If M is nonorientable, then for 10.4 (and hence 10.5) to hold 
on M it would suffice for M and its orientable double covering M‘ to have 
finite type. To see this, first note that 10.4 holds for the prime 2 since orien- 
tability does not enter the proof in that case. If p is an odd prime and P 
is a p-group acting on M ,  consider the lifting of P to an action on M’ 
(given by 1.9.4). Since ord P i s  odd it is clear that is the full inverse image 
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of Mp. The result then follows from 10.4 applied uniformly to all oddprimes 
and to this lifted action. Theorem 10.5 also follows, since its proof out of 
10.4 makes no essential use of orientability. 

EXERCISES FOR CHAPTER IV 

1. Show that the principal isotropy group of a locally smooth action of 
a compact abelian Lie group is trivial. 

2. Suppose that the compact Lie group G acts locally smoothly on Sn-l 
or Rn with principal isotropy group H. Let r = rank G - rank H. Show 
that dim G 5 [(n - r)(n - r + 1)]/2. 

3. If G is a finite group acting locally smoothly on S1, show that the 
action is equivalent to an orthogonal action (and, in particular, that G is 
either cyclic or dyhedral). 

4. Show that a locally smooth action on RZ is equivalent to an orthog- 
onal action. 

5. If S1 acts locally smoothly on a compact 3-manifold M having the 
homology of S3, show that either M s S3 or that there are no stationary 
points. 

6. Let G be a compact Lie group acting locally smoothly on the con- 
nected orientable manifold M of finite type. Show that there is a compact 
subset of A4 which touches each component of the set B u E of points 
on nonprincipal orbits and hence that there are only finitely many such 
components. 

7. Suppose that SO(3) acts locally smoothly on S4 with principal orbits 
of dimension 2. Show that the action is equivalent to the orthogonal action 
on S4 c R5 = R3 x R2 which is the sum of the standard representation 
on R3 and the trivial representation on R2. 

8. Suppose that SO(3) acts locally smoothly on S4 with principal 
orbits of dimension 3. Show that the principal isotropy group is Z2 @ Z, 
and that there are precisely two singular orbits, both projective planes. 

9. Suppose that SO(3) acts locally smoothly on S5 with principal or- 
bits of dimension 2. Show that F(S0(3 ) ,  S5)  - S2 and that all nonfixed 
orbits are 2-spheres. 
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10. If G is a compact, connected, Lie group acting locally smoothly 
on the n-manifold M and if H,(M; Z,) = 0, show that n - dim E is even. 

Suppose that G is a compact, connected, Lie group acting locally 
smoothly on an orientable n-manifold M with principal orbits of dimension 
n - 2. Assume that MG # 0 and that M* is an annulus. Ifn,(M) is abelian, 
show that there are no exceptional orbits in int M*. (Hint: Consider cov- 
ering spaces of M* and the associated pull-backs of M . )  

11. 

12. If H,(M"; Z,) = 0 and if the compact Lie group G acts locally 
smoothly on M with principal orbit SZk,  show that all nonprincipal orbits 
are stationary points and that each component of MG has dimension 
n -  2k -  1 .  

13. Let G be a compact Lie group acting locally smoothly on S" or R" 
with principal isotropy group H. Let T be a maximal torus of H and assume 
that (G/H)T is connected. Show that QT is connected for any orbit Q. 



CHAPTER V 

ACTIONS WITH FEW ORBIT TYPES 

In this chapter we shall prove and apply several classification theorems 
concerning, basically, locally smooth actions with two or three orbit types. 

In the first section we prove an equivariant version of the collaring theo- 
rem of Brown. However, only the nonequivariant version is used in sub- 
sequent sections. 

In Section 2 we study actions on spheres such that the fixed point set 
has the largest possible dimension for a given maximal orbit dimension. 

We deal with some background material on reduction of structure 
groups of bundles in Section 3. This is applied in Section 4 to prove the 
“Tube Theorem” which states that, for a G-space with a manifold with 
boundary as orbit space and with two orbit types (one corresponding to 
the boundary points), the part over a collar has the structure of an equi- 
variant mapping cylinder. This result in the locally smooth case is analogous 
to the relatively simple Tubular Neighborhood Theorem in the smooth 
case, and is basic to the remainder of the chapter. 

In Sections 5 and 6 we prove two classification theorems concerning ac- 
tions with two types of orbits and with a manifold with boundary as orbit 
space. The second of these is analogous to a theorem of Janich and of 
W.-C. and W.-Y. Hsiang in the smooth case. Classification of self-equiva- 
lences of such actions is studied in Section 7. These results are applied in 
Sections 8 and 9 to study equivariant plumbing and actions on Brieskorn 
manifolds. 

Actions with three types of orbits, one consisting of fixed points, over 
a contractible manifold as orbit space, are studied in Sections 10 and 11. 

1. THE EQUIVARIANT COLLARING THEOREM 

A well-known result of Brown [l] states, in particular, that the boundary 
of a topological (paracompact) manifold with boundary has a collar; 
that is, a product neighborhood. We shall prove an equivariant version 
of this result in this section. 

224 
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Recall that a G-orbit structure on a space X is just a function from X 
to the set gG of G-orbit types. In general, we will use the term structured 
space for a space X and a function, the “structure function,” from X to a 
set S which is fixed once and for all. We shall denote a structured space 
by the same symbol as its underlying space, the structure function being 
understood. A map of structured spaces is just a continuous map which 
commutes with the structure functions. Let I = [0,1] and J = [O,l). If 
X is a structured space, then we understand X x J to have the structure 
induced by the projection to X composed with the structure function on X. 

If X is a structured space and B c X (with theinduced structure), then 
B is said to be collared in X if there is a homeomorphism (of structured 
spaces) h of B x J onto an open neighborhood of B in X such that 
h(b,O) = b. Next, B is said to be locally collared in X if each point of 
B has an open neighborhood in B which is collared in X. We shall show that 
a locally collared closed subspace B of a paracompact structured space X 
is collared in X.  Our proof follows Brown [l] with a few minor modifica- 
tions, and the “structure” adds no complications whatever. 

We assume throughout that Xis a paracompact structured space and that 
B is a closed subspace. 

For a map p: B - I  we put 

Up = {b E B I p(b) > 0) 

S, = ((b, t )  E B X J I t < p(b)). 

Then S,, is called a sphdle neighborhd of Up x (0). Note that U, must 
be an F, (a countable union of closed sets). Moreover, if U is an open F, 
set in B, then U is paracompact by Dugundji [l,  p. 1651 and is the nonzero 
set of some map B + I by Dugundji [ l ,  p. 1481. Thus it is easy to see that 
the spindle neighborhoods of U x (0) form a neighborhood basis of U 
x (0) in B x J when U is an open F,. 

Given ,LA as above and putting (p/2)(b) = p(b)/2,  we define a map p4: 

B x J - +  B x J by putting 

and 

if (by t )  I spy 
if (b, 0 E sp/2, 

if (by t )  E S,, - S,,,. (by 2t - p(b ) )  

Note that q,, preserves “verticals” and hence preserves structure. Also note 
that 
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1 .I. Lemma Let U be an open Fa set in B and let Nl and N ,  be open neigh- 
borhoods of U x (0 )  in B x J .  Suppose t h a t 5  Nl-+n2 is a homeomorphism 
(of structured spaces) such that f I 0 x (0) is the identity. Then there exists 
a homeomorphism f ‘: Nl --+ and an open neighborhood V of U x ( 0 )  
in Nl n N ,  such that 

(a) f ‘  = f on R,- N , ,  
(b) f ‘ is the identity on V. 

Proof There exists a map p :  B + I such that UP = U and with S, c 
Nl n N, .  Put V = S,,, and let 

1.2. Lemma Let Ul and U, be open Fa sets in B and let K c U, n U2 
be closed relative to U, v U,. Suppose that hi: Ui x J --+ W i ,  where 
Wi is some open neighborhood of Ui in X (i = 1,2) such that hi(u, 0 )  = u. 

Then there exists a homeomorphism h,’: U, x J L  W, such that 

- - 

- 

(a) h,‘(u, 0) = u for  u E U,,  
(b)  h,’ 1 V = h, I V for  some open neighborhood V of K x (0) in 

(U, n U,) x J. 

Proof Put B’ = U, u U2 (not closed in X ) .  We shall forget about the rest 
of B, for convenience, so that closures will be relative to B’ (or B‘ x J) 
below. Since B‘ is paracompact, there exists an open Fa set U in B‘ with 

K c  U and Oc U, n U,. 

Put W = W, n W, and note that h;l(W) c B x J is an open neighbor- 
hood of 0 x (0). It follows that there is an open (spindle) neighborhood 
N ,  of U x (0) in B‘ x J such that f = h;lh, is a well-defined homeomor- 
phism on Rl c 0 x J to N2 = f ( Z l ) ,  where N ,  = f ( N l ) .  By 1.1 there is 

a homeomorphism f ’: Rl 1, N, such that f‘ = f on N, - Nl and 
f ’ I V is the identity for some open neighborhood V of U x (0) in B‘ x J. 
Put 

hlf ’ (x)  for x E R,, 
for x E (U, x J) - N l .  

It is easily checked that h,’ has the desired properties (including preserva- 
tion of structure). I 

- 

{ h,(x) 
h,’(x) = 
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Remark The reader will find more details of the proofs of 1.1 and 1.2 
in Brown [I]. 

Suppose that k :  U x J - X [k(u, 0) = u] is a collar, where U c B 
is open. Let b, E U and let W be an open neighborhood of b, in X such 
that W c k(U x J). There is a map p :  B - I such that b, E Up [i.e., 

p(b,)  # 01 and k(SJ c W. Then we see that k ( q )  = k(S,). Then the 
map h: Up x J - X given by 

h(b, t )  = k(b,  A b P )  

defines a collar of Up with the added property that for any open V c Up 
we have 

h(V x J) n B = 7. 

Let us call a collar (of an open set in B)  with this property, a normal collar. 

1.3. Lemma Let U, and U, be open Fa sets in B with U = U, u U2 
and let hi: Ui x J -2 Wi c X be normal collars. Then there exists a 

normal collar h:  U x J - W c W, u W, such that h I (U, - U,) x J 

- 
I - 

= h, I (U1- U,) x J. 

Proof As in the proof of 1.2 we put B' = U, u U, = U (which is para- 
compact) and take closures relative to B'. We can write B' = 0, u 0, 
(open in B'), where oi c Ui , and we put K = 0, n 6,. By 1.2 we may 
as well assume that h, = h, on an open neighborhood V of K x (0). Put 

V, = (0, - K )  x J. Then h,(V,) n B' = 0, - K which does not meet 
6, - 0,. That is, ((02 - 0,) x 3) n h;l(h,(VJ) does not meet (02 - 0,) 
x (0). Since B' x J is paracompact, and hence normal, and since o2 
- 0, 3 0,- K it follows that there is an open neighborhood V, of 
(0, - K )  x (0) in B' x J such that h,(V,) n h,(V,) = 0. 

Define k on V, u V u  V, to be h, on V,, h, on V,, and h, = h, on V. 
Then k is continuous, open, and one-one, hence it is a homeomorphism 
into. Since B' is paracompact, there is a map 7 : B' - I which is nowhere 
zero and is such that S, c V, u V u V,. Also there is a map t: B' + I 
such that 

for b E U, - U , ,  { for b E  0,. z(b)  = 
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Put p = max(t, 17). Then S, c V, u V u V,, p is nowhere zero, and 
p(b )  = 1 for b E U, - U,.  The map h defined by 

h(b, t )  = k(b ,  A b N )  

clearly has the desired properties. I 

1.4. Theorem If X is a paracompact structured space and B is a closed 
subspace which is locally collared in X ,  then B is collared in X.  

Proof The subspace B is covered by open sets having normal collars in X. 
The images of the collars form an open covering of B in X .  Together with 
X - B we have an open covering of X which can be refined to a locally 
finite covering. Passing to the covering associated with a partition of unity 
subordinate to this, we obtain a locally finite covering by open Fa sets in X.  
Thus there is a collection { V,} of open sets in X which is locally finite in 
X and such that each U, = V, n B is an F, which is normally collared in 
X.  The (image of the) collar of U, may also be assumed to be in V,. Well- 
order the index set and define 

V,' = u V, and U,' = u U, = V,' n B 
8< a 8< a 

We shall construct inductively a normal collar h,: U,l x J --+ X with 
image in V,l. As an inductive assumption, we decree that for p < a we have 

h, = h, on (U,l - u U,) x J.  
fl<r<a 

Assume that h, has been defined for all ,!? < a. If a is a limit ordinal, 
then U,' = us<, U i .  If b E U,', then there is a neighborhood N of b in 
U,' c B touching only finitely many U, for /3 < a. If t, t' < a are both 
larger than any of these p, then h, and hr, coincide on N x J. Thus the 
definition h, = lim,+., h, makes sense. As is easily seen ha is continuous, 
open, and one-one, and hence is a homeomorphism onto its image which is 
inside V,'. Using the fact that {Va} is locally finite in X ,  it follows that ha 
is normal. (Also note that the U,' are Fa sets.) 

If a is the successor of /?, then put U, = U i  and U, = U, so that U, u U, 
= UJ. Using 1.3 we may define ha on U,' x J so as to coincide with h, 
on (U,  - U,) x J = (U,l - Us) x J and this finishes the induction. 
(Compare the proof of 11.7.1, part C . )  I 
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Remark Brown [l] gives the proof for metric X and general B. Note, 
however, that local collaring implies that B is locally closed. Thus B is 
always a closed subset of an open set in X (which is paracompact when X 
is metric), so that Brown’s version follows from the present one. 

1.5. Theorem Suppose that G is a compact Lie group acting locally 
smoothly on the (paracompact) manifold M with boundary B. Then there 
exists an equivariant homeomorphism h of B x I onto a neighborhood of B 
in M with h(b, 0 )  = b and where G acts on B x I by the product action (triv- 
ial on I). 

Proof Local smoothness implies easily that this holds locally and hence 
that BIG is locally collared in M/G with the given orbit structure on M/G. 
Thus BIG is collared in M/G and the theorem now follows from the 
Covering Homotopy Theorem 11.7.1 of Palais. I 

We shall take this opportunity to state the following theorem, which is 
unrelated to the preceding material. It is quite well known but we know 
of no convenient reference for it. It will be used several times in this chapter. 

1.6. Theorem A (paracompact) manifold M,  with or without boundary, 
has the homotopy type of a CW-complex. 

Proof We shall only outline the proof of this well-known fact. The man- 
ifold M may be taken to be connected and can then be embedded as a 
closed subset of some euclidean space Rn. Since M is an ANR (see Hanner 
[l]) there is a neighborhood U of M in Rn and a retraction r :  U-+ M.  
Then Rn may be triangulated so that M is contained in some subcomplex 
L which is inside U. Cells may be added (inductively) to L to kill ker r,: 
n,(L) -n*(M) and in such a way that r extends to the new CW-complex 
K. That is, there is a CW-complex K 3 L such that r extends to s: K -+ M 
and such that s#: n,(K) -+ n,(M) is a monomorphism. Since s#i# = 1 
(where i :  M --+ K is the inclusion), s# is an isomorphism with inverse i#.  
Thus is: K + K is a weak homotopy equivalence (an isomorphism on ho- 
motopy) and hence is a homotopy equivalence since K is a CW-complex 
(see Spanier [l, p. 4051). If pl: K-+ K is a homotopy inverse to is, then 
isp N lK so that is v isispl = ispl N lg. Thus i and s are inverse homotopy 
equivalences between M and K. I 
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Thus standard results from obstruction theory can be applied to M.  
For example, if M is simply connected and homologically acyclic over the 
integers, then M is contractible. 

2. THE COMPLEMENTARY DIMENSION THEOREM 

Suppose that G acts locally smoothly on an n-sphere M with principal 
orbits of dimension d. Then from IV.3.8 we have that dim M G  I n  - d - 1. 
In this section we study the case in which equality is achieved and shall 
obtain quite complete results. 

2.1. Theorem Let M be a compact integral homology n-sphere and let 
the compact Lie group G act locally smoothly on M with principal orbits of 
dimension d. Assume that dim MG = n - d - 1. Then 

(a) All nonjixed orbits are principal and are equivalent to Sd with an 

(b) MG is an integral homology (n - d - 1)-sphere. 
(c) M *  is an acyclic (n  - 6)-manifold with boundary MG. 
(d) There is a cross section in M H  for  the orbit map M - t  M*, where H 

is a principal isotropy group. 

Moreover, if the orthogonal action of G on Sd is given, then the assign- 
ment M ++ M *  induces a one-one correspondence between equivalence classes 
of such actions on homology n-spheres and homeomorphism classes of acyclic 
(n - d)-manifolds with boundary. Also M is simply connected if f  M* is simply 
connected (and hence contractible). 

orthogonal G-action. 

Proof Let F be a component of MG of dimension n - d - 1 and let 
x E F. By local smoothness, a neighborhood of x has the form Rn-d-l 
x Rd+l, where G acts orthogonally on Rd+l and trivially on Rn--d-l. Then 
each sphere about the origin in Rd+l is an orbit of G and the action on Rd+l 
is the cone over the action on Sd.  Thus G has only principal orbits Sd = G/H 

so that M* is an (n - 6)-manifold with boundary MG in the vicinity of x*. 
In particular, we see that F is a component of B u E (in the notation 

of Chapter IV). By IV.7.2 (upon removing a point of F), B u E is connected, 
which shows that F = MG and that all other orbits are principal. This proves 
part (a) and also shows that M* is an (n - d)-manifold with boundary 
MG. 

and fixed points near x. Moreover, (Rn-d-l x Rd+l)/G - Rn-d-l x [O,m> 
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If rank G > rank H and if T is a maximal torus of G, then (G/H)T = 0 
so that MG = MT which is a homology sphere by 111.10.2. 

If rank G = rank H, then (G/H)IP = NIT is finite, where N = N(T).  
Since it is a homology sphere, it is just Z,. Since (G/H)N = 0 we have 
that MG = MN = (MT)N/T.  Now dim MT = dim M* + dim(G/H)T = 

n - d and dim(MT)N/T = n - d - 1. Thus it follows from IV.2.6 that 
MG = (MT)N/T is an integral homology (n - d - 1)-sphere, which proves 
part (b). 

Let U ;5: Rn be an open n-disk in M about a point of MG on which G 
acts orthogonally (so that U n MG 3 Rn-d-l) and let y E M" - U. Since 
M and MG are homology spheres, the inclusions induce isomorphisms 

- 
P ( M ,  M - U )  -2 @(M, y) ,  

fF(MG u ( M  - U),  M - U )  = @(MG, MG - U )  1 #(MG, y) .  
- 

The 5-lemma applied to the map from the cohomology sequence of the 
triple ( M ,  M G  u ( M -  U), M - U )  to that of ( M ,  MG, y )  implies that 

- 
H (  "i M ,  MG u ( M  - U ) )  1 P ( M ,  MG). 

By PoincarC-Lefschetz duality, the inclusion U - UG = M - (MG u 
( M  - U ) ) +  M - MG induces an isomorphism 

Hj(U - U G )  2 Hj(M - MG).  

There is an orbit Sd c U -  UG which is clearly a deformation retract 
of U -  UG. Thus we conclude that the inclusion Sd c M -  MG of a 

principal orbit in M - MG induces an isomorphism Hj(Sd)  - Hj(M- M G )  ; 
that is, 

- 

H*(M- MG, S d )  = 0. (1) 

Now M - MG is a fiber bundle with fiber Sd over M* - MG.  The bundle 
is orientable (i.e., a loop in M* - MG cannot reverse orientation of S d )  
since otherwise Sd c M -  M G  would not give an isomorphism in homol- 
ogy. Thus there is the relative Gysin sequence 

* . * -+ Hi(M - MG, S d )  + Hi(M* - M", X) + Hi-,..l(M* - M', X) 

+ Hi-l(M - M", S d )  + * * * 

(where x E M* - MG corresponds to the orbit Sd in M - MG).  By (1) 
and an easy induction, this implies that Hi(M* - MG, x) = 0 for all i ;  
that is, M* - MG is acyclic. By the Collaring Theorem, M* e M * u  (MG 
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x I) and M* has the same homotopy type as does its interior M* - MO, 

so that (c) is proved. 
Now the principal bundle associated with M - MG - M* - MG is 

just M a -  Ma --+ M* - MG which is an N(H)/H-bundle. Note that 
N(H) /H = (G/H)= is a sphere since G operates orthogonally on G / H  - Sd. 
Let K = N ( H ) / H  = So, S1, or S3, and let B K  be the classifying space for 
K. Then the given bundle is induced from a map M* - MG --+ B K .  Ob- 
structions to deforming this map to a constant lie in Hi(M* - MG' 3 ni (BK>)  
= 0 [since M* - MG has the homotopy type of a CW-complex and since 
n l ( B K )  operates trivially on the n i ( B K ) ] .  Thus the bundle M H  - Ma + M* 
- MG is trivial. If C' c MH c M is a cross section of this bundle, then the 
closed set C = C' u MG is a cross section of the orbit map M --+ M*, 
by 1.3.2, proving (d). 

To prove the statements in the last paragraph of the theorem, suppose 
that we have two such actions on Ml and M , ,  say, with Ml* - M,*. Let 
Ci c MiH ( i  = 1,2) be the cross sections given by part (d), so that the 
homeomorphism of orbit spaces corresponds to a homeomorphism C, - Cz. By 1.3.4, this extends uniquely to an equivariant homeomorphism 
Ml * M ,  . Now suppose that X is any acyclic (n - d)-manifold with bound- 
ary and put M = d(Dd+l x X )  with G acting orthogonally on the factor 
Dd+l and trivially on X.  Since M = d(Dd+l x X )  = ( S d  x X )  u (Ddfl 
x ax), and, since Dd+l/G - [0, 11 with Sd/G corresponding to {0}, we 
see that 

M* - ( (0 )  x X )  u ([0,1] x ax) - X 

by the Collaring Theorem. 
If M is simply connected, then so is M* by 11.6.3. If X - M* is simply 

connected, then the Van Kampen Theorem implies that n , (M)  is generated 
by the images of nl(Sd  x X )  - nl(Sd)  and of nl(Dd+l x ax) - .cl(dX). 
Since nl(Sd) -+ n1(Dd+l) and n l ( a X )  + n l ( X )  are trivial, this implies that 
n l ( M )  is trivial. I 

From Connell [I] it is known that if X is a compact contractible k- 
manifold with boundary Sk-l and if k = dim X # 3, 4, then X = Dk. 
(Also, if k > 5, then the boundary of a contractible manifold is Sk-' iff 
it is simply connected.) Since the (n - d)-disk clearly corresponds to the 
orthogonal case of 2.1, we have the following corollary. 

2.2. Corollary Let G act locally smoothly on the homotopy n-sphere M 
with principal orbits of dimension d. Suppose that dim M G  = n - d - 1 
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# 2,3. Then the action is equivalent to an orthogonal action iYMG - Sn-d-l. 
If n - d - 1 2 5 ,  then MG = FPd- '  i f s  it is simply connected. In general, 
for n - d 2 5,  such actions embed in an orthogonal action of G on Sn+I. 

Proof For the last statement, note that M* embeds as M* x {h} in X 
= M* x I. Then Xis a contractible (n - d + 1)-manifold whose boundary 
ax= (dM* x I) u (M* x aI) is the double of M* and hence is simply 
connected by the Van Kampen Theorem. Thus X ;t: Dn-d+l. The corre- 
sponding G-action on an (n + 1)-manifold is then orthogonal, has orbit 
space X,  and its restriction to the part over M* x {;} is clearly equivalent 
to the original action. I 

2.3. Corollary If G = S' acts on a homotopy n-sphere M with n # 4,5 
and i f M G  - Sn--2, then M - Sn c Rn+l and the action is equivalent to the 
orthogonal action by rotations in the first two coordinates. I 

Remarks Theorem 2.1 was proved in Bredon [2] (also see Bredon [4]) 
in the nonlocally smooth case. The proof there is considerably more dif- 
ficult since MG is not, a priori, a manifold (and, in fact, turns out to be 
only a generalized manifold) and it is more difficult to identify the principal 
orbit. There are obvious analogs of 2.1 for actions on homology disks and 
euclidean space, and which have essentially the same proofs. 

3. REDUCTION OF STRUCTURE GROUPS 

In this section we shall develop some background material on the reduc- 
tion of structure groups of bundles and shall prove some results, vital to 
us later, which are not available in the standard literature. 

Let T be a topological group and suppose that p y :  Y --+ B is a principal 
T-bundle. Let S be a closed subgroup of T. By an S-reduction of Y we 
mean a principal S-bundle p x :  X +  B together with an S-eguivariant map f 
over B 

f x- Y 

B 
px\ J.. 

If X is given, then f is called an S-reduction of Y to X .  
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Two S-reductions ( X , f )  and ( X ’ , f ’ )  of Y are said to be equivalent if 
there is an S-equivariant map v such that 

X L  X’ 

fl Jft 
Y 

commutes. [Since 9 must cover the identity on B it follows that v is a 
homeomorphism.] 

Since it is convenient, in dealing with associated bundles, to use both 
left and right actions, we shall use S \ X  for the orbit space of a left S-action 
on X (for example) in this section, contrary to our usual notation. 

Y -t Y is a homeomor- 
phism. Also T-t S \ T  is open, so that the induced map 

Recall from 11.2.2 that the canonical map T x 

T X T  Y + ( S \ T )  X T  Y 

is also open by 11.2.1. The obvious induced map 

qY - s\(T X T  y ,  + T 

is then one-one, continuous, and open, and hence is a homeomorphism. 
Thus the projection S \ Y  + T \ Y  - B can be regarded as the projection 
in the associated (S\T)-bundle (\T) x T  Y - +  B. Since s\X - B, an 
S-reduction f: X -+ Y induces a commutative diagram 

Thus of: B = S \ X L  s \ Y  is a cross section of the (S\T)-bundle 
s \ Y + B .  

Note that T + S \ T  is a (principal) bundle if S is compact Lie (see 11. 
5.8) .  

3.1. Theorem Suppose that the natural map T-+ S \ T  is a bundle. 
Then the assignment of the cross section 

f’ 
Gf: B - S \ X + S \ Y  

to an S-reduction f: X -t Y gives a one-one correspondence between equiv- 
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alence classes of S-reductions of the principal T-bundle Y -+ B and cross 
sections of the associated (S\T)-bundle 

( S \ T ) X ~ Y = S \ Y ~ B .  

Proof The fact that T + S \ T  is a principal S-bundle implies that T x Y 
-+ ( S \ T )  x T  Y is also a principal S-bundle, since locally it is just T x U 
+ (\T) x U. That is, the orbit map Y -+ S \ Y  is a bundle projection. 
Let 6: B -+ s \ Y  be a cross section and let o* Y be the S-bundle over B 
induced by o from the bundle Y +  s \Y .  Then we have the pull-back 
diagram 

o * Y A  Y 

Since go: B -+ B is the identity, by assumption, we see that 

commutes. Thus (o* Y, g )  is an S-reduction of Y-.  B with og = o. If 
f: X - +  Y is any S-reduction with or = 0, then by the pull-back property 
we have the diagram of S-spaces 

x * Y  

which gives an equivalence between the S-reductions ( X , f  ) and (o* Y, g). I 

Remark I f f :  X -j Y is an S-reduction and F :  X x I + Y is an S-equi- 
variant homotopy over B, then F clearly induces a homotopy of cross 
sections of s \ Y  -+ B. Conversely, since a bundle over B x I is  the prod- 
uct of some bundle over B with I (when B is paracompact), it is easily 
seen that any homotopy of cross sections is induced by such an S-equi- 
variant homotopy X x I +  Y over B ;  B paracompact. 
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3.2. Theorem Let G be a compact group and let H c G be a closed 
subgroup. Let T = N(H) /H and S c T a closed subgroup. Let X -+ B and 
Y + B be principal S and T bundles, respectively. To each reduction f: X --+ Y 
of Y to X we associate a G-equivariant map 

f’: ( G / H )  x s X + ( G / H )  XTY 

over B by f ‘ [gH, x]  = [gH, f ( x ) ] .  This is a one-one correspondence of S- 
reductions of Y to X and G-equivariant maps over B of the associated GIH- 
bundles. 

Proof Given f’ note that restriction to the fixed sets of H gives a T-equi- 
variant map T x S  X -t T x Y.  The inclusion X + T X s  X given by x 
H [e, x ]  is S-equivariant and thus so is the composition X - t  T xS X 
- t T x ~ Y * y .  I 

Now let A be a locally compact space which is an effective right T-space, 
where T is an arbitrary subgroup of Map(A, A )  with the compact-open 
topology. Let 5’ be a subgroup of T, let X and X’ be principal S-bundles 
over B, and consider the associated A-bundles A x X and A x X’.  (Note 
that the structure group can be extended to T since A x 8 X - ( A  x T) 
xS  X = A X T  (T X S  X).)  Consider a map v over B 

A X , X - P _ + A  x , X ’  

I d  
B 

and recall, from 11.2.7, that p corresponds to a cross section Q of the as- 
sociated Map(A, A)-bundle 

Map(A,A) xsxSd --+ B. 

We shall say that p is a T-equivalence if its associated section Q lies in the 
subbundle 

T xS~SA -+ B. 

(Using charts coming from charts of X and X’ ,  one easily checks that this 
means precisely that ~1 is fiberwise operation by elements of T.) Similarly, 
p is an S-equivalence if Q is a cross section of S x sxs A --f B. 

Remark Since T = MapT(T,T) it is easily checked that q is a T-equiva- 
lence iff it is induced from a T-equivariant map T x S  X-+ T x s  X’ over 
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B. Similarly, it is an S-equivalence iff it comes from an S-equivariant map 
X +  X' over B. It is clear that a T- (or S-)  equivalence is invertible to 
a T- (or S-) equivalence. 

The following result will be of primary importance to us in the remainder 
of this chapter. 

3.3. Theorem Let T be a topological group and S a closed subgroup 
such that T -+ A,T is a bundle. Suppose that the inclusion S c T is a weak 
homotopy equivalence. Also assume that B is paracompact and of the homo- 
topy type of a CW-complex. Then: 

(a) 

(b) 

Every T-bundle over B has an S-reduction and any two such reduc- 
tions are S-equivariantly homotopic to equivalent S-reductions. 

If A is a right T-space and X and X' are principal S-bundles over B, 
then every T-equivalence p: A x X-. A x s X' is homotopic (through 
T-equivalences) to an S-equivalence. Here we assume that A is locally compact 
and that T has the compact-open topology. 

Proof Suppose that B is a CW-complex. Since S \ T  has trivial homotopy 
groups, there are no obstructions to constructing a section of an (S\T)- 
bundle over B and no obstructions to deforming one section to another. 
Thus (a) follows from 3.1 and the remarks following it. Similarly, there 
are no obstructions to deforming a section of T xsx$A + B to a section 
of S x sxs A + B. Such a homotopy of sections corresponds to a homotopy 
of T-equivalences A x s  X + A x s  X', by Chapter 11, Section 2, and this 
implies (b). The use of obstruction theory in these arguments is easily 
justified when B has only the homotopy type of a CW-complex C andis 
paracompact. For instance, let h :  C --+ B be a homotopy equivalence with 
homotopy inverse k :  B + C and let W = S \ Y  be the S\T-bundle 
associated with a principal T-bundle Y over B. Then h* W has a section 
and it follows that k*h*W has a section. But W;s: k*h*W since 
h k e  1 and B is paracompact. Similarly with the bundle pair (T xsXsd, 
S x s X s A )  over B. I 

Remark The hypothesis that T+ S\T be a bundle is not used in (b). 
It could also be dropped from (a) by utilizing the theory of classifying spaces 
in the proof, but we shall not need this fact. 
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4. THE STRAIGHTENING LEMMA AND THE TUBE THEOREM 

Let G be a compact Lie group and let H c K c G be closed subgroups. 
Consider the canonical projection n: G / H +  G / K  and let 

Mn = ( G / H )  x I U (GIK) 
nx{d 

be the mapping cylinder of n. Then M ,  is a G-space with orbit space M,* 
canonically homeomorphic to I via the projection (GIH) x I --f I. We 
shall, in fact, identify M,* with I. 

Let HomeoIG(M,) denote the group, under composition, of self-equiv- 
alences of M ,  over I (i.e., G-equivariant homeomorphisms inducing the 
identity on the orbit space). This is given the compact-open topology which, 
since M ,  is compact metric, is the same as the topology given by the uni- 
form metric. It is clearly a topological group. 

Recall that N ( H )  n N ( K )  acts by right translation [R,(gH) = gn-lH 
etc.] on GIH and on GIK, and the diagram 

G/H 2 GfK 

I Rn 
G / H  2 G/K 

clearly commutes. Thus there is an induced action of N(H) n N(K)  on 
M ,  whose kernel is just H. This gives a monomorphism 

which we shall regard as inclusion. 

its name will become apparent later. 
The next result is basic for the remainder of this chapter. The reason for 

4.1. The Straightening Lemma The subgroup [ N ( H )  n N(K)]/H is a 
strong deformation retract of HomeoIG(M,). 

Proof First, let us interpret the group HomeoIG(M,) in an instructive 
geometric way. Note that the G-space M, has a cross section J given by 
the identity cosets; that is, 

J = ( { e H }  x (0,ll) u (eK}.  
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Let Jt denote the point of the cross section corresponding to t E I = M,*; 
that is, Jt = (eH, t )  for t # 0 and .To = eK. If p7 E HomeoIG(M,), then 
v ( J )  is another cross section and, since p7 preserves isotropy groups, we 
see that 

Conversely, any such cross section gives rise to a self-equivalence by 1.3.4. 
Moreover the correspondence between the self-equivalences p7 and the 
cross sections y ( J )  is clearly bicontinuous, where the space of cross sections 
is given the obvious uniform metric. To simplify notation we shall now put 
q ( t )  = p7(Jt) and we display its coordinates by putting cp(t) = (cpt, t )  for 
t # 0, where q+ E N(H) /H.  

Let Q denote the subspace 

which is generally noncompact. Put Q, = N ( K ) / K  c Q. We may regard 
HomeoIa(M,) as a subspace of the function space 

(Q, Qo)(l,o) c (M,,  G/K)“.”. 

Note that 
N ( H )  n N K )  - -- N ( H )  n-l ( Nlyg)) 

H H 

Now [ N ( H )  n N(K) ] /H has a tubular neighborhood U in N(H) /H (a linear 
tube about this orbit by left translation of this subgroup on N(H) /H) .  
Clearly there exists a smaller tubular neighborhood V and a deformation 

such that 
F(x, 0) = x ,  

F(x, t )  = x for x e  U ,  

F(x, t )  = x 
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Define the deformation 

D :  Q x 1 - Q  

bY 
D((x,  s), t )  = (F(x, t ) ,  s) for x E N(H) /H and s # 0, 

DCV, t )  = Y for Y E  N(K)/K. 

Then D induces a deformation 

in the function space by D'(y, t ) (s)  = D(y(s) ,  t ) .  Clearly this restricts 
to a deformation 

Dl : HomeoIG(M,,) x I - HomeoIG(M,,). 

Now for v E HomeoIG(M,,) we put 

g(v) = sup{s > 01 0 < t < s-vt E v>. 

Then g is clearly a lower semicontinuous, positive, real-valued function 
on the metric space HomeoIG(Mn). By a theorem of Dowker (see Dugundji 
[ I ,  p. 170]), there is a continuous function f such that 

0 <f(v) < g(v) 

for all v. In particular, note that 

for 0 < s If(v).  
We shall multiply elements x E M,, by numbers r E I by simply multiply- 

ing the I parameter by r, meaning the canonical projection M,, -+ G/K c M,, 
when r = 0. Note that this (for r = 0) does not restrict to Q and this is 
basically the reason for the first deformation D,. With this notation we 
define another deformation 

D2:  HomeoIG(M,) x I - HomeoIG(M,) 
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is independent of s. 

The latter fact clearly means that D3(pl, 1) E “(IT) n N(K) ] /H regarded 
as a subgroup of HomeoIG(M,). Thus D , ,  D , ,  and D3 patch together to 
give the desired strong deformation retraction of HomeorG(Mn) onto 

“(H)  n W O I I H .  I 

Although we have been taking H to be a subgroup of K and n: GJH 
---t G/K the canonical projection, it will be convenient for the statement, 
and applications, of the next theorem to free ourselves of this restriction. 
Thus suppose now that 

n: GJH-. GIK 

is any G-equivariant map with arbitrary H and K .  Then, by 1.4.2, n is of 
the form n = RfsH for some a E G determined up to its coset Ka. Thus 
with K‘ = a-lKa 13 H and n‘ = R:’sa (the canonical projection) there 
is the commutative diagram 

G/K‘ 

1Bf.K’ 

n 1  

GIK 
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- - 
This induces a G-equivariant homeomorphism M,, - M ,  over I and 
hence yields an isomorphism 

- - 
HomeoIG(M,,) - HomeoIG(M,). 

This carries the subgroup [ N ( H )  n N(K')]/H onto a subgroup 

S(n) c HomeoIG(M,) 

which is a deformation retract. In fact, it is clear that S(n) may be regarded 
as 

N(H) n N(K')  - N(H) n a-'N(K)a 
H H 

- S(n) = 

which acts on M,, via the commutative diagram 

where n E N ( H )  n a-lN(K)a. 

4.2. Theorem Let G be a compact Lie group and 
let W be a G-space with orbit space I x B, where B is connected, locally 
connected, paracompact, and of the homotopy type of a CW-complex. Sup- 
pose that the orbit type on (0) x B is type(G/K) and that on (0,1] x B is 
type(G/H). Then there exists an equivariant map n: G/H + G/K and, with 
S = S(n), there exists a principal S-bundle X -+ B (unique to equivalence) 
and a G-equivariant homeomorphism 

(The Tube Theorem) 

- 
M,, x,X: W 

commuting with the canonical projections to I x B. Moreover, the map 
q~ = n x s  X :  G/H x s  X-+ G / K  xs X gives rise to a G-equivariant ho- 
meomorphism 

f: M,:M,, x S x -  w 

over I x B. (Thus, if W, and W, are the subspaces of W lying over (0) X B 
and { l} x B, respectively there is an equivariant map ly: W, -+ W, and an 

equivalence M,; W of G-spaces over I x B extending the identity on 
W,  and W,.) 

I 
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Proof In the proof it will be convenient to choose H c Kin a special way 
so that TZ can be taken to be the canonical projection. To do this, let b E B 
and let w E W be a point projecting to (0,b) E I x B = W*. Assume that 
G, = Kand let A be a slice at w in W. Choose H to be an isotropy group at 
a point a E A .  [Note that since w can be altered by action of any element of 
N(K) we are free to alter H by conjugating it by an element of N(K).] If a‘ is 
near a in A ,  then Kar is conjugate in K to a subgroup of K, = H, but since 
Ka, N H in G it follows that Ka, N H in K. This shows that H “works” 
for all points in B near b. Since B is connected, the point b E B is irrele- 
vant to the choice of H. We now fix such H c K and let T Z :  G/H + G/K 
be the canonical projection. 

Now we may choose the slice A to lie over a set of the form [ O , ~ E )  x U 
c I x B, where U is a connected neighborhood of b in B. Over -(O, 2e)  x U 
the K-orbit type is locally constant (as noted above) and hence it is constant 
by connectivity. Thus the part of A over ( O , ~ E )  x U is a K/H-bundle. 
Now U may be taken to be so small that this bundle is trivial over { E }  x U, 
and then, by the Covering Homotopy Theorem, it is trivial over ( O , ~ E )  x U. 
That is, there is a cross section of this bundle in A with each point having 
isotropy group H. Adding the part of A over (0) x U (which is just A“) 
to this, we obtain a cross section of W over [0, 2 ~ )  x U such that 
each point has isotropy group H or K. Restricting this cross section to 
[0, E]  x U and applying the Covering Homotopy Theorem to the part of 
Wover [E,  I] x U we finally obtain a cross section C of W over I x U 
such that points of C have isotropy groups K or H.  

Consider the composition 

p :  W + I  x B + B .  

Now the G-space M ,  x U over I x U clearly has the same type of cross 
section as that constructed above for p-’U. By 1.3.4 the canonical map be- 
tween these cross sections yields an equivalence M ,  x U - p-lU which 
commutes with the projections to I x U (as well as to U ) .  

This shows that p :  W+ B is a bundle with fiber M ,  and structure 

group 
T = HomeoIG(M,). 

Let Y - t  B be the associated principal T-bundle, so that W - M ,  x T  Y 
with the projection to I x B being induced by the canonical mapM,, 
-+I (i.e., M, x T  Y + I  X T  Y = I  x B). 
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By 3.3 and the Straightening Lemma 4.1, there is an S-reduction X-+ Y 
where 

N(H) n N ( K )  
H 

S =  

and X -+ B is a principal S-bundle. Then we have the induced G-equivariant 
homeomorphism 

k?, X S X - M ,  X T  Y e  w 

which clearly commutes with the projection to I x B. 

To prove the remainder of the theorem, note that the group Spreserves 
the mapping cylinder structure of M ,  (which is the whole point). In particular, 
the S-action commutes with z. Thus n x X: G/H x X-+ G/K x X is 
S-equivariant and induces 

Now we can define a G-equivariant function 

by f([gH, XI, t )  = [(gH, t), x] for t # 0 and f([gK, x]) = [gK, x] for t =O. 
Over a small open set U c B this is just the obvious function taking the 
mapping cylinder Mnxu (of the map z x U :  G/H x U - t  G/K x U )  to 
M ,  x U. Now if we put 

(disjoint union), then M ,  has the identification topology from the canonical 
map P + M,. Now Mnxo is just M ,  x U as a set, but with the identifica- 
tion topology from the map P x U -+ M ,  x U. However, these spaces are 
Hausdorff and P is compact, from which it is easily deduced that P x U 
+ M ,  x U is a closed map. It follows that M ,  x U has the identification 
topology from P x U - +  M ,  x U. Thus Mnxo - M ,  x U and it follows 
that f is a homeomorphism. I 

Clearly the map z: G/H+ GIK of 4.2 is completely determined up to 
equivalence (Le., up to composition with equivalences of the domain and 
target) by the G-space W. It is natural to ask to what extent z is determined 
by only the orbit types of G/H and GIK. In many cases of interest it turns 
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out that there is precisely one such map up to equivalence. The following 
result gives some useful elementary information about this. 

4.3. Proposition Let H and K be closed subgroups of the compact Lie 
group G. There is a natural one-one correspondence between the equivalence 
classes of equivariant maps G/H + G/K and orbits of the action of N(H)/H 
x N(K)/K on (G/K)H. These are also in one-one correspondence with the 
simultaneous conjugacy classes in G of pairs (H', K'), where H' c K' with 
H' conjugate to H and K' conjugate to K. 
If H c K, then there is precisely one such class ifs 

In particular, this holds when N(H) is transitive on (G/K)H and this always 
holds when (G/K)H is connected. 

Proof Recall that R$sH ++ b-lK is a one-one correspondence between 
MapG(G/H, GIK) and (G/K)H (see Chapter I, Exercise 12). By composition 
N(H)/H = MapC(G/H, GIH) acts on the right of MapG(G/H, GIK) and 
N(K)/K acts on the left. Since 

b e  
R ~ . K R K S ~ R ~ , H  = RELE C-lb-la-lK 

this N(K)/K x N(H)/H-action on MapG(G/H, GIK) corresponds to the 
canonical action of N(H)/H x N(K)/K on (G/K)H (where N(H)/H acts 
on the left and N(K)/K acts on the right). This proves the first statement. If 
H c K, then the orbit of eK under this action on (G/K)H is just N(H)N(K)/K 
so that the first part of the second paragraph holds. If (G/K)H is connected, 
then N(H) is transitive on it since N(H) always has only finitely many orbits 
on (G/K)H by 11.5.7. 

For the correspondence with pairs (H', K') we associate to such a pair 
the class of the canonical projection Rf'sA': G/H'+ GIK'. By 1.4.2 we 
obtain every map G / H  + G/K, up to equivalence, this way. If H" = aH'a-l 
and K" = aK'a-l, then 

GIH' GIK' 

Re GIH" - GIK" 
RQ 1 

commutes so that the two projections Re are equivalent. Conversely, if 
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(H", K") and (HI, K') are pairs giving equivalent maps, then there exist 
elements a and b in G such that 

GIH' GIK' 

R a I  I Rb 

GIH" A GIK" 

commutes. However, then R,R"sH' = RF"sH' which means that b = ka for 
some k E K" by 1.4.2. Thus H' = a-lH"a and K' = b-lK"b = a-lk-l K"ka 
= a-lK"a so that (H', K') and (H", K ' )  are simultaneously conjugate. I 

The case of main interest to us later is that for which G c O(n), K = G 
n O(n - I), H = G n O(n - 2) and for which G is transitive on Sn-l. 
In this case we have (G/K)H = (Sn-l)H which is a sphere containing 
(Sn-l)O(n-2) = S1. Thus (G/K)H is connected and there is just one equi- 
variant map G / H +  GIK up to equivalence in this case. 

5. CLASSIFICATION OF ACTIONS WITH TWO ORBIT TYPES 

Let X be a given (paracompact) manifold with boundary B. Let G be 
a compact Lie group and H c K closed subgroups of G. Let X have the 
orbit structure which assigns type(G/K) to B and type(G/H) to X -  B. 
In this section we shall classify G-spaces W over X ;  that is, G-spaces W 

together with an orbit structure preserving homeomorphism W/G 1 X.  
Of course, we wish to classify such actions up to equivalence over X.  

Note that in the present context W need not be a manifold. Even though 
the case of locally smooth actions on manifolds W is our main concern 
here, such an assumption does not simplify the discussion. (See the remarks 
in Example 5.2.) 

By the Collaring Theorem, we can regard Xas the union X ,  u ([0, 21 x B )  
with intersection (2) x B and with ( 0 )  x B identified with B. Let X, 
= X ,  u ([1,2] x B )  so that X =  X ,  u ([0,1] x B).  (The interval [1,2] 
will be used later to support a homotopy.) Put B, = (1) x B. 

Let W be a G-space over X and p :  W - t  X the given projection. Then 
p-lB + B is a G/K-bundle with structure group N(K)/K. We shall denote 
this bundle by CT (for "singular"). Similarly p-lX, ---t X ,  is a GIH-bundle 
with structure group N(H)/H and will be denoted by e (for "regular"). 
By the Tube Theorem 4.2, there is an equivariant map y : p-l(B,) ---t p-l(B) 
over B and an equivalence M ,  - p-l(I x B )  over I x B, which restricts 

- 
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to the canonical identification of the top of My with p-l(B,) (and similarly 
for the bottom). Thus W is equivalent over X to the union of the total space 
E(p) = p-’(X,) of e and the mapping cylinder M y  of the equivariant map 
y :  E(p I B,) = p-lB, +p-’B = E(a) over B. (In this section we use E(u) 
to denote the total space of a, etc.) 

Therefore every such G-space W over X can be constructed, to equiva- 
lence over X ,  as follows: We are given a G/H-bundle p over X ,  , a G/K- 
bundle a over B, and an equivariant map y: E(p I B,) - E(o) over B. 
Then construct 

W = w e ,  a, Y )  = E(e) u My’ 

where the union is via the canonical identification of E p  I B,) c E(@) 
with the top of the mapping cylinder M,.  

Let MapG(@ I B,, a) denote the set of all equivariant maps y :  E(p I B l )  
-+ E(Q) over B. By 11.2.8, since MapG(G/H, G/K) - (G/K)*, there is a bun- 
dle (,u for “map”) 

,u = JGA%? 1 B,, 0) 

over B (depending on p I B, and a) with fiber (G/K)H and structure group 
N ( H ) / H  x N(K)/K (made effective) and a canonical one-one correspon- 
dence 

MapG(@ I B, 9 - roc) 
of equivariant maps over B with cross sections of ,u. Also, by the remarks 
following 11.2.8, equivariant homotopies of maps correspond to homo- 
topies of sections. Thus the set 

d T P )  

of homotopy classes of sections of ,u corresponds to the set of equivariant 
homotopy classes of maps E(p I B,) - E(a) over B. 

Thus, given a, p (which determine ,u) and y E r(,u), we have shown how 
to construct a G-space W(p, Q, y) over X. Let us show now that W(p, a, y )  
depends, to equivalence, only on the homotopy class [y] E n$@) of y. 

Suppose that yo and yl are equivariantly homotopic maps, via the ho- 
motopy 

F:  E(p I B,) x I - E(o) 

over B. Put F‘(x, t )  = (F(x,  t), t )  so that 

F’: E p  I B,) x I - E(a) X I 
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is an equivariant map over B x I. Put 

Y = ( E @ )  x I) u MF' 

which is a G-space over X x I with orbit structure induced by the projec- 
tion to X. However, the part of Y over X x {0} is W(e, u, yo) and that 
over X x { l }  is W(e, a, yl). Thus these are equivalent over X by the Cov- 
vering Homotopy Theorem of Palais in the form of 11.7.1. 

There are some other obvious redundancies in the data (e, u, y). Indeed, 
suppose that p: E(e) -+ E(e) is a self-equivalence over Xl and that 8: 
E(a) - E(u) is a self-equivalence over B. Let p' be the restriction of p to 
E(e I Bl).  Then the commutative diagram 

r'cpe 
E(e I Bl) - E ( 4  

Ek? I Bl) A E ( 4  

I 10-1 

- 
gives rise to an equivalence M,+,,vve 1 M,. The union of this with the 
equivalence p : E(e) + E(e)  produces an equivalence 

- m e ,  b, V'PQ 1 @%J, 0, Y )  

of G-spaces over X. 
Here we are using the convention that the composition p'y8 acts 

in the left to right order (as if we write these as maps on the right). This 
is contrary to our usual convention and we apologize to any traditionalist 
readers for it. The reason for it is that equivariant maps G/H - G/K, etc., 
are right translations. If we did not use this convention, it would tend to 
confuse our later remarks. 

Note. 

Thus we consider the composition action 

0: Map"(@, e) x MapG(@ I Bl , a) x Map@@, 0 )  - Map"(@ I Bl ,u ) .  

Thinking of equivariant maps as sections of bundles via 11.2.8, this is 

0: ~ ( J 9 G ( e ,  el) x u p )  x r(JqG(a, a ) )  - rb), 
and, fiberwise, 0 corresponds to the usual action 

This action on r(p) induces one on nJb) ,  and, since operating on a map 
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by homotopic maps gives homotopic maps, this is essentially an action 

For [y] E nor@), the homotopy class of y E F@), let [ y ] *  denote its orbit 
under the action 0,. 

We have shown that W(p, u, y )  depends, up to equivalence over X, 
only on e, u, and [y]*. Thus we let 

w e ,  6, [Yl*) 

denote this equivalence class over X of G-spaces. 

Remark It is clear, of course, that a change of e and u by equivalences 
produces canonical changes in p and the action 0,. Thus the dependence of 
W(e, u, [y]*) on @ and u is actually only on the (G-equivariant) equivalence 
classes [el and [u] of e and u over Xl and B, respectively. Also, since the prin- 
cipal bundle associated with the G/H-bundle @ is retrieved simply by pass- 
ing to the fixed point set of H on E(@) (by II.5.11), we may regard [ @ ]  

as the equivalence class of this associated principal N(H)/H-bundle or, by 
classification, as a homotopy class 

[ @ I  E [XI Y B N ( H ) / H l ,  

where BN,H,/H is a classifying space for N ( H ) / H .  (Also note that Xl could 
be replaced by X here, if we wish, and @ may be regarded as a bundle over 
X.) We may similarly regard 

[a1 E [B, B N ( K ) , K l .  

5.1. Theorem (First Classification Theorem) For given regular and 
singular bundles p and u, the assignment [y]* H W(e, u, [y]*) is a one-one 
correspondence between the set of orbits of the action 0, on nJ@) [where 
p = A$+"(@ I B l ,  a)] and the set of equivalence classes over X of G-spaces 
over X with these regular and singular bundles. 

Proof First let us remark that it may very well happen that for given e, 
u there are no sections of p. This simply means that e, u are inconsistent in 
the sense that there exist no G-spaces over X with these particular regular 
and singular bundles. 

We have already shown that the indicated assignment is well defined 
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and onto. Thus we must show that if W(e, 0, y )  and W(e, 0, 9) are equiva- 
lent over X ,  then [y]* = [9]*. Thus we are given an equivariant map 

f: E(e) u M ,  - E(e) u M ,  

over X (necessarily an equivalence of G-spaces), where 

9, Y :  E(e I Bd - 
are G-equivariant maps over B. 

If b E B, then the part of M ,  above I x {b}  is equivalent as a G-space 
over I to a mapping cylinder M ,  , where n : G/H + G/K is some equivariant 
map. (In fact, by conjugating Hand K (separately) it could be assumed that 
n is the canonical projection.) Since f is an equivalence of this to the part 
of M ,  over I x {b} ,  the latter is also equivalent to M,. Thus M ,  and M ,  
may both be regarded as M,-bundles over B with structure group S = S(n) 
in the notation of Section 4. (Thus S = [N(H) n N(K)]/H if we arrange 
n to be the projection.) 

Since the restriction f ': M ,  - M ,  off  is an equivalence of G-spaces 
over I x B, it is a T-equivalence in the terminology of Section 3, where 
T = HomeoIG(M,). By 3.3 and 4.1, f' is homotopic through T-equivalences 
to an S-equivalence fi' : M ,  + M,. Let 

F: I x M,-M, 

be this homotopy, so that F(0, x )  = f ' ( x )  and F(1, x )  =f i ' (x) .  Now 
a T-equivalence is necessarily G-equivariant, so that F is an equivariant 
homotopy. Now e I ([1,2] x B )  is equivalent to [1,2] x (e I B,). Using this 
parametrization, and regarding e I B, as the top of M,, we define 

F': X E(@ 1 Bi) + [1,21 X Ek? I Bd 

by 
F'(t, X )  = (t ,  F(2 - t ,  x ) ) .  

Then F' can be regarded as an equivalence of E(e I [1,2] x B )  with itself 
over [1,2] x B which equals f (= f ') over (2) x B and equals f,' over 
(1) x B. Thus f over X -  X , ,  F' over [1,2] x B, and f i r  over [0,1] x B 
match together to define an equivalence 

E(e) u M, E+ E(e) u M, 

which extends the S-equivalence fi' : M ,  - M ,  . 
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This shows that we may as well assume that the restriction f ': M,,, -+ M p  
off is an S-equivalence. However, this simply means that f' is the map of 
mapping cylinders induced by a commutative diagram 

(That is, the commutativity of this is implied by the fact that f '  is an S- 
equivalence, the point being that S preserves the mapping cylinder structure 
of the fibers.) This shows that rp and y are in the same orbit of the action 0 
and, in particular, that [p]* = [y]*. I 

Remark Note that the proof shows that if p, y :  E(@ 1 Bl) -+ E(o) are 
equivariantly homotopic (and hence lead to equivalent G-spaces), then 
they are, in fact, in the same orbit of 0. That is, rp differs from y only by 
composition with self-equivalences of E(@) and E(o). In fact, one can show 
that equivariantly homotopic rp and y differ only by composition with a 
self-equivalence of E(@). This is due to the fact (11.5.7) that each component 
of (G/K)= is contained in an N(H)/H-orbit. 

We shall now apply 5.1 to some specific examples. 

5.2. Example Let (G, K, H )  = (U(n), U(n - l), U(n - 2)). Note that the 
diagonal action of U(n) on S4n-1 c C" x C" has the given orbit types and 
has orbit space D3 with the boundary S2 consisting exactly of the singular 
orbits U(n)/U(n - 1) - S2"-l (which the reader may verify; compare 
Chapter I, Section 7). 

Now consider any G-space W over D3 with this orbit structure. By 4.3 
there is precisely one equivariant map z: U(n)/U(n - 2) -+ U(n)/U(n - 1) 
up to equivalence. If z is the canonical projection, then M ,  is a linear 
(closed) tube about its orbit U(n)/U(n - 1). Thus it follows that any such 
G-space W is a (4n - 1)-manifold with locally smooth G-action. Clearly 
N(H) /H - U(2) and N(K) /K  - U(l) -S1. Now there is exactly one ele- 
ment [el E [D3, B,,,,]. Also 

[o] E [SZ, B,,,,] - HZ(S2; nl(S1)) = HZ(S2; Z) - z 

is characterized by the Chern class cl(c) = [o] E H2(S2; Z) - Z. 
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Since (U(n)/U(n - l))U(n-2) = (S2n-1)U(n-2) = S3 we have that p = 

AZpa(e I S2, a) is some S3-bundle over S2 (for any choice of a). By 
obstruction theory, there is a one-one correspondence 

n*P(p) t, P ( S 2 ;  n,(S3)) = 0. 

Thus such U(n)-spaces W over D3 are completely determined by the 
characteristic class cl(a) of the principal S1-bundle associated with the 
(U(n)/U(n - 1))-bundle (T of singular orbits over S2. Now if T = (diag(1, 
z2,  . . . , z,) E U(n)}, which is a maximal torus of U(n - l), then we see that 

(U(n)/U(n - 2))T = 0, 
(U(n)/U(n - 1))T = (U(n)/U(n - l))U(%-l) = s1. 

Thus WT - S2 is precisely the principal S1-bundle associated with u. Since 
cl(u) is just the euler class of this S*-bundle over S2, one computes from the 
Gysin sequence that 

H2( WT; Z) - Z,, 

where k = I cl(a) I .  Thus Wz' is a homology 3-sphere (and, if so, then an 
actual 3-sphere) iff cl(a) = f l .  Therefore, if W is a homology sphere, 
then so is WT by 111.10.2, and hence cl(a) = &l.  

Now if we reflect D3 across D2 by f: D3 + D3, then we have the pull- 
back 

.f*W- w 

Clearly the invariant [u] = c,(a) attached to f* W is just the negative of 
that for W. 

Thus, up to reflection of D3, the only such U(n)-action on an integral 
homology sphere W is precisely the linear action described at the beginning. 

A completely analogous discussion shows that an action of Sp(n) over D5 
with isotropy types Sp(n - 1) and Sp(n - 2) is completely characterized 
by the characteristic class 

[a] E H4(S4; n3(S3))  - z 
of the principal S3-bundle over S4 associated with the bundle of singular 
orbits. Again, up to reflection of D5, there is precisely one such action on an 
integral homology sphere, and this is the diagonal action of Sp(n) on SBn-' 
c Qn x Q" [twice the standard representation of Sp(n)]. 
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Remark The case, analogous to 5.2, of O(n)-actions over D2 with isotropy 
types O(n - 1) and O(n - 2) is actually the main case of interest to us, 
since it includes the exotic examples discussed in Chapter I, Section 7. 
However, it is more convenient to treat this case from another point of view 
and we shall do this at some length in Sections 6 and 7. Nevertheless, it is of 
interest to carry out the analysis of this case from the present point of view, 
since it illustrates the action 0, on zJ&) quite well, and the reader is invited 
to do this for himself. Exercise 1 gives another case in which the action 
0, plays an important role. 

Remark If B is disconnected, then it may be necessary to choose different 
maps n: G/H+ GIK over each component of B for the proof of 5.1. 
This does not affect the statement of 5.1 itself, however. Moreover, it is not 
even necessary that type(G/K) be the same for each component of B ;  that 
is, K may be allowed to be different (nonconjugate) for different components 
of B. The necessary modifications in the proof are obvious. The statement 
of 5.1 covers this generalization if it is interpreted correctly in the obvious 
way. 

6. THE SECOND CLASSIFICATION THEOREM 

The Classification Theorem 5.1 contains the singular bundle 0 explicitly. 
Sometimes this is an advantage, particularly in examples (such as 5.2) 
for which 0 carries all or most of the relevant information. In other cases, 
however, this can be a disadvantage. In this section, we shall prove an al- 
ternative classification theorem in which the singular bundle is hidden, but 
which possesses other advantages, particularly in that it takes a very simple 
form when X is contractible. 

We retain the notation of Section 5. In  particular, H c K c G are fixed 
once and for all. The manifold X with boundary B and its orbit structure 
are as in Section 5. 

First, we must discuss a technical point necessary to the present approach. 
If Y is a G-space over X with projection p :  Y + X ,  then, for each compo- 
nent Bi of B, p-l(I x Bi) -+ Bi is an M,-bundle for some equivariant map 
7 ~ :  G/H+ GIK (depending on i), by the Tube Theorem 4.2. This map n 
is determined only up to self-equivalences of GIH and GIK; that is, up to 
its orbit in (G/K)H under N ( H ) / H  x N(K)/K (see 4.3). We shall say that 
Y is proper [with respect to ( H ,  K ) ]  if z (for each i) can be chosen to be the 
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canonical projection GIH + G/K. By 4.3, if (G/K)H is connected, then all 
G-spaces over X are proper, and this will be true for all specific cases with 
which we will deal. If B is connected, then K can be changed by a conjuga- 
tion so that any given Y will become proper for the new ( H ,  K ) ,  but the 
distinction must be made here. 

If B is disconnected, then one should allow K to vary over the components 
and the notion of properness should be generalized in the obvious way. 
Since we shall not need this generalization, we shall not do this, so as not 
to unduly clutter the exposition. However, it will be clear how to carry this 
modification along. 

A restriction to proper G-spaces Y over X is tantamount to the selection 
of what Janich [l] calls ajine orbit structure on X. Also note (from the proof 
of 4.2) that Y is proper over X iff, for some point y E Y with G, = K, H 
occurs as an isotropy group in a slice at y (over each component of B).  

From now on, in this section, n: GIH + G/K will denote the canonical 
projection. Also, we put 

and 

Let Y be a proper G-space over X with projection p :  Y + X.  Let e be 
the GIH-bundle p-lX, ---f X ,  as in Section 5. It will be convenient to display 
the principal bundles explicitly in this section, and thus we let P --f XI 
be the principal N-bundle associated with e. Thus we have an equivalence 

h: GIH x N P L p - l X l  

of G-spaces over X I .  By the Tube Theorem 4.2 and properness, there exists 
a principal S-bundle Q -+ B and an equivalence 

- 
k': M ,  xs Q l p - l ( I  x B )  

of G-spaces over I x B. Since G/H may be regarded as the top of M,, 
k' restricts to an equivalence 

I 

k :  GIH x s Q z p - l B ,  

of G-spaces over B, . Let us denote by P,  the part of P over B, c X, . Then 

f ' = h-'k: GIH X s  Q -+ G/H XN Pi 

is a G-equivariant map (equivalence) over B l .  By 3.2, f' corresponds 
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uniquely to an S-reduction 

of P ,  to Q. 
Thus the G-space Y can be constructed, to equivalence over X ,  as follows: 

We are given the GIH-bundle e over X ,  which is associated with a principal 
N-bundle P -+ XI. We are also given an S-reduction (Q ,  f) of P1 (the part 
of P over Bl) .  To this corresponds the G-equivariant map 

f: Q - P i  

- 
f’: GIH X ~ Q ~ G I H  X ~ P ,  

over B, .  Then we construct the (proper) G-space 

Y(e, < Q , f  1) = (Mn X S  Q )  Uf’ (GIH X N P )  

over X .  
It is clear that if the S-reduction (Q,  f) is changed by an equivalence, 

then Y(e, (Q ,  f )) is changed by an equivalence of G-spaces over X .  
Suppose now that 9 E MapG(@, e). [Note that this corresponds (by 3.2, 

for example) uniquely to a self-equivalence P --+ P of principal N-bundles 
over X ,  which we shall continue to denote by 9.1 If 9, : P,  -+ P,  is the restric- 
tion of 9, then the union of the identity on Mn x s  Q and 9 on G/H X N  P 
clearly gives an equivalence 

(Here, as in Section 5 ,  the compositionfil acts from left to right.) 
Note that 

S\N = (N(H) n NW))\NH) 

and recall that by 3.1, the S-reduction (Q,  f) gives rise to a cross section 

7 E r(r I BI), 
where T,I is the S\N-bundle associated with e. (Thus the total space of 7 is 
(\N) x N  P . )  Also t depends only on the equivalence class of (Q,f). 
The composition with the restriction 9, of q~ defines an action 

@: r(r I 4) x MapG(@, e) -+ ml I Bl). 

Regarding elements of MapG(@, e) as sections of the bundle kpG(@, e) 
with fiber N = N(H)/H, then 

@: r(rl I BJ x r(dpG(e, el) -+ ml I 4) 
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is, fiberwise, just the canonical right translation action 

( S \ N )  x N - + S \ N .  

By the remark preceding 3.2, a homotopy of z is induced by an S-equi- 
variant homotopy Q x I + P,  off; that is, by a G-equivariant homotopy 

off over B, . It is easily seen, much as in the proof of 5.1 , that this change 
off changes Y(e, ( Q , f ) )  only by an equivalence over X. (Alternatively, 
this can be seen by showing that homotopic sections of 7 I B, lie in the same 
orbit of @.) Denote the action on homotopy classes induced by @ by 

Then we have shown that Y(e, (Q,  f )) depends to equivalence over X 
only on e and the orbit [z]* of [z] E nJ(7 I B,) under @,, where t E r(qlB,)  
is the section corresponding to the S-reduction ( Q , f ) .  Let 

denote this equivalence class of G-spaces over X. (As in Section 5 ,  an equiv- 
alence of e with e' produces canonical changes in 7, @,, and [TI*, so that 
only the equivalence class [el E [X,  , BN] matters.) 

Now suppose that Y(e, (Q,, ,f,)) and Y(e, (Q, ,A))  are equivalent over 
X via the map 

- 
( M n  X s Qo) Ufo' (GIff X h' P> -1 ( M n  X s Q I )  Ufi' (GIff X N P> 

which, as in the proof of 5.1, may be taken as an S-equivalence over I x B. 
If y is the restriction of this to G/H x P and if y is the restriction of it to 
G / H  x Q, --f G / H  x Q,  , then we have the commutative diagram 

This shows that the S-reductions ( Q , , f i )  and ( Q o , f , ~ )  are equivalent. 
Thus the sections to and z1 of I B, associated with (Qo , fo) and (Q, ,A) 
are in the same orbit under @. This proves the following theorem. 
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6.1. Theorem (Second Classification Theorem) Let H c K c G be 
given and let X be as above. For a given regular bundle e (a GIH-bundle over 
X, with structure group N(H)/H),  let 17 be the associated bundle with jiber 
( N ( H )  n N(K))\N(H) and let Do be the action of nJ(A&P(e,e)) on 
nJ(q I Bl)  dejined above. Then the assignment [t]* H Y(e, [TI*) is a one-one 
correspondence between the set nJ(q I Bl)/Do and the set of equivalence 
classes over X of proper G-spaces over X having regular bundle e. I 

Remark Theorems similar to 6.1 were proved by Janich [l] and Hsiang 
and Hsiang [4] in the differentiable case (which is easier). The reader should 
beware of some mistakes in these references, particularly the latter. For 
example, in the Hsiang paper, [t] E nJ(q I B,) is called the “twist invariant” 
and is treated as if it were an invariant, which it is not. A strong differentiable 
version of 6.1 will be proved in Chapter VI, Section 6. 

This result takes a particularly simple form, which is due to Janich, 
when X is contractible. In this case e is a trivial bundle (and the trivializa- 
tion is essentially unique) and hence so is q and 11 I B,. Thus 

n0r(v I B,) = [Bly (N(H) n N(K))\N(H)I. 

Also A#(e,  e) is the trivial N(H)/H-bundle over X ,  and every map XI 
-+ N(H)/H is homotopic to a constant map, so that 

the group of arc components of N(H) /H (that is, the quotient of N(H)/H 
by its component of the identity). The action Do is clearly induced, in the 
obvious way, by the right translation action of N = N(H)/H on S \ N  
= (N(H)  n N(K))\N(H). Thus we have the following corollary. 

6.2. Corollary In the situation of 6.1 with X contractible, the set of equiv- 
alence classes of proper G-spaces over X is in one-one correspondence with 

I 

6.3. Example Let (G, K, H )  = (O(n), O(n - l), O(n - 2 ) )  and X =  D2. 
By 4.3 every such action over D2 is proper and it is also clearly locally smooth 
on a (2n - I)-manifold. Then N = N ( H ) / H  = O(2) and S = (N(H)  
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n N ( K ) ) / H  - 0(1)  x 0(1)  2: Z, x Z,. Thus S \ N  = RP1 (= S l )  with 
the usual O(2)-action. Note that 0 ( 1 )  c O(2) reflects S1. Thus no(N)  
2: Z, acts on [Sl,  S \ N ]  2: [S l ,  Sl] 2: Z by taking m to -m. Thus [Sl,  
S\N]/nO(N) = Z+, the nonnegative integers. The actions of O(n) on ZkS1 
described in Chapter I, Section 7 are of this type, and we shall now show 
that the invariant in Zf for ,Z;*' is just I k I. Another method of showing 
that the 2P-l exhaust these actions is given in Section 7. Of course, we 
could with sufficient care, simply compute the invariant for the ex- 
plicitly given action, but it would seem to be preferable to give the fol- 
lowing indirect argument. Let denote the O(n)-space over D2 with 
invariant k >_ 0 in Zf = [S l ,  S\N]/n,(N). Consider the fixed point set 
F(O(n - 2), Qn-l). Now O(2) x O(n - 2) c O(n) and the factor O(2) 
can be regarded as N ( H ) / H  = N .  Similarly O(1) x 0(1) x O(n - 2 )  
c O(n) and 0(1)  x 0 ( 1 )  can be regarded as (N(H)  n N ( K ) ) / H =  S. 
Clearly O(2) is transitive on both F(O(n - 2), O(n)/O(n - 2 ) )  and 
F(O(n - 2), O(n)/O(n - 1)) and hence F(O(n - 2), Y,$"-')/0(2) is ca- 
nonically identified with Yjn-l/O(n).  It is also clear that the invariant in 
[Sl,  O(1) x O(1)\O(2)]/n0(O(2)) for O(2) on F(O(n - 2), ~ z n - 1 )  is 
just k.  Thus it follows that 

Y,3 2: F(O(n - 2), Y p - 1 )  

as O(2)-spaces over D2. Since we also had Zk3 
will suffice to treat the case n = 2. 

the pull-back diagram 

F(O(n - 2), Zi-') it 

For k > 0, consider the map fk: D2 + D2 given by fk(z) = 2. There is 

fk* yzn-1 -, y?n-1 
3 3 

1 
b D2 fk 

1 
D2 

and the invariant in [S l ,  s\N]/n,,(N) for the O(n)-space fk* YT-' is clearly 
jk. Thus 

f ,*y?n- l  2: q E - 1  
3 

as O(n)-spaces over D2. In particular, fk*Y:n-l M Yia-l. Note that fk is 
the orbit map of a Z,-action on D2. Thus the pull-back Yia-l = fk*Y:%-l 
has an action of Zk x O(n), and, moreover, the factor z k  leaves stationary 
the orbit O(n)/O(n - 2) over 0 E D2 and acts freely outside this orbit. 
For n = 2, this fixed set of Z, (and of any nontrivial subgroup) is O(2) 
2: S1 + S1. By the Smith Theorem 111.7.11, Yk3 cannot be a sphere for 
k # 1, Thus the diagonal linear action of O(2) on S3 c R2 x R2 must 
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coincide with the O(2)-space Y13. (Recall that Z13 is also this linear O(2)- 
space.) 

Regarding S3 c C x C, the given linear O(2)-action is generated by the 
S1 = SO(2) action z(s, t )  = (zs, zt) and the O(1)-action which is given by 
the involution (s, t )  H (F, 7). A change of coordinates 

s - it s + it 
u=- and v = -  

fl 6 
transforms this action into the same S1-action but with the O( 1)-action 
becoming (u, v )  t+ ( J ,  a). In these coordinates the circles u = 0 and v = 0 
form (together) a principal orbit of 0(2), and we may assume that this 
orbit corresponds to the origin 0 E D2. 

Now the lens space L k  = L(k, 1) is the quotient space s3/zk,  where 
Z k  c S1 in the above action. Let [u, v]  denote the point of L k  which is the 
orbit of z k  on (u, v )  E S3. Since Zk is normal in 0(2), there is an induced 
action of 0(2)/Zk on Lk.  Now z ++ zk clearly induces an isomorphism 

- 
o(2)/zk o(2)  

and thus we may consider this action on L k  as an 0(2)-action. (Thus S1 
acts on Lk by z[u, v ]  = [zl%, ~ ~ ’ ~ v ] ,  with the same choice of zllk for each 
factor; and 0(1) acts via [u, v ]  H [ J ,  a].) Consider the map 

v: Lk*s3 

This is clearly O(2)-equivariant. If ~ [ u ,  v ]  = q[u’, u’], then there is a real 
number t > 0 with ( t ~ ’ ) ~  = uk and ( t ~ ’ ) ~  = vk. Since 

1 = [ u 12 + [ v 12 = I tu ‘y + [ tv’12 = P((l u’ 12 + [ v’ 12) = t 2  

we have t = 1. Thus [u, v]  = [u’, wv’] for some kth root of unity w. 
Now [u, v ]  H [u, wv] defines an action of z k  on L k  and 9) can be regarded 

as the orbit map of this Zk-action. Moreover, this Zk-action commutes 
with the given O(2)-action, so that together these give an action of Zk 
X O(2) on Lk. The diagram 

Lk s3 

I I 
Lk/0(2) 1 D2 = s3/o(2) 
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commutes and is clearly a pull-back diagram. The O(2)-orbit {[u, v] I u = 0 
or v = 0} is fixed by the Z,-action on Lk and it is clear that no other O(2)- 
orbit is taken into itself by any nontrivial element w E zk. That is, Zk is 
free on Lk/O(2) outside a single stationary point. Thus Lk/0(2) is the cyclic 
k-fold covering of D2 branched at (0). 

It follows that 
LdO(2) M D2 

(which could be seen directly) and that the map y~ in the above diagram can 
be taken to be f,: D2 + D2. Consequently 

as O(2)-spaces. Since the Lk are distinguished from one another as spaces 
by the order k, of it follows that Yk3 - Zk3 for all k. (It is amusing 
to note that this shows that the definition of L(k, 1) used here is equivalent 
to that used to define zk3.) As remarked above, this implies in general 
that 

En-1 % Zp-1 

as O(n)-spaces over D2. We have proved the following result which gives 
the classification of O(n)-spaces over D2 in a form which is convenient for 
some applications. 

6.4. Theorem Consider O(n)-spaces over D2 with isotropy types O(n - 1) 
on S1 and O(n - 2) on int(D2), n >_ 2. Any such space Y is equivalent over 
D2 to ,,Zin-l for some k 2 0. Moreover, for this k we have H,(Ya; Z) - Zk 
(Z when k = 0),  where H = O(n - 2) .  Thus the O(n)-spaces over D2 are 
classijied by the first homology group of the fixed set of O(n - 2). I 

Note that we have also shown that the O(n)-action on 2P-l can be ex- 
tended to an action of Zk x O(n) with 

F(Zk, Ztn-') M O(n)/O(n - 2). 

In particular, for k odd, Z k  acts on 2 k 5  w S5 with fixed set 0(3 ) /0 (1 )  - RP3. We will see this Zk-action again in Section 9 from a different point 
of view. It was first noticed by Hirzebruch in the context of Section 9 (see 
Hirzebruch and Mayer [l]), and answered a question stated in Bredon [12]. 
Also Yang [7] independently found such examples by another method. 
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Remark In this section and in Section 5 we have been assuming that X 
is a manifold with boundary B. However, we have not fully used this assump- 
tion (it is just the main case of interest). It clearly suffices for X to be a 
metrizable space and for B to be a closed subspace which is locally con- 
nected, has the homotopy type of a CW-complex, and is collared in X.  
For example, X could be Dm and B c S"-' a closed hemisphere. 

7. CLASSIFICATION OF SELF-EQUIVALENCES 

Let G 2 K 2 H a n d  ( X ,  B )  be as in Section 6. Let Y be a proper G-space 
over X .  In this section we show how to classify the self-equivalences of Y 
over X up to equivariant homotopy over X .  We may take Y to be of the 
form Y = Y(e,  (Q, f )) in the notation of Section 6. Thus P is a principal 
N-bundle over X ,  [with N = N ( H ) / H ]  with e the associated GIH-bundle 
GIH x N P -+ X, ,  f: Q -+ P, is an S-reduction of the restriction P, of P 
to B, [with S = ( N ( H )  n N ( K ) ) / H ] ,  and 

y =  ( M ,  X s  Q )  Uft (GIH X N P ) ,  
- 

where f I :  GIH x Q 1 GIH x P, is induced by f, and n: G/H -+ G / K  
is the projection. 

Let 5 be the bundle GIH x s  Q -+ B, and &pG([, [) the bundle (defined 
in 11.2.8) whose sections are the equivariant self-maps of 6 over B,.  This 
bundle has fiber N and may also be regarded as the bundle of N-equiva- 
lences of 5 over B, (see Section 3). Then f' clearly induces an isomorphism 

of bundles over B, , which we may regard as an identification (with f fixed). 
The S-equivalences of 5 form a subbundle of G(5, 5 )  which has fiber 
S.  (As defined, this has structure group S x S made effective, acting by 
right and left translations, but this is easily seen to be reducible to S acting 
by conjugation. Similarly for &pG(e, e). We do not need this fact, however.) 
Let us call this subbundle of S-equivalences 

S-JpG(E, E )  = JpG(e ,  e> I B,.  

Now suppose we have a self-equivalence v: Y -+ Y over X.  By 3.3 and 4.1, 
v I I x B is equivariantly homotopic to an S-equivalence. Now the part 
of Y over [1,2] x B is equivalent to [1,2] x (GIH x P,) - [1,2] x (G/H 
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x S  Q). Let qjt be the tth stage of this homotopy on M ,  xs Q (where 
qj,, = qj) and put yt  = qjtqj-l. Extend yt to [1,2] x (G/H x s  Q) by put- 
ting 

Y t h  4 = (S' Y t M ( 4 ) .  

Then extend pt to [1,2] x (G/H x s  Q) by qjt = ytp. Since q+ = qj over 
(2) x B it extends over X by qj over X,. Thus qj is homotopic over X through 
self-equivalences to qj, which is an S-equivalence over I x B. Similarly one 
sees that if two self-equivalences of Y over X which are S-equivalences over 
I x B are equivariantly homotopic over X ,  then they are homotopic through 
self-equivalences which are S-equivalences over I x B. Let HomeoxG( Y )  

el, 
Xl 

which, over B, , take values in the S-subbundle S-dpG(E, 6) over B, . Then 
we have shown the following theorem, 

denote the group of self-equivalences of Y over X.  Let I'( 
G ( E ,  E ) )  be the set of sections of the N-bundle d p G ( e ,  

7.1. Theorem The natural map 

is a one-one correspondence. I 

Here noHomeoxG( Y )  may be regarded as the set of equivariant homotopy 
classes over X of self-equivalences of Y. The following fact is useful in de- 
termining how S - d p G ( [ ,  6) sits in d+P(e,  e). 

7.2. Proposition Suppose that, in the abovesituation, e is trivial and that, 
for a given trivialization of e ,  the S-reduction f :  Q -t P, gives rise to the map 
z: B, + S \ N  as in Section 6 (the induced cross section of the trivial S \ N -  
bundle q I B,). Then, with respect to the induced trivialization of d p G ( e ,  e )  
as N x X, ,  the fiber of S-dpG(E, 6) over b E B, is 

z(b)-lSz(b). 

Proof Use a chart at b to represent S as the fiber of Q over b. (This is 
determined up to right translation.) In terms of this choice f: Q -+ P, 
= N x B, induces 

f b :  S - t  N. 

Let n = f b ( e )  so that fb(s) = sn. Now an S-equivalence of Q corresponds, 
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in the fiber S over b, to a right translation R, [where R,(s') = s ' s - ~ ] .  The 
N-equivalence of e 1 B, induced by this is, over b, a right translation R, in 
N for some m E N. The diagram 

f b  S - N  

f b  S - N  

then commutes. Applied to e E S this means nm-1 = s-'n; that is, m = n-lsn. 
With s running over S, n-lsn runs over 

n-lSn = ~ ( b ) - ~ S t ( b )  

since t ( b )  =fb(S) = Sn, by definition. (Since t (b )  is a right coset of S, 
~ ( b ) - ~ S z ( b )  = t (b ) - l t (b ) ,  but we include the S in the middle to avoid 
misinterpretation.) I 

7.3. Corollary I f X i s  contractible and the invariant [TI* E [B, S \ N ] / n , ( N )  
of 6.2 is trivial, then there is a one-one correspondence 

[X,  B ;  N ,  s] t, n,HomeoxG( Y) .  

Proof Triviality of [z]* means that z: B, 3 S \ N  can be chosen to be 
the constant map z(b) = Se. With this choice, S-.Ay"(E, E )  = S x Bl 
c N x XI by 7.2, and the result follows from 7.1. 

7.4. Example Let (G, K, H> = (O(n), O(n - I) ,  O(n - 2)), n 2 2, and 
X = I, B = (0, 1). By 6.2 there is just one such G-space over I, namely 
the diagonal action of O(n)  on Sn-l x Sn-l. By 7.3, the homotopy classes 
of self-equivalences of Sn-l x S"-l over I correspond to 

[I, 81; N, s] = [I, 81; 0(2), O(1) x O(1)J. 

To any such self-equivalence q~ we may form the O(n)-space 

W(y)  = S"-l x Dn U, S"-l x Dn 

over D2. Composition of q~ on either side by self-equivalences which extend 
to Sa-I x Dn alters this O(n)-space only by an equivalence over D2. Now 
the self-equivalences of Sn-' x D" over its orbit space (which can be identi- 
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fied with the upper half disk D2+) correspond, up to homotopy, with [D2+, 
S1+; N,  Sl = no(S). Two-sided composition clearly corresponds to the ob- 
vious action 

Y: no(S) X [I, 81; N, Sl x no(S) ---t [I, 81; N , q .  

It is clear, as in Sections 5 and 6 that W(v) and W(y)  are equivalent over 
D2 iff the corresponding homotopy classes [~p] and [y ]  in [I, 81; N,Sl are 
in the same orbit of Y. The reader may supply the details of this. Iff: (I, 81) 
--f (N,S) ,  then by left, or right, multiplication by an element of S we may 
change f to f' with f ' ( 0 )  = e.  Thus it is clear that the orbits of Y on [I, 
dI; N,Sl are in one-one correspondence with the orbits of no(S) acting by 
conjugation on [I, {l}, (0); N,S,e] = n,(N,S,e). Since, by 6.2, S"-l x Dn 
is the only O(n)-space over D2+, to equivalence, we have set up a one-one 
correspondence between the equivalence classes of O(n)-spaces over D2 
and 

nl(O(2), O(1) x OU), e )  nl(S1, Z2, e )  - 
no(O(1) x OW) z2 

9 

where Z2 acts on S1 by the nontrivial automorphism. 

I, Section 7. That is, 
Now consider the self-equivalence p on Sn-' x Sn-l defined in Chapter 

dx ,  Y )  = ( e z w ,  x ) ,  

where 8, denotes the reflection through Rx in Sn-'. Let H = O(n -2) be 
regarded as acting on the last n - 2 coordinates, so that N = N(H)/H - O(2) acting on the first two coordinates. Let C c Sn-l be the circle 
in the plane of the first two coordinates and C+ the semicircle defined by 
requiring the second coordinate to be nonnegative. Let xo = (1,O) E C+.  
Then for y varying over C, ,  the points (xo, y )  E Sn-l x Sn-' describe a 
cross section for the O(n)-action. Moreover, the isotropy group, fory # fxo , 
is just H = O(n - 2). Define 

fb) E s1 = SO(2) 

to be the rotation which takes y to xo.  Then for y E C+,  

This implies that p corresponds (via 7.3) to the map f: C+ -+ S1. (Here 
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we think of C+ as being parametrized by I with 0 corresponding to x, and 
1 to - x o . )  This is a path starting at e and going half way around S1 
= SO(2) ending in the nontrivial element of Z, c S1. By composition 
vk corresponds to f k, the path which goes k/2 times around S1 starting at e. 
Thus the vk give all elements of nl(S1, Z ,  , e) /Z ,  . This means that the exam- 
ples ZEn-l of O(n)-spaces over D2 exhaust all O(n)-spaces over D2 (with 
the given orbit structure) to equivalence over D2. Of course, this was also 
proved in 6.3 by another method. The present method, if done as directly 
as possible (see Bredon [Ill),  is probably the most efficient way of seeing 
this fact. 

Remark The above method was essentially the original method used to 
classify O(n)-spaces over D2 with the given orbit structure. This was done 
in Bredon [l 11, in both the topological and differentiable cases, although 
attention was restricted there to the situation in which the total space is a 
homology sphere (in particular, where k is odd, which is equivalent to the 
nontriviality of the singular bundle). Actually the theorem proved there is 
considerably stronger than the present version since actions of general 
compact Lie groups were considered. (In fact, this accounts for most of 
the difficulties there.) The analogous cases treated in 5.2 can also be done 
easily by this method as the reader may verify. 

Remark The discussion in 7.4 shows that the O(n)-spaces ZP-l and 2:S-l 
over D2 are equivalent over D2, because of the action of Z, on nl(S1, Z, , e). 
This also follows, of course, from 6.4. An equivalence of these was given 
in Chapter I, Section 7, namely the interchange of the copies of Sn-l x Dn, 
but this is not an equivalence over D2. It will be useful to write down an 
explicit such equivalence. To do this let y :  Sn-l x Dn + Sn-l x Dn be 
given by y(x, y )  = (x, O,(y)) .  On Sn-l x Sn-l we have tp = Ty where 
T(x, y )  = (y, x) .  Also note that y2 = 1. Thus 

qky = ( T Y ) ~ ~  = (TY)~-'T = T(WT)~-' = y(yT)' = Y Q ~ - ~  

commutes. Thus y :  Sn-l x Dn + Sn-l x Dn on both copies defines an 
equivalence over D2 of 2 ; - l  to Zin-'. 
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7.5. Example Let us consider the self-equivalences of Z;*-l for k # 0 (the 
case k = 0 being trivial). First we treat those over D2. As we have shown, 
the invariant [t]* E [Sl, S\N]/n,(N) = Z+ is I k 1 so that any represen- 
tative t: S1 -, S \ N  has degree &k. It follows easily that the part of the 
fiber t(b)-lSt(b) - S = 0(1) x 0(1) which is in the component O(2) 
- SO(2) - S1 rotates with nonzero degree as b traverses S1 = dDa. This 
means that there are no sections o (2) x D2 in the compo- 
nent (O(2) - SO(2)) x D2 whi ( 5 , t )  over S1. In the 
component SO(2) x D2 we see that S-AyG(5, 5 )  is just Z, x S1. Thus, 
since n2(S1) = 0, there is exactly one nontrivial self-equivalence, up to ho- 
motopy, of L'in-l, k # 0. Moreover, on a principal orbit G/H = O(n)/ 
O(n - 2) this is equivalent to the right translation by 

and on singular orbits G/K = O(n) /O(n - 1) - Sn-' it is right trans- 
lation by -1  E O(1) = N(K)/K (the antipodal map). The reader may 
verify that the explicit map 

(x7 v) H (-x, -v) 

of Sn-l x Dn to itself (on both copies) induces such a self-equivalence of 

Since this equivalence preserves orientation on L'in-l we conclude that 
there are no Orientation reversing self-equivalences of ,Z;*-l over D2. 

Now any homeomorphism of D2 to itself which preserves orientation is 
known to be isotopic to the identity. It follows from the Covering Homotopy 
Theorem of Palais, 11.7.3, that any self-equivalence of covering such 
a homeomorphism is isotopic (through self-equivalences) to a self-equiva- 
lence over the identity. Thus it suffices to discuss self-equivalences which 
induce a reflection on D2. Moreover, it suffices to consider one such equiv- 
alence since all others are obtained by composition with equivalences over 
the identity. However, from the discussion in the last remark, the map 
y: Sn-l x Dn + Sn-l x Dn given by y(x ,  y )  = (x, €J,(y)) together with 
the interchange of the copies of S"-l x Dn, defines such a self-equivalence 
of Z,$*-l. On the intersection Sn-l x Sn--l, y clearly preserves orientation 
iff n is odd. Thus this self-equivalence over a reflection of D2 preserves orien- 
tation iff n is even. We conclude that there exists an orientation reversing 
self-equivalence of Z;*-l iff n is odd. 

cia-1. 
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8. EQUIVARIANT PLUMBING 

Let t, be the tangent disk bundle of Sn with total space E(t,)  and projec- 
tion p :  E(t,) -+ S". Let Dn be a tame n-disk in S". Then there is a chart 
9 over Dn of the form 

Dn x Dn &p-l(D") 

\ J  
Dn 

with the projection Dn x Dn-+D" being ( x , y ) ~ y .  We shall regard g~ 
as an inclusion. Let p :  Dn x Dn -+ Dn x Dn be p(x, y )  = (y, x). Then the 
plumbing of two copies of E(z,) is defined to be 

E(t,) u p  E(T,). 

(See Figure V-1.) 

D" x D" 

FIGURE V-1 

More generally we may plumb several copies of E(tn)  according to a 
graph. That is, if T is a graph, then we take a copy of E(z,) for each vertex 
v of the graph and we plumb the copies corresponding to v and w if there 
is an edge of the graph between v and w. The disks used for the plumbing 
corresponding to the edge (v,  w) are taken to be disjoint from those used for 
any other edge, so that at most two points in the disjoint union of the E(zn) 
are identified to one point in the plumbing. We denote the result of this 
plumbing by PZn(T) which is a 2n-manifold with boundary. (In the differen- 
tiable case this manifold has corners, which can be straightened by a standard 
process. We shall not concern ourselves with this here.) It is clear how to 
make this precise, and we shall not do it. Figure V-2 should suffice to make 
the meaning clear. 
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FIGURE V-2 

The most important cases are those for which T is a tree (a connected 
graph without circuits) and we shall restrict our attention to this case. There 
are certain classes of trees which are of primary importance (for reasons 
that we shall not enter into) and we illustrate these trees (with their standard 
designations) in Figure V-3, where k stands for the number of vertices. 
Thus Figure V-1 illustrates P2(A,) and Figure V-2 illustrates P2(D,). 

Now consider O(n) c O(n + 1) acting on S", and hence on E(t,)  in 
the standard way. Let fx, be the two fixed points of O(n) on Sn. Then 
O(n) acts on the tangent disk at xo and at -xo. The projection of the tangent 
disk at xo to S" is obviously equivariant for this action. Thus, for an O(n)- 
invariant disk Dn about xo in S", the chart q: Dn x Dn -p-l(D") can be 
chosen to be O(n)-equivariant, where O(n) acts diagonally on Dn x Dn. 
Since p :  Dn x Dn -+ D" x Dn is equivariant for the diagonal action, there 
is an induced O(n)-action on the plumbing 

PZn(A2) = E(t,) U, E(t,). 

Each of these copies of E(t,) has another fixed point -xo E Sn about 
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which we may perform further plumbing. Thus we clearly have a natural 
O(n)-action on PZn(Ak) for all k. This does not work for the other graphs 
since there are not enough fixed points in S” at which to plumb. However, 
the subgroup O(n - 1) has a circle of fixed points on Sn so that PZn(T) 
has an action of O(n - 1) for any graph T. In general, the order of the 
plumbings around the circle of fixed points must be specified, but for the 
trees in Figure V-3 this is clearly irrelevant. 

- 
T---- El, ( k  = 6,7,8) 

FIGURE V-3 

In this section we shall be interested mainly in the O(n)-spaces aPZn(Ak). 
First let us show how to compute the homology of a P ( T )  for any tree T. 
It is clear that the union of the 0-sections S” of the disk bundles E(t,)  is 
a deformation retract of P ( T )  and this union has the homotopy type of 
the one-point union of k copies of Sn, where k is the number of vertices of 
T. Thus f&((PZn(T)) is free abelian on k generators (the 0-sections) for i = n 
and is trivial for i # n. For n 2 2, PZn(T) is simply connected and hence it 
is orientable, and P2(T) is also obviously orientable. (In fact it is easily 
seen that PZn(T) is parallelizable.) 

More generally, let MZn be a compact oriented 2n-manifold with boundary 
BZn-l and assume that &(M) is free abelian for i = n and is 0 for i # n. 
We wish to show how to compute H,(B). To do this consider the commuta- 
tive Poincart-Lefschetz duality diagram 

This shows that Hi(B)  and Hi(B)  are 0 for i # 0, n - 1, n, 2n - 1. 
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Also we have the diagram 

j. 
0 -+ H J B )  + H,(M) - H,(M, B)+H,-1(B)+ 0 

I =  .I= .I= I= 
0 +Hn-l(B)+ H y M ,  B ) T  H y M )  + H y B )  + 0. 

To compute H,(B) and H,-,(B) it clearly suffices to know the matrix of 
the homomorphism j ,  with respect to any bases of the free abelian groups 
H,(M) and H,(M, B)  of rank k. Equivalently, it suffices to know the ho- 
momorphism 

oj,: H,(M) + H y M ) .  

Since H,(M) is free abelian, the evaluation homomorphism 

Hn(M) + Hom(H,(M), Z) 

is an isomorphism. Recall that this is given by the cap product 

w t f w  n ( a )  

where we are identifying H,,(M) with Z. Thus it suffices to know the ho- 
momorphism 

Y :  f f n ( M )  -+ Hom(%(M), z) 

~(46% = 444 n B 
given by 

where a, B E H,(M). Now let us recall that A-l is given (in both cases) 
by the cap product 

A-l(w) = w n [MI 

with the fundamental (orientation) class [MI E H,,(M, B )  of M .  Recall 
that the intersection number a . B of a, B E H,(M) is defined to be 

a ' )i3 = A-1(A(a) u A @ ) ) .  

Thus 

a - B = ( A b )  u A@)) n [ M I  
= n ( A @ )  n [MI) 
= d ( a )  n B = j*d(a) n = Aj,(a) n B = y(a)@). 

Therefore, given a basis of the free abelian group Hn(M) and the dual basis 
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- 0  
- 1  

- 

0 

of Hom(H,(M), Z), the matrix of y is just the intersection matrix of M 
with respect to this basis of Hn(M). Since a . ,8 = (-1)",8 - a, this matrix 
is symmetric when n is even and is skew-symmetric when n is odd. 

Returning to the manifold A4 = PZn(T), note that we may take the basis 
of Hn(M) to be the fundamental classes of the 0-sections of the various 
copies of E(t,) .  Thus, denoting the vertices of T by v l ,  . . . , V k ,  we have 
a basis element ai E H,(P%(T)) corresponding to each v i .  Now ai - ai 

can be computed from E(z,) and this is well known to be f 2  [depending 
on the choice of orientation of E(z,)] when n is even, and (clearly) ai . ai = 0 
when n is odd. Now when n is even the interchange of factors p :  Dn x Dn 
+ Dn x Dn preserves orientation, so that an orientation may be chosen for 
PZn(T) such that ai ai = 2 for all i. For i # j it is clear from the geometry 
that ai - a j  = f l  if there is an edge of T between vi and v j  and ai - aj = 0 
otherwise. Now ai - (-aj) = -ai . a j .  Thus when n is even, and since T 
is a tree, it is clear that the ai may be chosen so that 

2 if i = j ,  

0 otherwise. 
1 if i f  j and (vi, v j )  is an edge of T, 

Thus the intersection matrix for the tree Ak is the k X k matrix 

[: ; 1 
2 1  
1 2 1  

1 2 1  

0 2 
1 

(n even) 

1 * .  

1 2 1  

0 2 
1 

(n even) 

1 * .  

0 

9 

1 
2 

O I  

1 
0 1  
-1 0 1 

1 .  -1 - 
0 1  

-1 01 
(n odd) 

The determinant of this matrix is easily computed to be k + 1 for n even. 
It follows immediately from the exact sequences above, that HZln(dP4ln(Ak)) 
= 0 and Hz,-,(dP4m(A,)) has order k + 1. Of course one can see much 
more than this, but this information is all that we will need for the follow- 
ing result. 

8.1. Theorem 
2;:~~ of Chapter I, Section 7 .  

The O(n)-space dPZn(Ak) is equivalent to the O(n)-space 

Proof Let n >_ 2. The action of O(n) c O(n + 1) on E(t , )  is clearly 
equivalent to the action on orthogonal 2-frames in Rn+l. Thus it is clear 
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that each isotropy group of O(n) is either a conjugate of O(n - 2) (when 
the frame and the fixed basis vector of O(n) on Rn+l span a 3-space) or a 
conjugate of O(n- 1). From this we conclude that there is a canonical 
homeomorphism 

F(O(n - 2), d P ( A , ) )  d P ( A , )  
O(2) 2: o ( n )  

(compare 6.3) with orbits of type 0(2)/0(1) corresponding to those of type 
O(n)/O(n - 1). Also it is clear that there is a canonical equivalence of 
O(2)-spaces 

F(O(n - 2), dP2n(Ak)) = dP4(Ak). 

For n > 2 we have Hl(dP2n(A,)) = 0, as shown above, and it follows from 
IV.4.1, IV.8.3, and 11.6.5 (for example), that dPW(Ak)/O(n) is: D2 with 
the orbits of type O(n)/O(n - 1) corresponding to boundary points. This 
also follows for n = 2 from the above remarks. (Of course, it is not hard 
to verify these facts directly.) Thus dP2n(Ak) fits the context of 6.4 and, 
since Hl(dP4(Ak)) has order k + 1, the result follows from 6.4. The case 
n = 1 also follows by noting that for any n, F(O(n - l), dPZn(A,)) 
is: dP2(A,) as O(1)-spaces. 

Remarks It follows from 8.1 that H2,-1(dP4m(Ak)) 2: Zk+l, which is 
also easily seen directly. It also follows that dP4m+2(Ak) is homeomorphic to 
Sdm+l, for all rn, when k is even. For k = 2 this is the famous Kervaire sphere 
and has an exotic differentiable structure for suitable values of m. From the 
intersection form of the tree E8 one sees that dPdm(E8) is homeomorphic to 
Sdm-l for rn 2 2. (For m = 1 it is a homology 3-sphereY but it is not simply 
connected. In fact it is the Poincarb dodecahedra1 space S 0 ( 3 ) / 1 . )  This is 
an exotic sphere for all rn 2 2 and is called the “Milnor sphere”. In fact, 
the main use of 8.1 is to identify the differentiable structures on the ,Zin-l. 
(Of course, one must prove the Classification Theorem in the smooth 
case.) We shall discuss this further in Chapter VI. The present use of plumb- 
ing to study transformation groups is due to Hirzebruch and a more exten- 
sive treatment of it may be found in Hirzebruch and Mayer [I]. 

9. ACTIONS O N  BRIESKORN VARIETIES 

Let k be a nonzero integer, let n 2 2 and let Win-’ be the space of all 
points (z,, , z, , . . . , z,) in complex (n + 1)-space which lie on the variety 
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Vp defined by the equation 

and which also lie on the sphere 

(The case k = 0, where zok = 1, can also be treated if we set 11 z 1 1 2  = 2, 
for example. For k # 0 the radius has no importance. However, the case 
k = 0 requires special arguments and, since it is not of primary interest, 
we shall relegate it to Exercise 4.) 

It is clear that the origin is the only singularity of V;". Also, if 
z = (zo, . . . , 2,) E Vp- {0}, then for t > 0, 

q t ,  z) = (PZ,, tkZ1, . . . , tkz,) 

is a curve on Vin with 
dll q t ,  2) p/dt > 0. 

Thus this curve is not tangent to the unit sphere 11 z 11 = 1,  and this implies 
that Vin is transverse to the sphere. Thus WZn-l is a (2n - 1)-manifold. 

Let O(n) act on the coordinates zl, . . . , z, as a subgroup of U(n). Then 
WF-l is invariant under this action. If we put zj = xj + i y j ,  then this 
O(n)-action is just the standard action on (xl ,  . . . , x,) and on (yl, . . . , y,). 
Thus the O(n)-action on Cn+l can be thought of as the action on R2 x Rn 
x Rn which is trivial on R2 and is the standard diagonal action on Rn x Rn; 
that is, it is the sum of a trivial 2-dimensional (real) representation and twice 
the standard representation. It follows that the isotropy groups of O(n) 
on C"+l are the conjugates of O(n), O(n- l) ,  and O(n - 2). Also 
(zo, . . . , z,) is a fixed point iff z1 = z2 = - - .  = z, = 0 and hence fixed 
points do not occur in Win-1. 

We shall need the following characterization of the orbits of the linear 
O(n)-action on Cn = Rn x Rn. 

9.1. Lemma For the action of O(n) on C" as a subgroup of U(n), n 2 2, 
the orbit map can be identified with the map 

C n +  V = { ( r , p )  E R x C I 
given by 

( 2 1 7  * * .  2%) ++ (1 21 1' + + I zn 1'3 z12 + * * - + z,". 
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Proof Put zi = x j  + i y j ,  z = (zl , . . . , z,), x = ( x l ,  . . . , x,), and y 
= (yl, . . . , y,). Then r = 11 z \I2 = 11 x 

,u=z12+ + z , ~ =  I I x \ ~ ~ -  I I ~ 1 1 ~ + 2 i ( x , r >  

+ 11 y 11’ and 

are invariants for the action. Moreover, r and ,u determine I( x 11, 11 y 11, 
and (x, y ) .  If x’ and y’ are two other vectors in Rn with 11 x’ 11 = 11 x 11, 
11 y’ 11 = 11 y 11, and (x’ ,  y ’ )  = ( x ,  y ) ,  then it is clear from elementary linear 
algebra that there is an orthogonal transformation of Rn taking ( x ’ , y ’ )  
into (x ,  y). The inequality I ,u I 5 r is clear and it is also easy to see how 
to manipulate the first two coordinates, with the others zero, to achieve 
any such inequality. 

Consider the map 
pl: win-1 --+ S2n-1 

given by 

This is O(n)-equivariant. We claim that it may be regarded as the orbit 
map of the Zk-action on Win-1 defined by 

(W’ (zo Y f * f 9 z,)) I-+ (WZO Y z1, . . . 9 z,), 

where cuk = 1. To see this let us first show that pl is onto. If (ul , . . . , u,) 
and if we let ua E C be such that E s2n-1  

Uok = - (U12 + * + u,”, 

then the distance from the origin to the point 

A(t ,  u)  = (t2ua, t k U , ,  . . . , tku,) E C n f l  

increases from 0 to 00 with 1. Thus A(t ,  u) E WF-l for some t > 0, and 
q(A(t, u ) )  = (ul, . . . , u,). Suppose now that q(zo, . . . , z,) = pl(vo, . . . , v,) 
for two points z and v of Win-1. Then for some t > 0 we clearly have vi 
= tkzi for 1 2 i 5 n. Then 

Vak = - (v12 + * * * + v,2) = -t2k(z12 + * * - + z,2) = t2kzok 

SO that t2za = cuvo for some kth root of unity cu. Since ( z o ,  z l ,  . . . , z,)and 
( o v a ,  v l ,  . . . , v,) = ( t2zo ,  t k z l ,  . . . , tkz,) = A(t ,  z )  are both in WP-l and 
since 11 A(t,  z )  ]I increases strictly with t ,  we must have t = 1. Thus ( z a y  
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zl, . . . , z,) = (wvo,  v l ,  . . . , v,) and this proves our contention that p 
may be regarded as the orbit map of the Z,-action on WP-l. Now this 
Z,-action commutes with the O(n)-action and the only O(n)-orbit taken 
into itself by any nontrivial u) E Zk is the orbit ((0, zl, . . . , z,) E Wp- l } .  
(This is an orbit by 9.1.) 

Thus Z, has exactly one fixed point on WP-l/O(n) and acts freely outside 
this point. The diagram 

W?-1___ 9 , Szn-1 

1 I 
Win-l/O(n) SZn-l/O(n) - D2 

is a pull-back diagram since qj preserves O(n)-orbit types. By the above 
remarks, y may be regarded as the projection for the k-fold cyclic covering 
of D2 branched at 0 (corresponding to the orbit W9-3 c S2n-1). That is, 
WP-l/O(n) * D2 and y becomes z H zk of D2 + D2. By 6.3 we have the 
equivalences 

wp-1 yzn-1 k ZP-' 

of O(n)-spaces. Thus we have proved the following theorem. 

9.2. Theorem 
to the O(n)-space WP-l for k # 0. 

The O(n)-space Z?-l of Chapter I, Section 7 is equivalent 

I 

9.3. Corollary For n and k both odd, Win-1 is homeomorphic to S2"-l. 
For n even, H,-l( Wp-l) - Zk and Hi( Win-1) = 0 for i # 0, n - 1, 2n - 1 .  
AZso Wk3 = L(k, 1). I 

Remark The consideration of the W2-I is due to Brieskorn [I] and was 
used by him to investigate the topological nature of an isolated singularity 
of an algebraic variety. Corollary 9.3 is due to him. The application of trans- 
formation groups to this subject, and vice versa, is due to Hirzebruch [2] 
(see Hirzebruch and Mayer [I]). A study of a much more general, and 
useful, class of varieties with isolated singularities may be found in Milnor 
[71. 

Note that Wtn-I has further symmetry besides the given O(n)- and 
Zk-actions. Indeed 

(Z' (zo 9 z1, . . . , z,)) ++ (z"0, ZkZl , . . . 9 ZkZ,) 
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defines an action of S1 on Gn-l which commutes with the given O(n)- 
action. Thus we have an action of S1 x O(n) on m-'. The kernel of this 
action is just the subgroup of order two generated by (- 1, -I). Note that 
in the most interesting case, for which n is odd, then (- 1, -I) is not in the 
identity component of S1 x O(n). Thus the inclusion induces an isomor- 
phism 

(n odd), 
= s1 x O(n) 

s1 x SO(n) - 
ZZ 

so that the effective part of this action is an action of the connected group 

These actions on WP-' yield some interesting examples via standard 
constructions and we shall briefly discuss some of these. For the sake of sim- 
plicity we shall take k = 3 and n = 3. Let w be a primitive cube root of 
unity and let 

s1 x SO(n). 

q = [d 7 E O(3). 
0 0 - 1  

Then cc) and q commute and w1;1 has order 6 on W35 isi S5. Now 

" q ( z O ,  zl, zZ, z3 )  = (WZO, z1, z2, - z 3 )  

so that the fixed set of cc)q is 

Wz1 - O(2) - S' + S'. 

If we remove an invariant disk about some k e d  point of this Z,-action 
on S5, we obtain a Z,-action on D5 with fixed set D1 + S1. Multiplying this 
by the trivial action on I gives a Z,-action on D6 with fixed point set D2 
+(D1 x Sl); the part in the boundary S5 being S1 + (So x S') - S1 
+ s1 + S'. 

FIGURE V-4 
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FIGURE V-5 

Now let C, and C2 be disjoint 5-cell neighborhoods in S5 of two points 
in the D2 component of the fixed set of this Z,-action on D6. We may regard 
D6 as a cube with C, and C2 as opposite faces. An infinite number of copies 
of this action on D6 may then be pasted together (every other D6 being re- 
flected in the parallel to C, and C,) converging to an ideal point, as indicated 
in Figure V-4. This yields a Z,-action on D6 with fixed set F being D2 
together with a sequence of cylinders D1 x S1 converging to a point of D2 
as indicated in Figure V-5. On the boundary S5 the fixed set is a circle to- 

FIGURE V-6 
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FIGURE V-I 

gether with a sequence of circles converging to a point of this circle. If C, 
and C, were taken about points of D' x S', then one would obtain an 
action of Z, on Ds with fixed set F as indicated in Figure V-6. Other possi- 
bilities are evident. These actions are locally smooth except at one point. 
Wilder actions can be constructed in a similar manner by pasting together 
the Z,-actions on D6 which are the cones on the original Z,-action on S5 

(with S1 + S1 as fixed point set). By doing this one obtains actions of Z, 
on D6 with fixed sets as illustrated in Figure V-7 or as in Figure V-8. 

FIGURE V-8 
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We have given these examples to illustrate how complicated topological 
actions (not locally smooth) can be. Also note the actions on the boundary 
5-spheres and the actions on S6 obtained by doubling the actions on D6. 

Let us now briefly consider the general Brieskorn varieties. Thus let 
Q = (a, , . . . , a,) with the ai positive integers, and let WF-l be the intersec- 
tion of the sphere ]I z 11 = 1 with the variety in Cnfl defined by the equation 

Z F +  * . *  + z p = o .  

We shall restrict our attention to the proof of the following result. 

9.4. Theorem 
for every element /? E H i ( q n - l ;  Z)  with 0 < i < 2n - 1. 

If a, is relatively prime to each ai for j # 0, then a& = 0 

Proof Let a = a,a, - .  - a,. For z = (z,,  . . . , z,) in WZn-l and t > 0 
consider the point 

( ta/alzl ,  . . . , ta/a,z,) E c n .  

The norm of this is nonzero and is strictly increasing with t .  Thus there is 
a unique value of t such that this point is in the unit sphere S2”-’ c Cn. 
Let 

v;  wp-1 ---f S2n-1 

be the map taking z to this point. As above, some easy calculations show 
that v may be identified with the orbit map of the Zao-action 

(w,(zo, . . . Y z , ) )++(wz , ,  z1, . . . Y Zn)  

on WZn-l. Now note that there is an Sl-action 

(z, (z, , . . . , z,)) H (Za/aoZo , . . . , Za/a,Z,) 

on W:,-l. If w is a primitive aoth root of unity, then wa/ao is also a primitive 
aoth root of unity and walai = 1 for i > 0, since a, is relatively prime to each 
ai for i # 0. Thus this S-action contains the Z,,-action (up to automorphism 
of Zu0) and this implies that Zao acts trivially on Hi(WF-l; Z). Thus, by 
III.(7. l), the composition 

Hi( e n - 1 )  --j Hi(S2n-l) j .  Hi( e-1) 

of the orbit map for the Zao-action on WZn-l with the transfer is just multi- 
plication by a, , so that this must vanish for i # 0, 2n - 1. I 
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9.5. Corollary Zfthere are at least two values of i for which ai is relatively 
prime to all a j  for j # i, then WZn-l is an integral homology (2n - 1)-sphere. I 

Remark This result is a special case of a sharper theorem of Milnor [7]. 
(Also see Brieskorn [l] and Hirzebruch and Mayer [l]). It can be shown 
(see these references) that Wtn-l is simply connected (in fact, (n - 2)- 
connected) for n 2 3, and hence in the case of 9.5 it is homeomorphic 
to SZn-'. Determination of the differentiable structures can also be found 
in the above references. In the 3-dimensional case, n = 2, Wz3 is not gen- 
erally simply connected, even in the case of 9.5. For example, it can be 
shown that W:,,3,5, is the Poincart dodecahedra1 space S0(3)/Z. 

10. ACTIONS WITH THREE ORBIT TYPES 

To motivate the present section and the next one, let us discuss the 
Brieskorn manifold Wz;' defined to be the space of all points (u, v ,  z1 , 
z,, . . . , z,) E Cn+2 on the intersection of the sphere 

and the variety 

u p  + Y Q  + z12 + - * - + zn2 = 0, 

where p and q are positive integers. (Note that the case q = 2, studied in 
Section 9,  is included.) 

Now O ( n )  acts on Vpyil by its action on ( z l ,  . . . , zn) and, as seen 
before, its isotropy types are O(n),  O(n - I), and O(n - 2). Given the 
coordinates u, u of a point we see that I z1 1, + - - - + I z, 1, = 1 - (I u 1, 
+ I v 1,) and zI2 + - - - + zn2 = - ( u p  + v g )  are determined, and it follows 
from 9.1 that the map 

y: w p  + c2, 

(u, v ,  ~ 1 ,  . . * 9 zn) F+ (us u )  

can be identified with the orbit map of this O(n)-action (once we find its 
image). 

Since 
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the image of y consists of points (u, v )  satisfying the inequality 

It is easy to see that any such (u, v )  comes from a point of W?b+’ if n 2 2. 
Moreover, it is easily seen that this inequality is an equality iff the real and 
imaginary parts of (zl, . . . , z,) are dependent as vectors in Rn; that is, 
iff the corresponding O(n)-orbit is nonprincipal [i.e., of isotropy type O(n) 
or O(n- l)]. 

Now it can be seen that the inequality I u p  + vQ I + I u l 2  + I v l 2  5 1 
defines a 4-disk in C2. One way to see this is to consider the action of the 
multiplicative group R+ of positive reals on C2 given by 

t(u, v )  = (t%, t%). 

Since, for (u, v )  # (0,O) fixed, 

increases with t, it is equal to 1 for exactly one value of t. Similarly 

It% 12 + I t p v  12 = t 2 ,  1 u 12 + tQJ I v 12 = 1 

for exactly one value of t. Thus each trajectory of this flow (except for the 
origin) cuts each of the surfaces I u p  + v* I + I u l 2  + I v l 2  = 1 and 
I u l 2  + I v l 2  = 1 in a single point. Using this, it is clear how to set up a 
homeomorphism of the region defined by 

) u ” + v * J  + ) u 1 2 + J v l 2 l l  

(i.e., the image of y) with the unit disk I u l 2  + I v l2 5 1. 
Now the space of nonprincipal orbits can be identified with 

F(O(n - 11, c:l)/o(l) 

which is just the orbit space of 

G,, = { (u ,v ,  z )  E c31 I u p  + I v p  + I Z p  = 1, + v~ + 22 = 01 

under the involution (u, v ,  z)  H (u, v ,  -z). Also F(O(n),  WE:’) is identified 
with F(0(1), Wp”,,). As in Section 9 we see that the map 

p: w;,& + s3, 
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which takes the point (u, v ,  z )  E Wp3,g to (t2Qu, t2pv), for that unique value 
of t > 0 such that this has norm 1, can be identified with the orbit map of 
this involution. Then F = F ( 0 ( 1 ) ,  Wp3,q), regarded as a subspace of the 
orbit space, becomes 

((2.4, v )  E s3 I u p  + vq = O}. 

If we change coordinates in S3 by multiplying v by a qth root of - 1 , then 
we change this representation of F to 

((2.4, v )  E s3 I u p  = v”. 

Letting a, b be the unique positive real numbers such that a2 + b2 = 1 and 
a p  = bg, this is 

{(ae2“iz, be2ziv) E S3 I p x  = qy  + m, m E Z}, 

which is the image under the exponential map R2 ---t S1 x S1 c S3 of the 
union of all lines of slope p / q  passing through the points (m/p, 0), m E Z, 
If p and q are relatively prime, then this consists of exactly one curve which, 
in S3, is the “torus knot” of type (p, q) .  

Thus the orbit structure of W z l l  is that of a 4-disk D4, with interior 
points of type O(n)/O(n - 2), and a I-manifold in its boundary S3 con- 
sisting of the fixed points [in this case, a torus link of type ( p ,  q ) ] ,  with 
the remainder of S3 consisting of points of type O(n)/O(n - I). If one 
generalizes this situation and introduces further coordinates on which O(n) 
does not act, then it can be seen that one obtains orbit spaces which are 
higher-dimensional disks and with the fixed point set consisting of a sub- 
manifold of codimension 2 of the boundary. 

Before considering this situation in general, let us prove a general fact 
which allows us to discard the fixed point set in classifying actions over a 
given orbit structure. 

10.1. Proposition Let G be a compact Lie group. Let X b e  a locally com- 
pact space with a given orbit structure X + SQ and let F be the closed sub- 
space of X consisting of fixed points (points having type GIG). Then deletion 
of fixed point sets gives a one-one correspondence between equivalence classes 
of G-spaces over X and those over X - F. 

Proof If Y is a G-space over X - F, then the orbit map Y +  X -  F 
is proper and hence extends to the one-point compactifications Y+ 
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-+ ( X  - F), . There is also an orbit structure preserving map X -+ ( X  - F),  
taking F to 00. We let W be the G-space over X which is the pull-back 

W ' y+ 

X- ( X -  F)+. 
I I 

Conversely, if W' is any G-space over X ,  then we may regard F as a subspace 
of W' and put Y = W'-  F, a G-space over X - F. It is clear that W' 
is equivalent over X to the above pull-back W (see Chapter I, Exercise lo). I 

Remark In the differentiable case, 10.1 is generally not true and one must 
be careful to consider how a tubular neighborhood of the fixed point set 
is attached. Because of this, some of the theorems stated in Hsiang and 
Hsiang [4] are false, as was pointed out to us by W.-C. Hsiang. 

For the remainder of this section we shall let Xm be a compact contract- 
ible m-manifold, m 2 4, with oriented boundary Bm-l. Since X i s  compact, 
B is automatically an integral homology sphere. Also let Am-3 c P-l 

be an oriented submanifold of dimension m - 3 (possibly wild). Let {A, }  
be the components of A .  We endow Xm with the O(n)-orbit structure 
(n 2 2) which assigns type(O(n)/O(n - 2)) to int(X), type(O(n)/O(n - 1)) 
to B - -  A and type(O(n)/O(n)) to A .  (We are primarily interested in the 
case in which Xm = Dm and in which A is connected.) 

Now B is collared in X and it follows that X - A is a contractible (open) 
manifold with boundary B -  A .  Thus by 6.2, the equivalence classes of 
O(n)-spaces over X -  A (and hence those over X ,  by 10.1) are in one-one 
correspondence with 

[ B  - A ,  O(1) x 0(~) \0(2)1 /~0(0(2) )  [B - A ,  SlllZ, 
H1(B - A ;  Z)/Z,, 

where Z, acts on H1(B - A ; Z) via the automorphism k H -k of the coef- 
ficients Z, and hence takes y E H1(B - A ;  Z) to -7. 

Recall that by PoincarC-Lefschetz duality and the homology sequence 
of (Bm-l, Am-3) we have the Alexander duality 

Via this isomorphism, let y E H1(B - A )  correspond to {y,}, where ya 
E Z - Ho(Aa). Note that a change of the orientation of A ,  changes the 
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sign of y,; that is, the particular isomorphism H1(B - A )  - n, Z depends 
on the choice of orientation of the A, ,  but otherwise this choice is unim- 
portant. Also note that the Z,-action on I P ( B -  A )  corresponds to the 
simultaneous change of sign of the y,. 

Now suppose that a E A,  is a point at which A,  is tame; that is, there 
is a half disk Dm+ in Xm giving a local coordinate system about a ;  viz. 

Dm+ = {(Xl, . . . , x,) I cxi2 I 1, x, 2 O} 

with a at the origin and with 

B n Dm+ = Dm-1 = {X E Dm+ I X, = 0}, 

A n Dm+ = Dm-3 = {X E Dm+ I x,-~ = xmP1 = X, = O}. 

For y E H1(B - A )  let My be the corresponding O(n)-space over X ,  
which depends only on fy .  By naturality, it is clear that the restriction 

Ho(A,) 1 H0(Dm-3) 
- 

takes ye into the corresponding invariant (up to sign) for the O(n)-action 
on the part of M ,  over Dm+. Now consider the 2-disk 

C = {X E Dm+ I x1 = * - - = xmP3 = 0, xk-2 + xLp1 + xm2 = l}, 

and let Z be the part of M y  lying over C. It is clear that the part of My 
over Dm+ is equivalent as an O(n)-space to the product of Dm-3 with the 
cone over Z. Also the restriction 

- 
W@,-l - Dm-3) 1 H1(dC) 

clearly preserves the invariants for these actions. Thus Z - Zln-l by 6.3, 
where k = I y, I (regarding y, E Z). If k # 1 and n is even, then Z is not 
a homology sphere, so that My is not a manifold near the given point a E A,. 
Similarly if k # 1 and n is odd, then Z0(l) - Zp-3 is not a homology sphere, 
so that M?(l) is not a manifold near a (and thus O(n) does not act locally 
smoothly near a). On the other hand, if k = 1 then Z is an orthogonal 
O(n)-space and thus O(n)-acts locally smoothly on M y  near a. 

It is clear that A is locally flat if O(n) acts locally smoothly. Thus for locally 
smooth actions we must have that each y, = f l .  Moreover, the signs are 
invariants up to a simultaneous change of sign. (Changing orientations of 
the A,  merely changes the correspondence between actions and collections 
of signs.) 
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Let us call an action over Xm amenable if each of the ym is f 1. This makes 
sense even if A is wild everywhere. We have shown the following theorem. 

10.2. Theorem Let Xm be a compact contractible m-manifold with bound- 
ary Bm-I, m > 4, and let Am-3 be a closed submanifold of B m - I  with k com- 
ponents. Let X m  have the O(n)-orbit structure deJned above. An O(n)-space 
M over X m  is locally smooth i f f  A is locally flat and the action is amenable. 
In general, if the action on M is amenable, then it is locally smooth everywhere 
except at those points of A near which A is wild (not locally f lat) .  Moreover, 
there are exactly 2k-1 equivalence classes of amenable actions over ( X ,  B, A). 
Thus, if A is locally pat ,  then there are exactly 2k-1 equivalence classes 0, 
locally smooth actions over ( X ,  B, A). 

Remark In the smooth case, and with A connected, these results are due 
to Hsiang and Hsiang [4] and, independently, to Janich [I]. See Chapter VI, 
Section 7 for that case. 

Let us now briefly consider the case m = 3 which was excluded above. 
Here A is a finite set of k points in B2 = dX3  (and hence is locally flat). 
The invariant y is now in 

W ( B  - A )  - Hl(B, A )  = i f , ( A )  

and corresponds to a collection of k integers ya E H,(A,) with Cya = 0 
(determined only up to simultaneous change of sign). Again the action is 
locally smooth iff each ya = & 1 and k must be even since Cym = 0. Thus a 
locally smooth action is classified over X by the partition of A (given by 
the signs) into two subsets of k/2 elements each. Since any two such par- 
titions can be taken into one another by a homeomorphism of (X3,  B2, A )  
it follows that (given k) all these O(n)-spaces are equivalent (not over X ) .  
Thus we have the following theorem. 

10.3. Theorem Let X 3  be a compact contractible 3-manifold with boundary 
B2 and let A be a set of k > 0 points in B2. Let X 3  have the O(n)-orbit structure 
dejined above. There are exactly (&l) equivalence classes over X of locally 
smooth O(n)-spaces over X if k is even, and all of them are equivalent as 
O(n)-spaces (not over X ) .  For k odd, there are no locally smooth O(n)- 
spaces over X .  I 

It is of interest to consider a similar situation in which X 3  is now D3+ 
= { ( x ,  y ,  z) E D3 I z 2 0} ,  B2 = D3+ n S2, and A consists of k points in 
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the interior of the 2-disk B2. Let DZ = { ( x ,  y ,  0 )  E D3,). We endow D3+ 
with the usual O(n)-orbit structure; that is, isotropy types O(n), O(n - l), 
O(n - 2) on A ,  B - A ,  D3+ - B, respectively. Then a locally smooth 
O(n)-space over D3, will be a manifold with boundary, which is the part 
over D2. As has been remarked, the general discussion applies to this case. 
NOW an O(n)-space W over this orbit structure is determined by an in- 
variant (up to sign) 

y E ZP(B - A )  - H,(B, A u Sl) R0(A U Sl), 

where S1 = dB = dD2. Thus y corresponds to a set of integers ya E Ho(Aa) 
and 6 E Ho(S1) with 

6 = -Cya 

and which is determined only up to simultaneous change of sign of the 
ya and 6. Again ya = f l  for locally smooth actions. Also I S I is clearly 
the invariant for the O(n)-space d W (the part of W over D2); that is, 

d w - q ; y '  

as an O(n)-space. If we are given 6 = -Cya and k then 6 = k- - k, ,  
where k, and k- are the numbers of + and - signs among the ya. If we 
allow arbitrary equivalences [i.e., over homeomorphisms of (D3+, B2, A ) ] ,  
then 1 6 I and k are clearly the only invariants. Moreover k 2 1 6 1 and 
k - 6 is even. Thus we have the following theorem. 

10.4. Theorem Consider O(n)-spaces over (D3+, B2, A )  as above where 
A consists of k 2 0 points in int B2. Let 6 2 0 be an integer. If k 2 6, 
with k - 6 even, then there is a unique (not over D3+) ZocalIy smooth O(n)-  
space over (D3+, B2, A )  with boundary equivalent to the O(n)-space Zin-l. 
I f k  < 6, or i fk  - 6 is odd, then there is no such locally smooth O(n)-space. I 

Remarks Note that 10.4 gives another characterization of the O(n)- 
spaces ZP-l over D2. The reader can verify that an example of the case 
k = 6 2 0 of 10.4 is given by the O(n)-action on the space in Cn+I defined 
by 

zok + z12 + * * * + zn2 = 1, 

I zo 1' + * * .  + I zn 1'5 2. 

Also, for k = 6 2 2 it is given by the O(n)-action on the plumbing P2"(Ak-*). 
It  is not hard to construct explicit examples for all k 2 6 with k - 6 even. 
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Let Zk c Sk+2 be a connected orientable submanifold (possibly wild) 
of the (k + 2)-sphere and let n 2 2. Then by 10.2 there is a unique (to 
equivalence over Dk+3) amenable O(n)-space M2n+k(,Yk) over Dk+3 [with 
the orbit structure as in Section 10; that is, the isotropy types are O(n) 
on Zk,  O(n - 1) on Sk+2 - Zk, and O(n - 2) on int(Dk+”]. Also recall 
from 10.2 that if Zk is locally flat, then M’+k(Zk) is the unique locally smooth 
O(n)-manifold over (Dk+3, Sk+2, Zk) .  In this section we address ourselves 
to the study of this space M2n+k(Zk) with emphasis on finding conditions 
under which it is a sphere. 

Although we are primarily interested in the locally smooth case it will 
be mildly interesting (and will not present much more difficulty) to also 
consider some matters in the wild case. Thus let W c ,Zk be the (closed) 
set of wild points; that is, the set of points at  which Zk is not locally flat. 
For convenience in the homology calculations we shall assume that W # Zk, 
although this is not really necessary. 

When the data are understood we put M = M2n+k(Zk) and we also 
regard Zk as the subspace MO(n) of M .  We let C denote the part of M over 
S k + 2 .  

11.1. Theorem If W # Z k ,  then M -  W is simply connected. 

Proof For future use, we remark that we shall prove this without the as- 
sumption that Zk is connected. Now M - W is a manifold of dimension 
2n + k 2 4 + k and Zk - W is a k-dimensional locally flat submanifold. 
It follows that n,(M - Z) -+ n,(M - W )  is onto. (In fact it is an isomor- 
phism.) Now C - Z (being an Sn-’-bundle over Sk+2 - 2) is a locally flat 
(n + k + I)-manifold in M -  Z. If n >_ 3, then (2n + k) - (n + k + 1 )  
= n - 1 2 2 so that n1(M - C) + n,(M - Z) is onto. However, M - C 
is an O(n)/O(n - 2)-bundle over Rk+3 and thus n,(O(n) /O(n - 2 ) )  
+n,(M-  W )  is onto (via inclusion of any principal orbit). However, 
there is a principal orbit in a linear disk in M about any point of Z - W 
so that this inclusion clearly is trivial on the fundamental group. 

Now consider the case n = 2. Note that 

Also C - Z is an 0(2)/0(1)-bundle over S k f 2  - Zk.  The projection 
O(2) -+ 0(2)/0(1)  = S’ is a homeomorphism on each of the two compo- 
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nents of O(2). It follows that the closures X ,  and X ,  in M - Z of the two 
components of M - C are manifolds, each of which has interior homeo- 
morphic to Rk+3 x S1 and with common boundary C - Z. Since C - Z, 
being an S'-bundle over the connected set Sk+2 - Zk, is connected, it fol- 
lows from the Van Kampen Theorem that n,(M - 2) is generated by 
the images of the two copies of nl(Rk+3 x Sl) - nl(S1). Since these cir- 
cles are the components of a principal orbit O(2) it follows as before that 
this fundamental group goes trivially into n,(M- W). I 

11.2. Theorem Assume that W #  Zk.  I fZk is a mod 2 ( t e c h )  cohomology 
sphere, then Mh+k(Zk) is a mod 2 cohomology sphere. I f Z k  is an integral 
cohomology sphere and n is even, then M2n+k(Zk) is an integral cohomology 
sphere. 

Proof To simplify notation we shall use cohomology with compact sup- 
ports. Thus, for a locally compact space U, &*(U) = 8 * ( U + ,  co), and 
this may also be defined directly by using Alexander-Spanier cohomology 
or sheaf cohomology; see Spanier [I] and Bredon [13]. For a compact pair 
(X ,  A )  there is a canonical isomorphism 8 * ( X ,  A )  - a c * ( X -  A ) .  The 
coefficients will be understood to be in Z, for the first case of the theorem 
and in Z for the second case. 

Let x E Zk - W and let U be an open (2n + k)-disk neighborhood 
in M of x on which O(n) acts orthogonally. Let U* c Dk+3 be the orbit 
space of U. Then U* is a open half disk neighborhood of x* E Zk - W 

Now U - C is an O(n)/O(n - 2)-bundle over U* - Sk+2 = Rk+3 con- 
tained in the O(n)/O(n - 2)-bundle M - C over Dkf3 - Sk+2 - Rk+3. 
Since these are trivial bundles it is clear that the inclusion induces an iso- 
morphism 

c Sk+2 = aDk+3 in Dk+3. 

- 
fT,*(U- c ) = + 8 c * ( M -  C )  

since, by Poincark duality, this is equivalent to the homomorphism 

H*(U - C )  --f H*(M - C )  

induced by the inclusion U -  C c M -  C (which is a homotopy equi- 
valence). Let y E Z be another point, and assume, as we may, that y 4 U. 
Since U n Zk is an open k-cell and since Zk - { y }  is acyclic, we have that 

HC*(u n Z) 1 fiC*(Z - { y ) ) .  
- 



11. KNOT MANIFOLDS 289 

Now C - Z is an Sn-l = O(n)/O(n - 1)-bundle over Sk+2 - 2 with 
structure group 0(1) - N(O(n - l))/O(n - 1) which acts on Sn-l via 
the antipodal map. If n is even, then the antipodal map preserves orienta- 
tion on Sn-l so that this is an orientable bundle, and when coefficients are 
in Z, it is orientable in the sense of cohomology for arbitrary n. (We re- 
mark for later reference that this is the only use of the assumption that n 
is even when coefficients are in Z.) In the neighborhood of x we have the 
subbundle 

U n C - Z + U * n S k + 2 - Z ~ R k + 2 - R k  

of this, and the inclusion gives a map of Gysin sequences 

. . . -+ I;i , i(~k+2 - Rk) + &,i(u n c - Z) + @-n+l(Rk+2 - Rk) -+ . . . 

The homomorphism fiC*(Rk+, - Rk) -+ BC*(Skfz - Z) is an isomor- 
phism by PoincarC-Alexander duality, and hence 

I 

HC*(u n c - Z) 1, &*(c - 9 
by the 5-lemma. 

Putting these facts together, we see from the diagram 

. . . - - + R : ( u n c - Z ) +  B:(unC) -+ Rci(unQ -+-.- 

... ---.k,i(c-Z)-B~(C-{y})-t~:(Z-{(y})-+... 

&*(u n C )  1, BC*(c - { y } ) .  

I= I I =  

- that 

Similarly, the diagram 

. . . -+ I?:(u- C )  R:(u) - H:(u n C )  -+ - - .  
I= 1 I =  - - -+ B:(M - C )  + &(M - { y } )  - B:(c - { y } )  --+ * * .  

BC*(U) 1 Bc*(M - { y } ) .  

shows that 
I 

However, U - and it follows that R * ( M )  - H*(SW-tk). 

As a converse to this result we note the following fact. 
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11.3. Theorem If M2*+k(Zk) is a mod 2 cohomology sphere then 27 
is a mod 2 cohomology sphere. I f n  is even and M2n+k(Zk) is an integral co- 
homology sphere, then Zk is an integral cohomology sphere. 

Proof Let Tbe a maximal torus of O(n). If n is even, then Tis not conjugate 
to  a subgroup of O(n - l), so that Ido(*) = MT. For arbitrary n, let 
L = 0(1)  x O(1) x . . . x O(1) c O(n) be the subgroup of diagonal 
matrices (the Z,-maximal torus). Then L is not conjugate to a subgroup 
of O(n - l), so that MO(") = ML. The result follows from 111.10.2 and 
111.7.11. I 

11.4. Theorem Let n be even and assume that Zk is an integral cohomology 
k-sphere with at most one wildpoint in Sk+, (or withfinitely many wildpoints 
when k = 1). Then MZn+'(Zk) - S2n+k. 

Proof If there are no wild points, then this follows from 11.1, 11.2, and 
the generalized PoincarC conjecture (see Connell [l]) since 2n + k 2 5 .  
Thus assume that w E Zk is the unique wild point. By 11.1 we have 
n,(M - {w}) = 1.  Moreover, the proof of 11.1 shows that the part of 
M - {w} over U - {w*}  is simply connected, where U is any disk neigh- 
borhood of w* in Dkf3 (since connectivity of Zk was not used in the proof 
of 11.1). Thus by 11.1, and 11.2, M - { w }  is a contractible open manifold 
which is simply connected at infinity. Thus M - {w} - R2n+k by a theorem 
of Siebenmann [I], and it follows that M - Szn+k. If k = 1 and there are 
finitely many wild points of 2 it clearly suffices to show that M is a manifold 
about each of these points w. However, 2 can obviously be altered, without 
changing it near a given point w, so that it is wild only at w. This changes 
M only away from w, so that the result follows. I 

For example, there is an O(2)-action on S5 corresponding to the wild 
knot illustrated in Figure V-9. We remark that for wild knots which are 
infinite sums of tame knots, such as that in Figure V-10, the corresponding 
O(n)-spaces are infinite connected sums of locally smooth O(n)-spaces. 
For example, the cloverleaf knot [which is the torus knot (3,2)] corresponds 
by Section 10 to the O(n)-manifold Zn+l - Win+1 (see 9.2), where O(n) 
acts as the standard subgroup of O(n + 1) .  Clearly the wild knot in Figure 
V-10 corresponds to an infinite equivariant connected sum, about fixed 
points, of Z?+l. I f  n = 2, then it is of interest to note that the subgroup 
SO(2) acts linearly on 22 (see Exercise 2) and has the same fixed set as 
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FIGURE V-9 

does O(2). The infinite connected sum is still a linear S0(2)-action on S5. 
It is easily seen that for this O(2)-action on S5 (corresponding to Figure 
V-lo), we have that S5/SO(2) - S4 and is just the double of S5/O(2) = D4. 
Thus the wild knot Z1 of Figure V-10 is tame in S4, since it corresponds to 
the fixed set, in the orbit space, of a linear SO(2)-action on S5. (Of course, 
the tameness of Z1 in S4 could easily be seen directly.) 

Now we turn our attention to the computation of the cohomology of 
M2n+1(Z1) when n is odd and Z = Z1 is a tame knot in S3 c D4. Let M3(Z)  
denote the double covering of S3 branched at 2. (This is an O(1)-space 
over S3 and not over D4.) 

11.5. Theorem 
Hi(MZn+l(Z);  Z) = Ofor i # 0, n + 1, and 2n + 1. Also 

Let n be odd and k = 1. A.ysume that Z is tame. Then 

H n+l ( Mzn+l (Z); Z) - H2(M3(Z) ;  Z). 

Proof We first remark that, by 11.2, Hn+l(MZn+l(Z); Z) is finite, so that 
the result will imply that 

H,(MZn+*(Z); z) - Hn+l(MZn+l(Z); Z)" H2(M3(Z); z)- H1(M3(Z);  z). 

FIGURE V-10 
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Also, the order of this group is known to be d(-l), where d ( t )  is the 
Alexander polynomial of the knot Z. 

To do the computation we first follow the lines of the proof of 11.2. 
The only place at which we used the hypothesis that n was even was the 
fact that the Sfl-l-bundle C - Z over S3 - Z is orientable for n even. 
Thus the Gysin sequence with ordinary coefficients could be used in that 
case. For odd n this bundle is nonorientable, but we still have a Gysin se- 
quence diagram 

where ZT denotes twisted integer coefficients and elsewhere the coefficients 
are in Z. (The twisting is clearly via the homomorphism 7c1(S3 - Z) 
--t H1(S3 - L'; Z) 1 Z -+ Z, - Aut(Z).) 

Now k2(R3 - R1; Z7) - 0 M k $ ( S 3  - Z; Zr) since these are the sec- 
tions with compact support of the bundle ZT of coefficients. Also, by Poin- 
car6 duality (see Bredon [13]), 

- 

k$(R3 - R1; Z") - Hz(R3 - R1; Z T )  i5: H2(S1; Z') = 0. 

Thus k>(R3 - R1; z") -+ f i2(S3 - Z; Z r )  is at least a monomorphism. 
Using the 5-lemma on the above Gysin diagram, we obtain that 

fi:(U n C - 2) -+ f i j ( C  - Z) is an isomorphism for j < n and is a 
monomorphism for j = n. 

From the diagrams used in the proof of 11.2 we obtain that a:( U n C) 
+ H:(C - { y } )  is an isomorphism for j < n and is a monomorphism for 
j = n. Similarly we conclude that f i j (  U )  + f i j ( M  - { y } )  is an isomorphism 
for j < n, and hence that &j(M) = 0 for 0 < j < n. By Poincar6 duality, 
and the Universal Coefficient Theorem, it follows that f i j (M)  = 0 for 
j # 0, n, n + 1, 2n + 1. By 11.2, M is a mod 2 cohomology sphere, so that 
this group must be finite of odd order for j = n, n + 1. Again the Universal 
Coefficient Theorem and Poincar6 duality imply that it must vanish for 
j = n. Let x, y be two distinct points in Z. Then we have that 

@(M - { y } ,  { x } )  = o for j # n + 1, 

and it remains to find this group for j = n + 1. 
Now let T be the circle subgroup of O(n) which is the diagonal of 

1 x SO(2) x SO(2) x * *  - x SO(2) c O(1) x O(2) x ... x O(2) 
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c O(n) [(n - 1)/2 copies of SO(2)]. By considering the action of this on 
the Stiefel manifold O(n)/O(n - 2) of 2-frames in Rn and on the (n - I ) -  
sphere O(n)/O(n - l) ,  we see that T acts semifreely on each O(n)-orbit 
in M and hence semifreely on M. Also, T has no fixed points on principal 
orbits and exactly two fixed points (antipodal) on Sn--' which are inter- 
changed by the action of 0(1)  on MT. It follows that MT - M3(L'). Also, 
since T acts semifreely, there is the Smith-Gysin sequence with integral 
coefficients 

. . . -+ &(X*, X T )  --f E;ii(X, { x } )  -+ P - l ( X * ,  X T )  @ IF(XT,  { x } )  

+ @+l(X*, X T )  - . . . 
(see 111.(10.6)), where X = M - { y }  and X *  = X / T .  As we have seen, 
@(X,  {x}) vanishes except for i = n + 1, and similarly p ( X T ,  {x}) 
= @(M3(Z)  - {y} ,  { x } )  = 0 for i # 2. Thus, an obvious induction, 
using the Smith-Gysin sequence, provides the isomorphisms 

- - - - 
I;i.+l(X, { x } )  1 ri .(X*, X T )  L- IP-Z(X*, X T )  t . - * 

- - += f i3(X*,  XT) L- BZ(X?', { x } )  

and this gives the desired isomorphism fin+1 (MZn+l(Z))  5 @(M3(Z)) .  

Remarks This relationship between knots and O(n)-manifolds was first 
studied by Janich [l] and by Hsiang and Hsiang [4] in the differentiable 
case. The homology computations for k = 1 were done by Hirzebruch 
[2] by a different method. Birzebruch [2] also determined the differentiable 
structure of Wnf1(Z1) when n is even and Z is smooth. For the case k > 1 
see Bredon [26]. 

EXERCISES FOR CHAPTER V 

1. Consider O(n)-spaces over D3 x S1 with isotropy type O(n - 1 )  
on S2 x S' and O(n - 2) on the interior. Show that there are precisely 
four such actions, up to equivalence over D3 x S1,  and that they are distin- 
guished from one another by the triviality or nontriviality of the regular 
and singular bundles e and c. Also show, however, that the set nJ(q I Bl), 
as in 6.1, of homotopy classes of reductions of the structure group of e I Bl 
to N(O(n - 2)) n N(O(n - 1))/O(n - 2 )  is infinite. 
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2. Consider the O(3)-spaces Zk5 of Chapter I, Section 7 (recall that 
Zk5 = Wk5 of 9.2) for k odd. Show that the subgroup SO(3) is transitive 
on each O(3)-orbit and hence that its orbit space is the same as that of 
O(3) (which is D2). Show, however, that all of these S0(3)-actions are 
equivalent to the linear action of SO(3) on Z15 = S5. Readers familiar with 
the exceptional Lie group G, should similarly show that the action of 
G, c O(7) on Zi3 for k odd has the same orbits as does 0 ( 7 ) ,  but is equi- 
valent to the linear action on Z:3 = S13. (In particular, this shows that 
Zk5 - S5 and ,Xi3 - S13 for k odd without use of the generalized PoincarC 
"conjecture.") 

3. Let Am-3 be a submanifold of Sm-l. Consider O(n)-spaces W over 
Dm with isotropy types O(n) on Am-3, O(n - 1) on Sm-l - Am-3, and 
O(n - 2) on Dm - Sm-l. If Am-3 is nonorientable, show that no such 
O(n)-space is locally smooth. 

4. Consider the O(n)-space v-l defined to be the space of all points 
(z,, , zl ,  . . . , z,) E Cn+l on the variety 

1 +z12+ . .* +z,Z=O 

1ZOlz+1z1p+ - . .  + 1 z , p = 2 .  

and on the sphere 

Put zj = xi + iyj, x = (xl ,  . . . , x,) E Rn and y = (yl ,  . . . , y,) E Rn. 
Show that the map (zo, x, y )  ++ (1, 0, y/l\ y 11) defines an equivariant re- 
traction of en-l onto an orbit. Conclude that 

as O(n)-spaces, where O(n - 1) acts on Sn through the inclusion in O(n + 1). 
Also show that Wgfi-l = S"-l x Sn - Zgfi-l as O(n)-spaces, where O(n) 
acts diagonally on 5P-l x Sn. 

5. Verify the statements following Theorem 10.4. 

6. Let Xm be a contractible compact manifold with boundary Bm-l. 
Let Zm-4 be a locally flat submanifold of Bm-l which is an integral homology 
sphere. Show that there is a unique locally smooth U(n)-space over Xm with 
isotropy types U(n) on Zm-4, U(n - 1 )  on P-l- and U(n - 2) 
on Xm -- Bm-l. Also prove the corresponding result for Sp(n)-spaces over 
X", where now the fixed point set is an integral homology sphere ,Zm-6 
in Bm-l. (These results would be false in the smooth case.) 
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7. Consider the O(n + 1)-spaces X k  = O(n + 1) xO(%) L'in-l, where 
Z2-l is the O(n)-space defined in Chapter I, Section 7. Show that the 
Xk are mutually equivalent for all odd k (respectively, for all even k). In 
particular, show that xk = Sn x SZn-l for k odd. 

8. Let G = O(n + l), K = O(n - l), and H = O(n - 2), n 2 2. 
Consider G-spaces over Dk+' with orbit type G/K over Sk and GIH over 
int Dk+'. For k 2 3 show that such G-spaces over Dk+l are classified by 
the elements of nk(S2), while for k = 2 they are classified by Z+. If X is 
any such G-space for k 2 2, show that the O(n + 2)-space O(n + 2) 
x ~ ( ~ + ~ )  X is equivalent to O(n + 2) x ~ ( ~ - ~ )  Sn+k-l, where O(n - 1 )  
acts on Sn+k-l c Rn+k = Rn-' x Rk+l via the standard representation 
plus a trivial one. 

9. For n 2 2 consider the diagonal action of U(n) on S4%-l c Cn x Cn, 
which has D3 as orbit space. Show that the equivariant homotopy classes 
over D3 of self-equivalences of this U(n)-space are in one-one correspondence 
with n,(U(2)) - Z. 



CHAPTER VI 

SMOOTH ACTIONS 

In this chapter we assume a knowledge of elementary differential geometry. 
Some of the needed material is reviewed in Section 1 in order to set up 
terminology and notation, but this material is not intended as a self-con- 
tained introduction to differential geometry. 

In the first four sections we prove some basic facts concerning the dif- 
ferential topology of smooth, compact, Lie group actions. For example, 
we prove an existence and uniqueness theorem for invariant tubular neigh- 
borhoods in Section 2. A general theorem is proved in Section 3 which allows 
certain types of isotopies to be replaced by equivariant ones. In Section 4 
we prove a smooth equivariant embedding theorem, due to Palais and 
Mostow, and we apply it to prove a smooth equivariant approximation 
theorem for continuous equivariant maps and homotopies. 

In Section 5 the induced functional structure on a very simple type of 
orbit space is studied in detail. This is used in Section 6 to prove a smooth 
version of the classification theorem for actions over a manifold with bound- 
ary, studied in Chapter V, Sections 5-7 in the topological case. This 
is applied in Section 7 to  obtain the results of Janich on knot manifolds, 
the topological case of which was discussed in Chapter V, Sections 10 and 1 1. 

In the last four sections we assume considerably more background in 
differential topology. Involutions on spheres are studied in Section 8 using 
the Eells-Kuiper invariant, the results of Section 7, and an invariant of 
Browder and Petrie (of which we construct a modified version). Some 
results on semifree circle actions on spheres and disks are proved in Section 
9. Equivariant K-theory is used in Sections 10 and 11 to compare represen- 
tations at two fixed points in a smooth action. 

1. FUNCTIONAL STRUCTURES AND SMOOTH ACTIONS 

In this section we shall review some elementary definitions and a few 
facts from differential geometry. We assume that the reader is already 
familiar with this material and it is given here only to maintain continuity, 
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to establish notation, and to single out some special items of importance 
to us. Many proofs and explanatory material will be omitted, so that the 
reader should understand that this section is not intended as an introduction 
to differential geometry or differential topology. 

Following Hochschild [I] we define a functional structure on a topological 
space X to be a function Fx which assigns to each open set U c X a subal- 
gebra px(U) of the algebra of all continuous real-valued functions on U 
and which satisfies the following conditions : 

(1) The subalgebra px(U) contains the constant functions on U. 
(2) If V c U, then the restriction of a function f E Fx(U) to Y is in 

(3) If U = U U ,  is an arbitrary union of open sets, then a function 
f: U --+ R is in Fx(U) iff the restriction o f f  to each U, is in Fx(Ua). 

In other words, Fx is a subsheaf of algebras of the sheaf of germs of 
continuous real-valued functions on X containing the constant subsheaf. 

A functionally structured space ( X ,  px) is a space X together with a 
functional structure Fx on X.  A morphism q: ( X ,  Fx) -+ (Y ,  Fy) be- 
tween functionally structured spaces is a map q : X + Y such that compo- 
sition 

S( V).  

f - f o v  

with q carries Fy( U )  into Fx(q-l U )  for each open U c Y. An isomorphism 
is, of course, a morphism having an inverse which is a morphism. 

If q: X--+ Y is a map and F is a functional structure on X ,  then we 
may define a functional structure q*F on Y by letting (v*m(U) consist 
of all those continuous functions f: U -+ R such that f o q E F(q-’U). 
This structure p * F  is called the “functional structure on Y induced by v 
from F.” Clearly p: ( X ,  F) + (Y ,  q*m is a morphism. 

If q: X+ Y is a map and 3’ is a functional structure on Y, then we can 
define a functional structure q * 7  on X by letting ( p * Y ) ( U )  consist of those 
functions f: U -+ R such that f is locally the composition of 9 with a member 
of 7. (That is, for each x E U there is a neighborhood U, c U of x ,  an 
open set Y c Y containing p(U,), and a member g E 7(V) such that 
f = g o y on U,.) Then q: ( X ,  q * 7 )  --f (Y,  3) is a morphism. We call y * 3  
the “functional structure on X induced by q from 7.” Of main interest to 
us will be the case of a subspace. If A c Xis a subspace and P- is a func- 
tional structure on X ,  then we let FA denote i*p where i: A -+ X is the 
inclusion. Thus for U c X open, FA ( A  n U )  consists of those functions 
f :  A n U +  R such that, for each a E A n U, there is a neighborhood 
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V of a in X and an extension of f l  A n V to a member of F( V). If A is 
open, then FA(A n U) = F ( A  n U ) ,  so that FA is the restriction of F 
to open sets of U. 

The C" functional structure on Rn assigns to U c Rn the algebra of C" 
real-valued functions on U. A C" n-manifold (or a smooth n-manifold) 
is a paracompact Hausdorff space Mn together with a functional structure 
F such that (M", F) is locally isomorphic to (R", C"); that is, each point 
x E M has an open neighborhood U such that (U,  Fu) is isomorphic to 
(V,  Cvw) where V c Rn is some open set. A map 9 : U + V realizing such 
an isomorphism is called a chart, and is called a C" structure on M. 
For smooth manifolds M m  and N n  a morphism v: M - t  N of their given 
C" structures is called simply a smooth map (or a C" map ; or a differentia- 
ble map). An isomorphism v is called a diffeomorphism. 

Consider the half space Rn+ = ( ( x ,  , . . . , x,) E Rn ] x1 2 O}. As a 
subspace of R", R", inherits a functional structure from C", which will also 
be denoted by C". Then a C" manifold with boundary is a functionally 
structured paracompact Hausdorff space ( M y  F) which is locally isomor- 
phic to (Rn+, C"). The boundary (possibly empty) consists of those points 
that are taken by charts to points on the hyperplane x1 = 0, and this is a 
smooth (n - 1)-manifold with the induced structure. Unless otherwise 
specified in this chapter, the word "manifold" will refer to a C" manifold 
without boundary. 

If M m  and Nn are C" manifolds (without boundary), then there is a 
unique C" structure on M x N such that q x y :  U x V ---f Rm+n is a chart 
of M x N whenever q: U-+ Rm and y :  V+ R" are charts of M and N,  
respectively. This structure is understood when products of smooth man- 
ifolds are considered. 

Recall that a Lie group G has a unique C" structure for which the map 
G x G 3 G taking (g, h )  e g h - l  is smooth. By a smooth action of a 
Lie group G on a smooth manifold M we mean an action 

0: G x M + M  

which is a smooth map. (Actually it suffices that each 8,: A4 --f M is smooth, 
but this is difficult to prove and we shall not consider this question; see 
Montgomery and Zippin [4].) 

Of course, the basic example of a smooth action is the canonical action 
of the general linear group Gl(n) on Rn. Now Gl(n) is an open subset of 
Rn2 (all n x n matrices over R) and inherits its C" structure therefrom. 
Smoothness of 0: Gl(n) x Rn -+ Rn is clear. A homomorphism of Lie 
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groups is automatically smooth (Chapter 0, Section 5 )  and it follows that 
the action G x R" -+ R" given by any representation G -+ Gl(n) is smooth. 
Other examples are found in earlier chapters. For instance, the actions of 
O(n) given in Chapter I, Section 7 and those on the Brieskorn varieties 
in Chapter V, Section 9 are smooth. 

A C" fiber bundle is defined as in Chapter 11, Section 1, where now the 
base B and fiber F are C" manifolds, the structure group K is a Lie group 
(this may sometimes be weakened) acting smoothly on F, and the transi- 
tion functions U + K are required to be smooth. In this case, the total space 
X of the bundle has a canonical Cw structure defined by requiring the charts 
p: F x U+p-'(U) to be isomorphisms of functional structures. 

If y :  R + M is a smooth curve in the manifold M with y(0) = p ,  and 
iff is a C" function defined on an open neighborhood of p ,  then we can 
define the directional derivative off  at  p along y to be 

where D,, is also called the tangent vector to y at p .  Then D = D, is a der- 
ivation of the algebra of germs of smooth real-valued functions at  p ;  
that is, D satisfies 

(1) W a f  + bg) = a D ( f )  + bD(g), 
(2) D ( f g )  = f ( P ) D ( d  + m f  )dP)Y 

where a, b E R and f, g are smooth real-valued functions defined near p .  
In terms of a local coordinate system x, , . . . , x, about p we can consider 

f as a function of xl, . . . , x, and we can write the curve y as t t+ (x,(t), . . . , 

so that 

where ai = dxi/dt I t = O .  Also dldx, I p  = D,, , where pi is the curve given 
in coordinate form by xi(t)  = 6i , j t .  It follows that the set of tangent vectors 
D to curves at  p forms a vector space with basis dldx, , . . . , a/ax,. This 
vector space is called the tangent space T,(M) to M at p .  In fact, it is not 
hard to show that this coincides with the vector space of all derivations of 
the algebra of germs of smooth real-valued functions at  p .  (This depends 
on the fact that we work with the C" case. In the Ck case, for k finite, the 
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latter vector space is much larger than the tangent space.) The union T(M)  
= uPcM Tp(M) can be made into a vector bundle over M ,  called the tan- 
gent bundle of M [a smooth bundle with fiber Rn and structure group 

If 9: M -+ N is a smooth map between manifolds, then there is an induced 
map, the differential, QI*: T ( M )  + T ( N )  taking T p ( M )  to Tq(p)(N) defined 
as follows: If y :  R -+ A4 is a smooth curve with y(0)  = p ,  then we let 

Gl(n 11 * 

QI*(D,) = Dqoy. 

Thus if g :  U -+ R is smooth with U a neighborhood of p(p ) ,  we have 

shows that the differential q ~ *  is well defined. If y : R + M is a smooth curve, 
then it is clear that 

If y :  M + N is smooth and if each p*: Tp(M) + Tq(p)(N) is a monomor- 
phism, then QI is called an immersion. If QI is also injective, then QI is called 
an embedding. If cp is also a homeomorphism onto its image v ( M ) ,  then 
p(M) is called a submanifold of N (in the sense of differential topology) 
and in this case it follows from the Implicit Function Theorem that v: 
M --f QI(M)  is a diffeomorphism, where p ( M )  has the functional structure 
induced from that of N .  

1 . I .  Lemma If 0: R x M -+ M is a smooth action of the additive group 
of reals on the smooth manifold M ,  then the fixedpoint set M R  coincides with 
the set of points p E M for which the tangent vector to the curve zp:  R --+ M 
is zero, where t p ( t )  = @ ( t , p )  = €J,(p) = t (p) .  

Proof If p E MR, then tp  is the constant curve at p and D ,  = 0. Con- 
versely, suppose that DTp = 0. For s E R we have 

%P)(t) = €Jt€Js@> = €Js(tp(t))  

T , ( p )  = 0s O r p .  

so that 
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for all s E R. Now iff: U -+ R is C” and defined nearp, then for sufficiently 
small s we have 

which implies that t ~f ( O t ( p ) )  is constant (in a suitable neighborhood 01 

0). Applying this to the coordinate functions in a coordinate neighborhood 
of p shows that t H B , ( p )  is constant (near t = 0 and hence for all t since 
O,,, = OJ3,). Thus p is a fixed point. I 

Suppose that 0: G x M -+ M is a smooth action of a Lie group G on 
a smooth manifold M. Then the orbit map n: M + M/G induces a func- 
tional structure on M/G which we call the induced smooth structure. Thus 
a function f on an open set U c MIG to R is called smooth iff f o n: n-’(U) 
-+ R is smooth. It should be emphasized that the use of this terminology 
does not imply that M/G is a manifold (as it usually is not.) For example, 
if M = R2 and G = Z, acting by ( x ,  y )  H ( -x ,  -y),  then M/G is homeo- 
morphic to R2 but the induced smooth structure on MIG from that of M 
is not the structure of a smooth manifold. On the other hand, if M = Ra 
and if G = Z, acts by (x, y )  ++ ( x ,  -y) ,  then M / G  is homeomorphic to a 
half space R2+ and, in fact, can be shown to be dzffeomorphic to R2+. (This 
is a significant fact which is not easy to see. It is a special case of results 
proved in Section 4, but the reader may find it a good exercise to attempt 
to prove this for himself.) 

Let G be a Lie group and recall that each tangent vector X at e in G is 
the tangent vector X =  D,,, to a unique one-parameter subgroup yx: 
R + G [i.e., yx( s  + t )  = yx(s)ylu(t)]. The map T,(G) -+ G taking X to 
yx(l) is called the “exponential map”; thus exp(X) = yx(l). Since 

Thus the differential exp, takes the tangent vector to the curve s-sX 
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to D, = X.  However, this is the canonical identification of the tangent 
space at  0 of a real vector space with the vector space itself. Thus, under 
this identification, the differential exp,: Te(G) + T,(G) is the identity. 
Consequently exp maps some neighborhood of 0 in T,(G) diffeomorphically 
to a neighborhood of e in G. 

Now let H be a closed (hence Lie) subgroup of G. Then T,(H) can be 
identified with a subspace of Te(G) ; the tangent vectors to one-parameter 
subgroups of G lying in H.  Let V be a complementary subspace and consider 
the map 

v: Te(G) = V x Te(H) + G 

given by y (X ,  Y )  = exp(X) - exp( Y). By restricting attention to each factor 
one sees that the differential y* at the origin is the same as that for exp; 
that is, p* = 1 on T,(G). Thus p is a diffeomorphism on some neighborhood 
of 0 to neighborhood of e in G. Taking a coordinate system in Te(H)  and 
one in V, p induces a coordinate system xl, . . . , xp, y , ,  . . . , yh in G with 
e at the origin and such that the left cosets of H are given by the coordinate 
slices x, = c l ,  . . . , x k  = ck (ci constant). By possibly restricting the do- 
main of these coordinates it is easy to see that the coordinate slice y ,  = 0 ,  
. . . , yh = 0 defines a local cross section C at e for the left cosets of H 
(i.e., for the canonical map n: G + G/H).  Now a function defined near e 
on G is constant on the left cosets of H iff it is independent of the coordinates 
y ,  , . . . , y h .  It follows that the map n takes C diffeomorphically to a neigh- 
borhood of eH in GIH, where GIH has the functional structure induced 
by n from that of G. It follows that GIH is a smooth manifold. From the 
commutativity of the diagram 

G x G - G  

I 
G X (GIH) - 

(for all smoothf)  and the definition of the functional structure on GIH, 
one deduces that the natural action of G on GIH is smooth. 

1.2. Theorem If G x M-,  A4 is a smooth action and x E M ,  then the 
canonical map a,: GIG, -+ M given by a,(gG,) = g ( x )  is an embedding. 

Proof Since left translations in GIG, and the operations by elements of 
G on A4 are diffeomorphisms it clearly suffices to show that the differential 
of az at eG, is a monomorphism. If X is a tangent vector at  eG, of GIG,, 
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then X comes (via the differential of G + G/G,) from a tangent vector Y 
at e in G. Moreover, Y is the tangent vector Y = D, to some one-parameter 
subgroup y : R + G of G. If X goes to zero in T,(M), then so does D,. 
Then by 1.1, x must be left fixed by the action of R via y :  R + G. Thus 
the image of y is in G, and y is taken to a constant curve by the projection 
7c: G+G/G,. Thus 

x = n*(Dy) = Dnov = 0 

as desired. I 

1.3. Corollary Zf the compact Lie group G acts smoothly on the smooth 
manifold M ,  then each orbit G(x )  is a submanifold of M and the map a,: 
GIG, + G(x)  is a diffeomorphism. I 

2. TUBULAR NEIGHBORHOODS 

As in the last section we assume that the reader is already familiar with 
elementary differential geometry, and in particular with the notion of rie- 
mannian manifold and of a geodesic; or at  least that he is willing to accept 
those few properties of them that we will need. 

Let M be a smooth manifold and suppose that G acts smoothly on M .  
By a (smooth) G-vector bundle E on M we mean a smooth vector bundle 
[i.e., fiber R" and structure group Gl(n)] together with a smooth action of G 
on the total space E(E) by bundle maps (i.e., linear on the fibers) and such 
that the projection n: E(E) + M is equivariant. The main example is, 
of course, the tangent bundle T ( M )  on which G acts via the differential 01  

the given action on M .  
An inner product on 5 is a function which assigns to each point p E M 

an inner product (positive definite, symmetric, bilinear form) ( a ,  ) p  on 
the fiber Fp = n-l(p) in a "smooth way." In terms of a chart 

- 
9: U x Rn;n-l(U), 

(- , . ) p  is expressed as a positive definite symmetric matrix [ai ,Jp)] for each 
p E U ;  that is 

(P(P? ( X I  9 . . . 7 X"))? P ( P >  (Yl7 . . . 7 Y">))* = c xiai,j(P)Yj. 
i,i 

Smoothness of the inner product means that the matrix coefficients ai,Jp) 
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are smooth functions of p in U. An inner product (. , a )  on 5 is said to be 
invariant (with respect to the given G-action) if 

for all v ,  w E Fp and all p E M. 

of the structure group Gl(n) of 6 to O(n) .  We will not need this fact. 

on 5 will be called a euclidean G-bundle on M. 

It is easy to see that inner products on correspond to smooth reductions 

A smooth G-vector bundle E together with an invariant inner product 

2.1. Theorem Let G be a compact Lie group acting smoothly on M and 
let 5 be a G-vector bundle on M .  Then there exists an invariant inner product 
on E .  

Proof First we show that there is a (noninvariant) inner product. To see 
this let { U,} be a locally finite covering of M by open sets over which there 
are charts 

q,: U, x Rn+n-l(UU). 

Over each U, we can define an inner product ( , - ), by means of the chart 
pa; e.g., given by the identity matrix. Then if {f,} is a smooth partition of 
unity subordinate to {Uu} we put 

for v ,  w E F p ,  which clearly defines an inner product on 5. 
Now define a new inner product on E by putting 

For h E G we have 

so that {. , . } is invariant. Since the integrand is smooth in p and g it follows 
from 0.3.3 that { a ,  } is smooth. Moreover {. , . } is clearly symmetric bi- 
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linear and is positive definite because 

for u # 0 since the integrand is positive. I 

A riemannian metric on M is a smooth inner product on the tangent 
bundle T(M) of M .  Thus we have shown, in particular, that a smooth G- 
manifold M has an invariant riemannian metric if G is compact. For such 
a metric, G is said to act by isometries. 

If X E  T,(M), where M is riemannian, then there is a unique geodesic 
yx: U+ M with ~ ~ ( 0 )  = p and tangent vector Dy, = X at p .  Here the 
open set U c R is taken as the natural domain of definition of the geodesic. 
Clearly y s x ( t )  = y&t) and the exponential map is defined by 

exp(J3 = yx(1). 

This map to M is defined on some open neighborhood W c T(M)  of the 
0-section. Moreover exp is a smooth map. 

Note that the tangent space to T(M) at  a point p of the 0-section (which 
we identify with M )  decomposes into 

Tp(T(M)) = Tv @ Th 

(vertical and horizontal vectors), where T, consists of tangent vectors to 
TJM) c T ( M )  and hence is canonically isomorphic to T,(M), and Th 
consists of tangent vectors to the 0-section M and hence is also canonically 
isomorphic to T,(M). The differential of exp restricted to T, is clearly just 
this identification of T, with T,(M) since 

Also exp is the identity map on the 0-section and hence exp,lTh is the ca- 
nonical identification of Th with T,(M). Since the differential is a linear 
map on the tangent space at a point, it follows that a t  a point p E M and 
under the above decomposition T,(T(M)) = T, @ Th = T,(M) @ T,(M), 
the differential 

~ x P * :  Tp(M) 0 Tp(M) - Tp(M) 

is just vector addition. 



306 VI. SMOOTH ACTIONS 

Suppose now that G acts smoothly on M and that the given riemannian 
metric on M is G-invariant. Then, since geodesics and the exponential map 
are defined canonically in terms of the riemannian metric, the map exp 
(and its natural domain of definition) is equivariant, where G acts on T ( M )  
via the differential of its action on M. The above facts about the exponential 
map are all that we shall use. 

Let G act smoothly on M and let A c M be a smooth, invariant, closed 
submanifold. The restriction T(.M)I A has T ( A )  as a subbundle. The quotient 
bundle 

N ( A )  = (ma I A ) / T ( A )  

is called the -normal bundle to A in M and is clearly a smooth G-vector 
bundle on A .  If M is riemannian and G acts by isometries, then T ( A )  has 
an orthogonal complement T(A)I in T ( M )  I A and T(A)I  is canonically 
isomorphic to N(A) ,  and is a euclidean G-bundle on A .  By an open invariant 
tubular neighborhood of A in A4 we mean a smooth G-vector bundle 5 
on A and an equivariant diffeomorphism 

v: E(5) + M 

onto some open neighborhood of A in M ,  such that the restriction of v 
to the 0-section A of 5 is the inclusion of A in M .  If 5 is a euclidean G-bundle 
on A ,  then the restriction of such a diffeomorphism 9 to the unit disk bundle 
00) -+ M is called a closed invariant tubular neighborhood of A .  By 2.1 
every open invariant tubular neighborhood “contains” a closed one when 
G is compact. 

2.2. Theorem If the compact Lie group G acts smoothly on M and if 
A is a closed invariant submanifold, then A has an open invariant tubular 
neighborhood in M.  

Proof We may assume that G acts by isometries in some riemannian metric 
on M .  Thus we may also regard the normal bundle N ( A )  as the perpendicular 
complement of T(A)  in T ( M )  I A .  Then the exponential map is defined on 
some open invariant neighborhood U of A in N ( A )  and exp: U +  M is 
equivariant. For a E A, the differential 

is the identity. Thus there is a smaller invariant open neighborhood V of 
A in N ( A )  on which exp, is an isomorphism on the tangent space at each 
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point of V. That is, exp: V+ M is an immersion. Since A is closed it is 
clear that V may be taken to be so small that exp-'(A) = A. Since exp 
is the identity on A, it will follow from Lemma 2.3 (to be proved later) 
that there is a smaller invariant neighborhood W of A in N(A) on which 
exp is an embedding. Define a function f :  A + R by letting f ( a )  be the 
supremum of the set of real numbers r for which the open ball of radius r 
in N,(A) is in W. Then f (ga )  =f(a) for all a E A and g E G, and f is a lower 
semicontinuous positive function on A .  By a theorem of Dowker (see 
Dugundji [l,  p. 1701) there is a continuous function h on A with 0 < h(a) 
<f(a ) .  By the Smooth Approximation Theorem, we may assume h to be 
smooth. Using the normalized integral on G we define a smooth function 
k :  A - R  by 

k(a) = h(ga) dg .  
J G  

Then 

0 < k(a)  < J f ( g a )  dg = /(a> J dg = f ( a >  
G G 

and 
k(ga)  = k(a) for all g E G. 

Now define y :  N(A)+ N(A) by 

where n is the projection N(A) + A. Then y is an equivariant diffeomor- 
phism onto its image, which is the open set 

{. E N(A) I II v II < k ( 4 4 ) ) .  

Thus p = exp o y :  N ( A )  - M is an open invariant tubular neighborhood 
of A. I 

As mentioned, we still must prove the following lemma. 

2.3. Lemma Let X and Y be metric spaces and let f: X-. Y be a local 
homeomorphism (i.e., each x E X has an open neighborhood mapped homeo- 
morphically onto an open set in Y ) .  Suppose that f is one-one on a subspace 
A c X, and that f - t f (A)  = A. Then A has an open neighborhood U on which 
f is a homeomorphism to f ( U ) .  
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Proof Put B = f ( A )  c Y. We may as well assume that f is onto. Then for 
y E Y there is an x E X with f ( x )  = y, and f maps some neighborhood of 
x homeomorphically to a neighborhood of y, so that an inverse to f can be 
defined near y. Since Y is paracompact we can find a locally finite covering 
{ U,} of Y and open maps g,: U, -+ X such that fg ,  is the identity on U,. 
Let { V,} be a covering of Y with 7, c U,. Let W be the set of points y E Y 
such that if y E 7, n V f l ,  then g a b )  = gs(y). Then the maps g, [ V, n W 
patch together consistently to define a map g :  W - .  X with f g  = lw. 
Since f - l ( B )  = A and f I A is one-one, we see that W 2 B. 

We claim that W is open. To see this let y E W and put gb) = x,  so 
that f ( x )  = y. Let N be an open neighborhood of x on which f is one- 
one. Suppose that y E Val n . . - n rak but that y $ Vp for j3 # al, . . . , ak. 
There is an open neighborhood M of y not touching any of the Vs. 
Moreover, since g J y )  = x, we may take M to be so small that g,,(M) c N. 
Now if z E M and if g,,(z) # ga j ( z ) ,  then, since f is one-one on N,  
z = fg,,(z) # fg,,(z) = z ;  a contradiction. Thus M c W and W is open, 
as was to be shown. 

Now g is open since g = g, on the open set V, n W ,  and thus g ( W )  
is an open set containing A. Also f is one-one on g(W) since f g  = l w .  
Since f is open it is a homeomorphism on g( W) to W, and its inverse is g.  I 

2.4. Corollary A smooth action of a compact Lie group is locally smooth. 

Proof Let G act by left translation on G/H and let 6 be a (smooth) euclid- 
ean G-bundle on GIH. Let V be the fiber over the point eH/H and note 
that H acts orthogonally on V. The canonical map 

y: G X H  v + E ( E )  

defined by y [ g ,  v] = g(v )  is an equivalence of G-spaces by 11.4.4. Thus 
if G, = H and if v: E ( [ )  -. M is an invariant tubular neighborhood of 
G(x) (which exists for some such 5 by 1.3, 2.1, and 2.2), then rp o y is a 
linear tube about G(x) in the sense of Chapter IV, Section 1.) I 

We recall for future reference that G x H  V is the bundle over GIH 
associated with the smooth principal H-bundle G + G/H and that, since 
H acts smoothly on V, there is a canonical smooth structure on G XH V. 
Since the map y: G x H  V +  E(6) covers the identity on G/H and is a 
diffeomorphism on the fiber V, it is clearly a dzfleomorphism. Thus the tube 
p o p: G x V -. M is a diffeomorphism onto an open neighborhood of 
the given orbit G(x); a fact that we shall use below. 
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We remark that this shows that a locally smooth G-space (G compact 
Lie) is just a G-space such that each orbit has an open invariant neighbor- 
hood on which there exists a C’%tructure in which G acts smoothly. This 
accounts for the terminology “locally smooth ” (although “locally smooth- 
able” would be more accurate). Such results as IV.I.1, that the restriction 
of a locally smooth action to a subgroup is still locally smooth, now follow 
trivially from these remarks and 2.4. It is definitely false that locally smooth 
actions are (globally) smooth in some differentiable structure. In fact there 
are topological manifolds admitting locally smooth actions but not admitting 
any differentiable structure. There are also smooth manifolds admitting 
no smooth S1-actions, but whose underlying topological manifolds admit 
locally smooth S1-actions (see 9.6). 

Note that if p E MG, then 2.1 and 2.2 applied to A = { p }  mean that there 
are local coordinates about p in which the G-action is expressed as an or- 
thogonal representation. This result is due to Bochner [I]. 

From the fact that the tube pl o y in the proof of 2.4 is a diffeomorphism, 
and from the fact that (G x V)(H)  - (G/H)  x Vn we deduce the follow- 
ing result (see IV.3.3). 

2.5. Corollary Let G be a compact Lie group acting smoothly on M.  
Then the subspace M ( H )  of points on orbits of type GIH is a smooth subman- 
ifold (locally closed) of M and is a smooth GIH-bundle over its orbit space 
MTHP I 

We now take up the question of the uniqueness of invariant tubular 
neighborhoods. Two invariant tubular neighborhoods q: E(5) + M and 
y :  E(q) + M of a closed invariant submanifold A c M are said to be 
equivariantly isotopic if there are invariant tubular neighborhoods qt : 
E(E) + M of A,  t E [0,1], and a smooth vector bundle equivalence 

such that pll = pl, plo = y o 8, and the map [0,1] x E(5) -+ M taking 
( t ,  v )  H cpt(v) is smooth. By a standard argument, that we omit, it may 
be assumed that p l t  is constant for t near 0 and near 1, and it follows easily 
that isotopy is an equivalence relation between invariant tubular neighbor- 
hoods of A .  (The definition of isotopy of closed invariant tubular neighbor- 
hoods is the same, except of course that 8 is required to be an equivalence 
of O(n)-bundles.) Note that 0 is necessarily G-equivariant. 
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2.6. Theorem If G is a compact Lie group acting smoothly on M and if 
A c M is a closed invariant submanifold, then any two (open or closed) 
invariant tubular neighborhoods of A are equivariantly isotopic. 

Proof Note that by the proof of 2.2 there exists an invariant tubular neigh- 
borhood of A whose image is contained in that of both and y. Since isotopy 
is an equivalence relation, it thus suffices to treat the case in which the image 
of cp is contained in the image of y. (In particular y-lp: E(5) -, E(q) 
is defined.) Thus it makes sense to define 

We need only investigate this as t approaches 0. 
Let p E A and let x, , . . . , x, be local coordinates on an open neighbor- 

hood U c A of  p.  Let y1 , . . . , y,  be coordinates in Rn (the fiber of 5 
and 7). Using a chart for q we may regard E(q I U )  = U x Rn. Then 
xl, . . . , x,, y l ,  . . . , y ,  can be regarded as local coordinates on M about 
p by using y :  U x Rn + M as a chart. (Thus y is the identity in these coor- 
dinates.) Using a chart E(5 I U )  = U x Rn for 5, we can represent p in 
the neighborhood of p E A c E(5) by 

V(XY Y )  = (n(xY v), I U k  Y ) ) ,  

where 

Y )  = (W9 Y ) ,  * . * Y U X Y  Y ) )  E Rrn, 

P ( X ,  Y )  = (IUI(XY Y )  9 . . . Y IU,(XY Y ) )  E 

Since ~ ( x ,  0) = (x. 0) we have A(x, 0) = x and ~ ( x ,  0) = 0. Thus 

(which is defined for t # 0 sufficiently small). 

= 0 we can write 
Now A(x, t y )  is defined and smooth in x, y ,  t even for t = 0. Since ~ ( x ,  0) 

P d X ,  Y )  = 1 a i , j w y j  + 1 Wi,j,k(X, YlYjYk 
j j,k 

by Taylor's Theorem, where the W i , j , k  are smooth and 

= (aIUi/aYj) (x, 0). 
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Thus 

1 
t ty> = ai,j(x)yj + t W i , j , k ( x ,  ty)yjyk 

i j . k  

is defined and smooth in x,  y ,  t even at t = 0. Moreover 

qo(x, v) = (., L,O)), 

where L,: R*-+ Rn is the linear map given by the matrix [ U ~ , ~ ( X ) ] .  

31 1 

(ow 'Z 

is just the differential of the map y H p(x, y )  at y = 0 which is nonsingular 
since the differential of q at (x, 0) has the matrix form 

which must be nonsingular. Thus f3 = y-lp0: E(5) -+ E(q) is a vector 
bundle equivalence given in terms of these coordinates by O(x, y )  
= (x,  I&)) (since y is the identity in the coordinates used). 

This finishes the proof of the case of open tubular neighborhoods. To 
conclude the case of closed tubular neighborhoods (where E and 17 are now 
euclidean G-bundles) it suffices to show that an equivariant Gl(n)-bundle 
equivalence f3 : E(5) --f E(q) is (equivariantly) isotopic to an O(n)-bundle 
equivalence. In fact the isotopy shall be through Gl(n)-bundle equivalences 
and will be canonical. 

Let us recall some linear algebra. If Q is a positive definite symmetric 
(real) matrix, then Q can be diagonalized by an orthogonal change of basis 
and has a unique positive diagonal square root in this basis, which we de- 
note by P = QIIz. Moreover, Q H Q1IZ is smooth in the matrix coefficients. 
It is also clear that if PI and Pz are positive definite symmetric, then so is 
any convex linear combination tP, + (1 - t ) P z ,  0 5 t 5 1. Now if B 
is an arbitrary nonsingular matrix, put P = (B'B)l12 (positive definite sym- 
metric) and put 0 = BP-I. Then 

so that 0 is orthogonal. Clearly P and 0 depend smoothly on B. The de- 
composition B = OP (0 orthogonal and P positive definite symmetric) 
is unique since, for any such decomposition, B'B = (OP)'(OP) = P'O'OP 
= PO'OP = P2, whence P = (B'B)1/2. In particular the decomposition 
B = OP is natural with respect to orthogonal change of basis. 
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Since 5 and 1;1 are O(n)-bundles, this means that 8 :  E(5) -+ E(q) can be 
factored uniquely into 

where 0‘ is represented on each fiber by a positive definite symmetric matrix 
and 0‘‘ is an orthogonal equivalence. Also 8’ and 0” are smooth (since 0 
and P depend smoothly on B )  and G-equivariant (since the decomposition 
B = OP is preserved by orthogonal transformations). Thus putting 

provides the desired isotopy between 0 and the orthogonal equivalence 
ell. 

Remark Our treatment of the existence and uniqueness of tubular neigh- 
borhoods essentially follows that of Milnor [3]; also see Lang [I]. It follows 
from a theorem of Thom (see Milnor [3]) that if A is compact, then any 
two closed tubular neighborhoods of A are ambient isotopic by an isotopy 
I x M + M which is constant outside a compact neighborhood of A .  
It is not hard to prove the equivariant version of this result, but we shall 
omit it for two reasons: First, the proof is similar to that of a theorem to 
be proved in the next section; and second, the equivariant result follows 
from the nonequivariant result upon application of the theorem of the next 
section. 

3. INTEGRATION OF ISOTOPIES 

If M is a smooth manifold, then an ,;otopy of 1). is a smooth map y :  
I x M - .  M such that each qt: M + M is a diffeomorphism, where 
plt(x) = y( t ,  x ) ,  and such that qt is independent o f t  in some neighborhood 
of 0 and in some neighborhood of 1. (With little loss of generality one 
could assume that yo is the identity.) If G acts smoothly on M ,  then the set 

qa = { X  E MI y,(gx) = gyt(x) for all t E I and all g E G} 

is a closed invariant subspace of M called the subspace of equivariance of 
pl on M .  If ya  = M y  then cp is called “equivariant.” The following result 
allows us to replace certain types of isotopies by equivariant ones. 
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3.1, Theorem Let pl be an isotopy of M and let G be a compact Lie group 
acting smoothly on M.  Assume that p0: M - .  M is equivariant and that 
M - pa has compact closure in M .  Then there exists an equivariant isotopy 
y of M with yo = plo and which coincides with pl on I x plG. 

Proof By composing with pltl we may as well assume that v0 is the identity. 
Since pl is constant in t near 0 and near 1 it can be extended in the obvious 
way to pl: R x M + M (a minor convenience). Let F:  R x M -+ R x M 
be the diffeomorphism defined by 

F(t, X I  = (4  pl(t, 4) .  

Apply the differential F* of F to the vector field dldt on R x M ,  obtaining 
a vector field X = F,(d/dt) on R x M .  The R component of X is clearly 
dldt. The integral curves of X are the transforms under F of those of d/d t ;  
that is, they are t H ( t ,  pl(t, x ) ) .  

Using the normalized integral on G we define a new vector field Y on 
R x M b y  

n 

(This is the integral of a vector-valued function on G to T(,,,,(R x M ) . )  
Then 

which means that Yis invariant under the canonical G-action on T(R x M ) .  
Since the R-component of X is constant = d/dt and since the action of G 
on T(R x M )  preserves this component, the R-component of Y is also 
dldt. 

Suppose that x E plG. Then F(t, x) = gF(t, g - lx)  for all t so that X( t , z )  
= g*(X(t,g-lz)) ,  and it follows that Y,,,,) = X ( t , z ) .  

Now integral curves to the vector field Y exist locally by the Existence 
Theorem for Ordinary Differential Equations (see e.g., Sternberg [I, p. 901). 
Since Y has R-component dldt, and hence has no singularities, each integral 
curve eventually gets outside the compact set I x ( M -  int(plG)). Since 
Y = X outside this compact set, the integral curves of Y are globally de- 
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fined. That is, there is a smooth action 0: R x (R x M )  -+ (R x M )  
of R on R x M such that the tangent vector field to the orbits (from 
dldt on the group) is Y. Since the R-component of Y is dldt the diffeomor- 
phism ( t ,  x )  t-f @(t ,  (0, x ) )  has the form @(t ,  (0, x ) )  = ( t ,  y ( t ,  x ) )  and 
y t :  x H y ( t ,  x )  must be a diffeomorphism of M .  Now t H @(t ,  (0, x ) )  
= ( t ,  y , ( x ) )  is the integral curve of Y with initial point (0, x ) ,  and t H F(t, x )  
= ( t ,  p t ( x ) )  is the integral curve of X with initial point (0, cp0(x)) = (0, x) .  
It follows that y , (x )  = p,(x) for all t when x E p". Since Y is G-invariant 
it follows that y is an equivariant isotopy. I 

To illustrate the use of 3.1 let us prove the following fact. 

3.2. Corollary Let G be a compact Lie group acting smoothly on M and 
let x and y be points in the same component of the $xed point set MG.  Then 
there exists an equivariant isotopy y :  I x M -+ M with yo the identity and 
with y , ( x )  = y .  Moreover, y can be taken to be constant in t outside some 
compact set. 

Proof We assume the standard fact that such a (nonequivariant) isotopy 
exists which is constant (hence equivariant) outside some compact set 

and which moves x along some path in MG to y .  Since M - pG then has 
compact closure and since x E pG (the path p t ( x )  being in MG),  the result 
follows from 3.1. I 

Remark Recall the fact (mentioned in Section 2) that two closed tubular 
neighborhoods of y are ambient isotopic by an isotopy constant outside a 
compact set. Then 3.1 applies to show that this is also true equivariantly. 
Thus we deduce from 3.2 that y1 may be assumed to take a given disk neigh- 
borhood of x orthogonally onto any given disk neighborhood of y (where 
G is assumed to  act orthogonally on both of these disks). 

4. EQUIVARIANT SMOOTH EMBEDDINGS 
AND APPROXIMATIONS 

In this section we shall prove a theorem, due independently to Mostow 
[l] and to Palais [2j, that a compact manifold with a smooth action of a 
compact Lie group G can be smoothly embedded in an orthogonal G- 
action. Sharper results, analogous to the Whitney Embedding Theorem, 
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have been obtained by Wasserman [2], and the compactness condition can 
be weakened to finiteness of the number of orbit types, but we shaIl not 
discuss these improvements here. The Embedding Theorem is then applied 
to show that an equivariant map can be approximated by an equivariantly 
homotopic smooth map; see Bredon [I21 and Wasserman [2]. 

The main case of the following theorem is, of course, that for which 
M = K = N is compact. 

4.1. Theorem Let G be a compact Lie group acting smoothly on a mani- 
fold M.  Let K be a compact invariant subspace of M and let N 3 K be an 
open invariant neighborhood of K. Then there exists an orthogonal action of G 
on some euclidean space Rn and a smooth equivariant map 8: M - t  Rn 
which is an embedding (in the smooth sense) on K and is zero outside N.  

Proof Let H be a closed subgroup of G. By 0.5.2 there exists an orthogonal 
representation of G on some euclidean space Vo and a point vo E V, with 
Gv, = H. Suppose we are given an orthogonal representation of H on a 
euclidean space V. By 0.4.2 there is an orthogonal representation of G on 
some euclidean space V’ 3 V extending the H-action on V. Then G acts 
orthogonally on W = V, @ V‘ via the sum of these two representations 
(i.e., diagonally). Consider the map 

defined by p[g ,  vl = g(vo + v ) .  If p k ,  vl = p k ‘ ,  v’l, then g(vo + v )  
= g’(vo + Y ’ )  so that g-lg’(v0) = vo and g-’g’(v’) = v. Thus h = g-lg‘ E H 
and h(v’) = v which shows that [g ,  v] = [gh, h-41 = [g’, v’] and hence that 
p is one-one. Since G x H  V has the differentiable structure induced from 
that of G x V and since the action map G x V - t  W is smooth, it follows 
that p is smooth. 

The isotropy group at [e, v ]  is H, and this is also the isotropy group a t  
vo + v E W. Thus p takes the orbit of [e,  v ]  diffeomorphically onto G(v, 
+ v )  (by 1.3). The differential of p is thus one-one on the tangent space to 
the orbit at  [e, v ] .  However, the normal space to the orbit of [e, v ]  is a sub- 
space of V and p maps this one-one affinely into W, whence p* is one-one 
on the whole tangent space to G x H  Vat [e, v]. By equivariance, p* is every- 
where one-one, so that p is a one-one immersion. Since p is obviously 
proper, it is an embedding. (It is only important that p be an embedding 
near the 0-section G/H.)  
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Let s > r > 0 and let f: R -+ R be a smooth function with 

f(t) = 1 for t 9 r, 

f(t) # 0 for t < s, 

f(t) = 0 for t 2 s. 

Define y: G XH V-. W by 

Then y is equivariant, is an embedding for 11 v 11 < r, and is the 0-map 
for 11 v I[ 2 s. 

Now if x E M with G, = H, then G(x)  has an invariant tubular neigh- 
borhood of this form G x H  I/. Since y[g7 v ]  = 0 for (( v ][ >_ s, p extends 
by zero to all of M. Similarly the map G x V-+ R taking [g ,  v ]  ~ f ( l l  v 11 s / r )  
extends to an equivariant map z: M + R which is nonzero exactly when 
11 v 11 < r (where G acts trivially on R). 

That is, for any x E M we have found an orthogonal representation 
of G on a euclidean space W, and a smooth equivariant map y,: M -+ W, 
which is an embedding on some open neighborhood U, of G(x), and a 
smooth invariant function z,: M - .  R which is nonzero exactly on U,. 
Moreover, we may assume that y,(y) = 0 for y outside any preassigned 
neighborhood of 0,. 

If K c M is any compact invariant set, then K can be covered by a finite 
number 

K c U,, v * * * v Uxk 

of such open sets and it can be assumed that the yZ, vanish outside any 
given neighborhood N of K. The map 

8: M - t  W,.@ @ W x k @ R k  

e(x> = (yX,(x) Y ' ' ' 7 y'zk(x)Y 7 . . ' 3 z Z k ( x ) )  

is smooth and equivariant. If xy y E U U,, and if O(x) = Ob), then for some 
i, z,(x) = t&) # 0, which implies that x,  y E U, and hence that x = y 
since y,, is one-one on Uxl .  Since the differential of y,, is one-one on U,, 
it follows that the equivariant smooth map 8 is an embedding on a neigh- 
borhood of K and vanishes outside N .  I 

By far the most important application of the Smooth Embedding Theorem 
is the following Smooth Approximation Theorem. When we say that a 
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map q: M -+ N can be "approximated" by a map y : M --f N (with certain 
properties) we mean that for a given metric on N and for a given positive 
function E :  M +  Rf, y can be found such that dist(y(x), ~ ( x ) )  < E(X) 
for all x E M. This notion is independent of the particular metric chosen 
for N .  

4.2. Theorem Let G be a compact Lie group acting smoothly on the man- 
ifolds M and N .  Let ?: M-. N be an equivariant (continuous) map. Then 
y can be approximated by a smooth equivariant map y :  M - .  N which is 
equivariantly homotopic to by a homotopy approximating the constant ho- 
motopy. Moreover, i f ?  is already smooth on the closed invariant set A c M ,  
then y can be chosen to coincide with p on A ,  and the homotopy between v 
and y to be constant there. 

Proof The idea is to embed N smoothly in an orthogonal representation 
on Rn, to approximate 9 by a map to Rn, to average this approximation over 
the group to obtain an equivariant approximation in Rn, and then to project 
normally back into N .  For most purposes (e.g., A4 or N compact) this suf- 
fices for a proof, but in general we must overcome some technicalities since 
N cannot generally be embedded in a representation. 

Let K be a compact invariant set in M and let V 2 v ( K )  be an open 
invariant set in N with rcompact. Let 8 :  N -+ Rn be an equivariant smooth 
map which is an embedding on a neighborhood of F. Let U be an open 
invariant neighborhood of K with 0 compact and 0 c q-l(V).  Now 
approximate the map 89: M + Rn by a map 1 :  M + Rn such that 

(1) 1 is smooth on a neighborhood of K, 

[We recall the construction of such approximations (see Milnor [2]): 
For x E M let V, be a neighborhood of x and let 1,: Vz-. Rn be such 
that: 

(i) If x E A n U, then V, c U and 1, is a smooth local extension of 
By 1 A n V, (which exists, by definition, for V, sufficiently small). 

(ii) If x E M -  U, then V, = M -  K and 1, = 89 I V,. 
(iii) If x E U - A ,  then V, c U - A and A,(y) = &p(x) (a constant 

function on V,). 

Let {f,} be a smooth partition of unity subordinate to a locally finite re- 
finement of { v,>, with refinement projection Q ++ x(a), and put 

(2) 1 =eq on ( M -  u) u A .  

W )  = Cf,(Y)1,,, ,(Y). 
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This clearly satisfies our requirements and the degree of approximation 
of 1 to 8p can be made as close as we wish by taking the V, to be sufficiently 
small for x E 17.1 

Now define p:  M -+ Rn by 

Then p(hx)  = J gA(g-lhx) dg = J (hg)I(g-lx) dg = hp(x), so that p is 
equivariant. Now for y ranging over G(x), 

so that ,u approximates O'p as closely as we wish. Moreover, p is smooth on 
some neighborhood of K and equals 8p on ( M -  U) u A .  

Now since 8 is an embedding on some neighborhood of 7 it follows 
(as in the proof of 2.2) that there is an invariant tubular neighborhood in 
Rn of 8( V ) .  Also, p may be assumed to be so close an approximation to Op 
that each line segment between p ( x )  and &p(x) lies in this tubular neigh- 
borhood for x E q-I(V). (Recall that p ( x )  = 8p(x)  for x E M - U.) Let 
r be the (smooth equivariant) retraction of this tubular neighborhood onto 
V. Then the map 7: M + Rn given by 

for x E q-l(V),  
7 ( x )  = 

is an approximation to 8'p and the maps qt :  M +  Rn given by 

r(tp(x) + (1 - t)ed.)) for x E @(v), 
for x E M -  C1 

define a homotopy between 7 = q1 and 8'p = q0. 
Since qt = 8p outside U we can pull the qt back uniquely to 

such that Byt = qt and y t  = 'p outside U. With ly = yl ,  note that 

(a) 
(b) y = q on ( M -  U )  u A .  

is smooth on a neighborhood of K, 

Also, of course, ly is equivariant and can be made to approximate 'p as closely 
as we please. (Similarly, the homotopy y t  approximates the constant ho- 
motopy.) 
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To complete the proof let f: M ---f R+ be an invariant continuous func- 
tion which is infinite at the point of infinity [e.g., put a metric on the one- 
point compactification (M/G)+ and put f(x) = l/dist(x*, m)]. Put Ki 
= f - l ( [ 2 i ,  2i + 11) and Li = f - l ( [ 2 i  - 1, 2i]) ,  which are compact invariant 
sets filling out M. Put K =  u K i  and L = ULi .  Clearly we may simultaneously 
approximate q on each of the disjoint compact sets Ki and obtain an ap- 
proximation (and the homotopy) y' to q such that y' is smooth on a neigh- 
borhood of K and y' = cp on A .  Now similarly approximate y' by y": 
M +  N such that y" is smooth on a neighborhood of L and y" = y' on 
the cIosed invariant set A v K. Since yf' = y' on K we see that yrt is every- 
where smooth and equals q on A .  I 

4.3. Corollary Let G, M,  N b e  as in 4.2. Then any equivariant map M -+ N 
is equivariantly homotopic to a smooth equivariant map. Moreover, if two 
smooth equivariant maps M + N are equivariantly homotopic, then they are 
so by a smooth equivariant homotopy. 

Proof The first part is immediate from 4.2. For the second part note that 
a homotopy can be assumed to be constant near the ends and can be 
extended to R x M-+ N .  Then the second part follows from 4.2 with 
A =  (0, l} x M. I 

5. FUNCTIONAL STRUCTURES ON CERTAIN ORBIT SPACES 

In the next section we will prove the smooth analog of the theorem of 
Chapter V, Section 6 concerning actions with two types of orbits. Our 
version of this result differs from, and is stronger than that of Janich [l]. 
This section contains some calculus lemmas we shall need. 

Let us first illustrate the difficulties in proving the smooth analog of 
V.6.1 by discussing the simpIe case of the invoIution x H -x on R; also 
see Janich [l]. Call this action 0. In this example R+ = [0, m) is a cross 
section for the action and can be identified with the orbit space. Janich 
takes the differentiable structure on the orbit space to be that given by this 
identification. Thus the orbit map R + R+ can be regarded as x H I x I. 
Let f: Rf + R+ be the diffeomorphism f(x) = x + x2 (for example). 
The classification theorem we seek is a classification of actions over R+; 
that is, the objects to be classified are actions together with diffeomorphisms 
of the orbit space with R+, and they are to be classified up to equivariant 
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diffeomorphism, preserving the maps to R+. Thus (0,l) and (0,f) are such 
objects. We claim that they are not equivalent; that is, that there does 
not exist an equivariant diffeomorphism f R -+ R which covers f on the 
orbit space R+. In fact it is clear thatywould have to be x ~ x ( 1  + I x I) 
or x H -x( l  + I x I), neither of which is C". On the other hand, we really 
do not want to distinguish between (0, 1) and (0,f). To overcome this 
technicality, Janich classifies only up to diffeomorphisms of the model 
(R+ here) for the orbit space which are strongly isotopic to the identity 
(isotopic with the boundary remaining fixed). From our viewpoint, however, 
we regard this example as showing that the orbit space has been given the 
wrong differentiable structure. Rather than using cross sections to define 
the structure, we use the naturally defined structure induced by the orbit 
map from the structure on the manifold. (In the above example, we claim 
that this structure will result by regarding x H x2 E R+ as the orbit map, 
and we also claim that this removes the anomaly. This requires justifica- 
tion, which we now turn to in the general case.) 

Throughout this section we let G c O(n) be a closed subgroup which is 
transitive on Sn-'. Let (x,, . . . , x,, y l ,  . . . , y,) be coordinates in Rn+, 
with G acting on x1 , . . . , x, and acting trivially on the yi coordinates. Let 
n: Rn+m + Rn+m/G be the orbit map and give Rn+,/G the induced func- 
tional structure (i.e., f is smooth iff f o  n is smooth). Let 

0: Rn+m+ R+ x Rm 

be the map O(xl, . . . , x, , y, , . . . , y,) = (r2, y1 , . . . , y,), where r2 = x12 
+ ... 3 xn2. Clearly there is a unique map pl such that the diagram 

e 
Rn+m- R+ x Rm 

n\ A 
Rn+,/G 

commutes. Moreover y is a homeomorphism and is a morphism of func- 
tional structures. We shall prove that pl is a dzfeomorphism (and hence that 
Rn+,/G is a smooth manifold with boundary); see Corollary 5.4. 

Suppose that f: R+ x Rm + R is any given function and let h: Rm+l 
= R x Rm + R be defined by 

h(x, yi 9 . . . ,  v,) = A x 2 ,  yi 7 . * ., Y ~ ) S  

Note that also 



5. FUNCTIONAL STRUCTURES ON CERTAIN ORBIT SPACES 32 1 

Thus the following implications are clear 

fE c ~ ( R +  x ~ m )  - (fe) E c"(R*+~) 3 h E c - J ( R ~ + ~ ) .  

5.1. Theorem 
h E C"(Rm+l) 3 f E C"(R+ x Rm). 

Proof First we shall show that if h is C", then f is C" in the sense that the 
partial derivatives with respect to the coordinate x of R+ at x = 0 are the 
one-sided derivatives. We then prove the well-known fact (Lemma 5.2) 
that this implies that f is C" in the usual sense that f extends locally to a 
smooth function on R x Rm. 

It is clear that f is smooth except possibly at points of the boundary 
x = 0. Let us make the inductive assumption that Df exists and is con- 
tinuous when D is a monomial in dldx, a ldy , ,  . . . , dldy,,, which involves 
dldx at most k - 1 times. We shall say that such a function is Ck-'*". 
This clearly holds for f when k = 1. 

Since h is an even function of x we know that its partial derivatives 
with respect to x of odd order vanish at x = 0. Thus, with y = (yl, . . . , ym), 
we have the Taylor's expansion 

where r(x,  y )  is C" and we take 2n 

Put 
> k, n 2 2. Since r is even in x we can 

r(x,  v) = 4 x 2 ,  Y) 

and s is by the inductive assumption. Then 

Let D be a monomial in dldx, dldy,, . . . , d/dym involving aldx, k times. 
Put X = d /ax  and write D = TXU, where T has no dldx terms. Applying 
the operator U to (1) we see that 

vm, Y )  = X"WX,  v) + A x ,  v), 
where g is C1.-. Thus it suffices to show that TX(xnUs) exists and is con- 
tinuous (at x = 0). Now 

X ( X ~ U S ) , , ~  = lim xnUs/x = 0 
x+o 
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since n 2 2. Thus also 
T X ( X " U S ) ~ , ~  = 0. 

For x # 0, s(x,  y )  is C" so that 

X(xnUs) = nxn-lUs + xnXUs (for x # 0) 

and hence 

TX(xnUs) = nxn-lTUs + xnDs (for x # 0). 

It suffices to show that this approaches zero uniformly in a compact neigh- 
borhood N of (0, yo) as x approaches zero. Since TUs is continuous (by 
the inductive assumption) it suffices to show that 

x n ~ s - 2 0  in N as x - 0 .  

where 71 involves only derivatives of s which have lower degree in X than k 
and hence where 7 is the restriction to x # 0 of a continuous function (by 
the inductive assumption). This implies that 

(2x)k(D4(x27 v) 

is bounded in any compact neighborhood of (0, yo) .  Since 2n > k this 
implies that in any compact neighborhood of (O,y,), 

x2"(Ds)(x2, y )  -2 0 as x - 0, 

and hence that 

x n ( ~ s ) ( x , y ) A ~  in N as x - o  

as was to be shown. I 

As remarked, this proof only shows that f is C" in the obvious sense 
where the partial derivatives d / 8 x  are the one-sided partials at x = 0. 
To show that this coincides with the usual meaning we must show that f 
extends locally to a C" function on R*+l. Suppose that we can find a C" 
function y on Rn+l (coordinates x ,  y l ,  . . . , y,) such that 
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for all i and y. Then if we define f ( x ,  y )  = ~ ( x ,  y )  for x < 0, it follows 
immediately that f is C” on Rm+l. (Interchange of order of differentiation 
is valid for f and for cp.) Thus it suffices to prove the following lemma. 

5.2.  Lemma Suppose we are given a sequence of C“ functions g o ,  g , ,  
g ,  , . . . on Rm -+ R. Then there exists a C“ function q: Rm+l -+ R (coordi- 
nates x ,  y,, . . . , ym on Rm+’) such that 

for  all i and all y E Rm. 

Proof It suffices to find q so that this is true on the cube I x I < 1, I y1 I 
< 1 , . . . , I y ,  I < 1 since we can patch together using a partition of unity 
(and we only need the lemma locally in any case). Let B :  R -+ R+ be a 
C“ function such that 

1 for x in some neighborhood of 0, 
0 for I X I  2 1. 

B(x)  = 

We fix this “bump function” once and for all. 

b over all. Let n > b and a > 0 and consider the function 
Let D be a monomial in dldx, dldy, , . . . , d/dy, of degree d in dldx and 

This is a sum of d + 1 functions of the form 

hn, j(y)xn-d+jaiB(j)(ax) = xnAdh,, j(Y) (ax)jB(j)(ax), 

where 0 5 j 5 d and the C“ functions h,,j depend on g,, and the explicit 
form of D. (There are only finitely many D of degree b and hence only 
finitely many of the functions hn,j to consider. Their explicit form is unim- 
portant.) 

Note that the function zjB(j)(z)  is bounded since it vanishes for I z I > 1. 
It follows that there exists a bound M, such that 

1 
n 

I h,,j(y)(ax)jB(i)(ax) I < - M,, 

for I yi I 5 1, independently of a, j and of D (of degree b < n). Since n - d 
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>_ 1 it follows, upon multiplying by x ~ - ~  and adding the d + 1 6 n func- 
tions, that for I yi I 5 1 and I x I 5 1 we have 

I ~(7 1 gnh)xnB(ax)) I < Mn I x I * 

Putting an = 2nMn we conclude that, for I yi I 5 1, 

since B(a,x) = 0 for an I x I > 1. 
Thus for any D as above of degree b and with 

1 
V n  = gnb)xnNanx) 

the series 

has I Dp,, I < 1/2n for n 2 b + 1 (and I yi I 5 1). Thus this series converges 
uniformly (in the cube) and hence converges to Dp, where 

Thus v is C". 

close to zero, we calculate that (Dq)(O, y )  = g a b ) .  
Putting D = ad/dxd and recalling that B(anx) = 1 for x sufficiently 

I 

Recall now the notation introduced preceding Theorem 5.1. 

5.3. Corollary 

f E Cm(R+ x Rm) iff f8 E Cm(Rn+m). I 

5.4. Corollary The map 9: Rn+m/G ---f R+ x Rm is a dcreomorphism 
and hence Rn+m/G is a smooth manifold with boundary. I 

Because of this result we may (for notational convenience) identify 
Rn+m/G with Rf x Rm via p, and thus the orbit map is identified with 8. 
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Now suppose that f: R+ x Rm+ R+ x Rm is a diffeomorphism. (It 
suffices for this to be defined in some open set rather than globally.) Assume 
that f fixes the boundary; that is, f(0, y )  = (0, y). Put f(x, y )  = ( fo(x, y), 

Define y :  Rn+m .+ Rn+m by y(x,  y )  = (yo(x, y ) ,  y,(x, y ) )  E Rn x Rm 
.A(& Y ) )  E R+ x Rm. 

where 
X 

Yo(x, U) = (fa(/] X 11'7 Y))1/' - 
IIXII ' 

Yl(X, v) =f1(Il  X 1 1 2 ,  v). 

5.5. Theorem 
(i.e., By = f e ) .  

The map y is an equivariant diffeomorphism covering f 

Proof Obviously y is equivariant and it covers f since 

Since f is a diffeomorphism preserving orbit structure, y is clearly one-one 
and onto. To see that y is a diffeomorphism we use Taylor's Theorem to 
write 

8fO 
f0(x7 u) =fa(', v) + ax (O7 y )  + x2k(x, y )  Y 

where k is C". Since fO(0, y )  = 0 and c(y) = (afO/ax) (0, y )  > 0 (because 
f is a diffeomorphism) we can rewrite this as 

where h is C". Thus for x E R we have 

and hence, for x = (xl, . . . , x,) E Rn, 

which is clearly C". Moreover, it is an easy check, which we leave to the 
reader, to see that the Jacobian of y is nowhere zero. Hence y is a diffeo- 
morphism. (Alternatively, one can note that this construction applied to 
f -l will yield y-'.) I 
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Remarks Theorem 5.1 is due to Whitney [I]. Lemma 5.2 is a very special 
case of the Whitney Extension Theorem (see Malgrange [I]) but we felt 
it was desirable to include the relatively simple proof of this special case. 
There is a general conjecture which includes 5.1 as a very special case and 
which is formulated as follows. Let the compact Lie group G act on Rn 
via some linear representation. From a classical theorem of Hilbert on in- 
variant theory (see Weyl [I]) it is known that there exist a finite number 
p l ,  . . . , p k  of homogeneous polynomial functions Rn + R which are in- 
variant under G and such that if p :  Rn + R is any invariant polynomial 
function, then p = q ( p l ,  . . . , p k )  for some polynomial function q:  Rk --+ R. 
The conjecture then states that any invariant C" function g: Rn + R has 
the form g = f ( p l ,  . . . , pk) for some C" function f: Rk + R. This would 
clearly give one a very firm grasp on the functional structure on the orbit 
space of a smooth action. 

6. SPECIAL G- MAN1 FO LDS 

Let G be a compact Lie group acting smoothly on a manifold M .  Let 
G/H be the principal orbit type and suppose that P - G/K is a nonprin- 
cipal orbit such that there are exactly two orbit types in a neighborhood 
of P. Then P has a smooth tubular neighborhood which is equivariantly 
diffeomorphic to G x K  Rk, where K acts orthogonally on Rk. We may 
assume (after conjugation) that H is the principal isotropy group of 
K on Rk. According to IV.6.3 there are exactly two possibilities and we 
shall assume here that the first of these holds. That is, we assume that 
k = n + m and that K acts on Rk via a representation into O(n) c O(k) 
and is transitive on the unit sphere Sn-l in the orthogonal complement 
Rn x (0) to the fixed point set (Rk)" = (0) x Rm. Then H can be taken to 
be the inverse image of O(n - 1) in K. Now N ( H )  n N ( K )  acts on the 
right of G x Rk (see Exercise 15) and we shall assume that this action is 
smooth. 

We shall say that M is a (smooth) special G-manifold (see Janich [l]) 
if there are a t  most two orbit types in the vicinity of each orbit and if the 
conditions above hold about each nonprincipal orbit. In this case, MIG 
is a topological (m + 1)-manifold with boundary (corresponding to the 
nonprincipal orbits). 

We give M/G the functional structure induced from that of M.  Now if 
f i s  a real-valued function on G x K  Rk which is invariant under the action 
of G, then its pull-back to G x Rk is independent of the G-coordinate, 
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and it follows that f is smooth iff its restriction to the fiber Rk is smooth. 
Thus, near an orbit of type G/K the functional structure of M/G is that 
induced from Rk via the orbit map Rk + Rk/K = (G x K  Rk)/G. 

From 5.4 we conclude that M/G is a smooth (m + 1)-manifold with 
boundary. 

Now let X be a given smooth ( m  + 1)-manifold with boundary B. We 
wish to classify smooth special G-manifolds over X.  That is, we consider 
pairs ( M ,  y ) ,  where M is a smooth special G-manifold and y :  M + X 
is a smooth map which factors through M/G such that the induced map 

y*: M/G-+X 

is a dzfleomorphism. Two such pairs ( M ,  y )  and ( N ,  y) are said to be equiv- 
alent if there exists an equivariant diffeomorphism p :  M + -  N such that 
the diagram 

MAN 
.I J v  

X 

commutes. As in Chapter V, Section 6, we simply use the terminology 
“ M  and N are equivalent over X” for this relationship, with y and y being 
understood. 

We now consider the proof of the Classification Theorem V.6.1. Recall 
that to state and prove that theorem one first selects a principal isotropy 
group Hand then selects an isotropy group K,corresponding to each bound- 
ary component B, of B. Then one restricts one’s attention to proper special 
G-manifolds M over X (i.e., near a point of B,, M has the form G x K ,  Rk= 
as above with H being an isotropy group of K, on the slice Rk,). (This se- 
lection of the K, and H is temporary and will not affect the statement of 
our main theorem 6.2.) In V.6.1 it was assumed, for convenience, that the 
K, were constant = K, but the generalization is obvious (as was stated 
there). 

A few moments reflection (using, for example, the Smooth Approxi- 
mation Theorem 4.2 and its Corollary 4.3) should convince the reader that 
the only difficulty in carrying out the proof of V.6.1 in the smooth case is 
the establishment of the smooth analog of V.4.2 (the “Tube Theorem”). 
[The reader may, in fact, feel that this also follows trivially from the Invariant 
Smooth Tubular Neighborhood Theorem 2.2, but this is not so. In fact, 
it would be false if one uses Janich’s differentiable structure on M/G as 
would be our main theorem 6.2.1 
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Let ( M ,  rp) be a smooth special G-manifold over X and let A = q--I(B), 
which is the union of the nonprincipal orbits. Then A is a closed submanifold 
of M .  Let 5 be a euclidean G-bundle over A and t: E(5) -+ M an invariant 
tubular neighborhood of A .  The canonical map E(5) --+ R+ x B taking 
a vector v in the fiber over a E A to (I[ u I[ 2, rp(a)) induces a dzFeomorphism 

E(5)/G 1 R+ x B by the previous discussion and 5.4. We shall use this 
to identifr E(E)/G with R+ x B. Thus t induces 

- 

t*: R+ x B - - + X  

(via rp* : M/G 1 X which we also regard, at present, as an identification). 
Note that z*(O, b )  = b and that t* is a diffeomorphism onto its image (an 
open set). That is, t* is a smooth collar of B in X.  Now the smooth version 
of the “Tube Theorem” V.4.2 would say, not only that such a tubular 
neighborhood t exists, but that it exists such that t* equals any preassigned 
smooth collar 

I :  R+ x B - X .  

- 

For simplicity of notation we shall regard E(E) to be a subspace W of M 
(via the embedding z) so that t will be regarded as the inclusion, and sim- 
ilarly t*: R+ x B - X will be regarded as an inclusion. (Since I is a 
given preassigned collar it would be more logical to regard 1 as an inclusion, 
but this would complicate the notation below.) 

Now we know (essentially from 2.6) that there exists a smooth isotopy 

F: (R+ x B)  x I + X  

1 (0, b )  for s = 0 and all t 

with 
(s, b )  for t = 0, 

F((s, b), t )  = A(s, b)  for t = I ,  

(and, of course, F ( - ,  t )  is a diffeomorphism onto its image for each t ;  i.e., 
it is a collar). If we can cover this isotopy by an equivariant isotopy on M ,  
then for t = 1 we will have our desired invariant tubular neighborhood of A 
over the given collar 1 of B in X. Thus it will suffice to prove the following 
result. 

6.1. Theorem 
isotopy 

In the above situation there exists a (smooth) equivariant 

P :  W x I + M ,  

of invariant tubular neighborhoods of A = rp-l(B), which covers F. 



6. SPECIAL G-MANIFOLDS 329 

Proof Let b E B and let Rm - U' c B be a small coordinate neighbor- 
hood of b in B. Now the part of W c M over R+ x U' c R+ x B c X 
has the form 

G X K  (Rn X u'), 

where K c O(n) acts on Rn orthogonally and is transitive on Sn-l. Thus 
the part of W x I over R+ x U' x I has the form 

G xg(Rn x U' x I) 

(and one can enlarge I to R if so desired to avoid boundary points). 

that 
Let U c U' be a coordinate neighborhood of b and let E > 0 be so small 

F([O, 2s)  x U x I) c R+ x U'. 

The part of M x I over [0, 2.5) x U x I is G x R  ( D  x U x I), where 
D c Rn is the open ball of radius ( 2 ~ ) " ~ .  Let 

be the embedding defined by E(s, b, t )  = (F(s, b, t ) ,  t ) .  Then it follows 
from 5.5 that on [ 0 , 2 ~ )  x U x I, E is covered by a K-equivariant embed- 
ding D x U x I --+ Rn x U' x I which is the identity on (0) x U x I 
and on D x U x (0) and which commutes with the projections to I (since 
E does). Since G x (- ) is functorial, this induces a G-equivariant embed- 
ding 

9-'([0,2~) x U )  x I Z: G x ~  ( D  x U x I) + G X g  (Rn X U' X I) 

Z:~-'(R+ x U')  x I 
covering E. 

Now @((O, co) x U )  - G / H  x (0,co) x U and M - A is a smooth 
GIH-bundle over X -  B (with structure group N ( H ) / H ) .  A smooth equi- 
variant map p-l((O, co) x U )  x I + ( M  - A )  x I covering E would be 
determined by its restriction to ( e H )  x (0, co) x U x I and this would 
be a smooth lifting of E I (0, co) x U x I to the principal N(H)/H-bundle 
( M -  A)" x I over ( X -  B )  x I; compare 11.5.13. Thus it is clear that 
the restriction of the above embedding to 

($-1([O, E l  x U )  x I --+ M x I, 

together with the identity on p-'([O, co) x U )  x {0}, can be extended to 
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a smooth equivariant map 

Eu: v-'(R+ x U )  x I +  M x I 

which covers E o n  R+ x U x I. Now Eu is an embedding since it is smooth, 
it covers an embedding, and it preserves orbit types. Note that &T(x, 0) 
= (x ,  0 )  and that &(a, t )  = (a, t )  for a E A .  

Let U and V be open sets in B for which we have such embeddings & 
and 8, as above. Then we shail show how to construct such an embedding 
guUv. Let 

8 = &l&: v -~ (R+ x (U n v)) x I - + V - ~ ( R +  x (u n v)) x I 

which is a self-equivalence covering the identity. This clearly has the form 

@,  0 = (el(x,  0, t ) .  

Let fi U n V +  I be smooth and such that f = 1 on a neighborhood of 
U - Vand f = 0 on a neighborhood of V -- U. Let f I :  q-l (R+ x ( U  n V ) )  
4 I be the composition f = f o projection o q and define 

which is another smooth self-equivalence of q-l(R+ x ( U  n V ) )  x I 
covering the identity on R+ x (U n V )  x I. Then put 

-GJ(x, t )  if q ( x )  E R+ x ( U -  V ) ,  
BuuV(x, t )  = 8 , o  e y x ,  t )  if Y(X) E R+ x ( U  n v), 

if v ( x )  E R+ x (V - U), 

which clearly has the desired properties. 

we can construct an equivariant embedding 

1 M X ,  t )  

Now using a locally finite covering of B and the usual inductive procedure, 

8: W X  I=v-'(R+ x B )  x I - t M  x I 

covering E and with E(x, 0) = (x ,  0 )  and &a, t )  = (a, t )  for a E A .  (The 
inductive argument is the same as that given in the proof of 11.7.1 and 
will not be repeated.) Since covers E it has the form 

B ( X ,  t> = (&, t ) ,  t )  

and P is then our desired isotopy covering F. I 
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As remarked, this result allows us to repeat the proof of the Classifi- 
cation Theorem V.6.1 in the smooth case. Note that the smooth classifi- 
cation is exactly the same as the topological one since, for instance, the 
set of smooth homotopy classes of smooth cross sections equals the set 
of homotopy classes of continuous sections (of a smooth bundle). Rather 
than restating that result, we shall sum up our present knowledge in the 
following theorem. First we introduce some notation. 

Let A " ( G ,  X )  denote the set of (smooth) equivalence classes over the 
smooth manifold X with boundary B of special smooth G-manifolds over X .  

For a topological manifold X with boundary B we call a G-space W over 
X a special topological G-manifold over X if the orbit type over X - B 
is constant and that over each component of B is constant, and such 
that each nonprincipal orbit has a neighborhood which can be given 
the structure of a smooth special G-manifold. Then it is clear that W is a 
topological manifold and that G acts locally smoothly on it. Moreover, 
the group S(n) = [ N ( H )  n N ( K ) ] / H  of Chapter V, Section 4 acts by 
orthogonal G-bundle equivalences on the disk bundle M, over GIK. We 
let A o ( G ,  X )  denote the set of topological equivalence classes over X of 
special topological G-manifolds over X. 

If X is smooth, then X o  will denote its underlying topological manifold. 
The following theorem is now a direct consequence of the Classification 
Theorem V.6.1 and its smooth analog. 

6.2. Theorem. The forgetful map 

is a one-one correspondence. I 

For clarity, we restate this result as follows. 

6.3. Theorem Let X be a topological manifold with boundary and let A4 
be a special topological G-manifold over X .  For any C" structure on X ( i f  
one exists) there exists a C" structure on M on which G acts smoothly and 
which induces the given structure on X .  Moreover, given the structure on X ,  
this structure on M is unique up to equivariant difieomorphism over X .  I 

For example, the (special) O(n)-manifold ,Zin-l over D2 of Chapter I, 
Section 7 has, by its construction, a differentiable structure in which O(n) 



332 VI. SMOOTH ACTIONS 

acts smoothly. Similarly, the Brieskorn manifold Wn-l (Chapter V, Section 
9) comes with a given smooth structure, and the plumbing construction 
(Chapter V, Section 8) gives, upon straightening the angle, a smooth struc- 
ture on dP2n(Ak-l). By V.8.1 and V.9.2, Ztn-l, Wy--l, and dP’(Ak-l) 
are topologically equivalent over D2 (as O(n)-manifolds). Hence, by 6.3, 
they are also smoothly equivalent over D2. 

Recall from Chapter I, Section 7 that Zjm--3 is a topological sphere for 
k odd. Its differentiable structure can be determined from any of the above 
three descriptions of it (see Hsiang and Hsiang [3], Brieskorn [l], Hirze- 
bruch and Mayer [l], and Bredon [19]). The easiest method is from the de- 
scription as aP4m-2(Ak-l) since the Arf invariant is easily computed for this 
(see the last two references). The result is that 

the standard sphere for 
the Kervaire sphere for 

k = & 1 (mod 8) , 
k = &3 (mod 8). 

The Kervaire sphere is, by definition, 8P4m-2(A2). It is sometimes standard 
(e.g., in dimensions 4m - 3 = 1, 5, 13, 29, 61), but is known to be exotic 
when m is not a power of 2; see Browder [l]. 

Let us briefly consider the classification of smooth self-equivalences of 
a special G-manifold M over X.  The topological case was dealt with in V.7.1, 
and there is little difficulty in proving the smooth analog of that result. Part 
of the argument would be replaced by the following remarks : Suppose that, 
for euclidean G-bundles 6,q on A ,  we are given two invariant tubular neigh- 
borhoods u: E ( E ) + M  and t: E ( q ) + M  of A which induce the same 
collar of B in X.  Then since the induced collar determines lengths of vectors 
in 6, ?j~ we see that 0 - l ~  preserves norm. The proof of the first part of the 
Uniqueness Theorem 2.6 of invariant tubular neighborhoods provides an 
isotopy between u and t8 which induces the identity on X ,  where 8 
is a vector bundle isomorphism. Since 8 must preserve norms, it is an 
orthogonal bundle isomorphism. This replaces the argument concerning 
the homotopy to an S-equivalence in the proof of V.7.1. The remainder of 
the proof is immediate and will be omitted. Again the classification in the 
smooth case is identical to that in the topological case. Letting 
noDiffeoxG(M) be the set of smooth isotopy classes over X of self-equiv- 
alences of M over X ,  we obtain the following theorem. 

6.4. Theorem If M is a smooth special G-manifold over X ,  then the for- 
getful map noDfleoxG(M) -+ noHomeoxG(M) is a one-one correspon- 
dence. I 
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Remark There is no difficulty in extending the results of this section to 
the case of special G-manifolds M with boundary. In this case X would have 
a “corner” on its boundary which separates i3X into two parts, one part B 
corresponding to the nonprincipal orbits and the other part corresponding 
to i3M. For example, X could be a half disk {x E Dm+l I x1 2 0}, with 
B = X n S” and with cp(aM) = (x E Dm+l I x1 = O}. 

7. SMOOTH KNOT MANIFOLDS 

In this section we shall study smooth actions of G = O(n), n 2 2, on 
compact manifolds M having three orbit types: fixed points, spheres 
O(n)/O(n - l),  and principal orbits O(n)/O(n - 2). We assume, more- 
over, that the orbit space MIG is topologically a contractible manifold 
whose boundary corresponds to the singular orbits and with the fixed point 
set MG c MIG corresponding to a connected, orientable, codimension 2 
submanifold of the boundary; see Chapter V, Sections 10 and 11. We 
shall call such an O(n)-manifold an O(n)-knot manifold. 

From the discussion in Chapter V, Section 10 we see that about a fixed 
point in M ,  O(n) acts by twice the standard representation, which can be 
regarded as the canonical action of O(n) on Cn = Re x R”. Select an in- 
variant tubular neighborhood E(5)  -+ M of MG, where 5 is a euclidean 
G-bundle on MG. The structure group of 5 is clearly the centralizer of this 
representation O(n) c U(n) c O(2n)  in 0 ( 2 n ) ,  and it is easy to see that 
this centralizer is O(2) acting by scalar multiplication and by conjugation 
on Cn. (If we think of the O(n) representation as matrix multiplication on 
the space of n x 2 matrices, then the structure group O(2) acts by right 
multiplication on this.) 

7.1. Lemma 5 is a trivial G-bundle over MG. 

Proof Consider the set A of vectors z = (zl, . . . , z,) E C”, with z = 

x + iy, such that 11 x 11 = 1 = 11 y ]I and (x, y )  = 0. Then the structure group 
O(2) of E preserves A .  Moreover, A is a principal orbit of G and this O(2)- 
action coincides with the right translation of O(2) - N ( H ) / H  on G/H, 
where H = O(n - 2). Regarding E(5) c M and hence E(E)/G c M/G, 
the union of these sets A defines a bundle Q over a copy of MG in int(M/G), 
and is just a restriction of the bundle of principal orbits. Since M/G is 
contractible, this bundle Q is trivial, and so is the associated principal O(2)- 
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bundle QH over this copy of MG. However, by the above remarks, 5 is 
associated with this principal bundle. I 

Thus we have a tubular neighborhood of MG in M of the form c" x Ma 
with G = O(n) acting on Cn as above. Now by V.9.1 the orbit map C" 
+ Cn/G can be identified with 

e :  c ~ - + R +  x C = R +  x ~2 

taking z = (zl , . . . , z,) ++ (11 z 11 - I Czi2 I 2, z12 + - - - + zn2). The reader 
may make the straightforward check, using Section 5, that 0 gives the induced 
functional structure on Cn/G on the complement of 0 E Cn. (This is undoubt- 
edly false at the origin, where there should probably be a corner or a cusp. 
However, we know practically nothing about the induced structure of 
C"/G at the origin and this accounts for the fact that we shall not attempt 
to classify such O(n)-manifolds M over X - M/G,  as we did in the topo- 
logical case in Chapter V, Section 10.) 

Now the homeomorphism 

defines a differentiable structure on a neighborhood of MG in M/G (given 
the chosen tubular neighborhood of MG in M ) .  Since this structure coincides 
with the induced structure on M/G - MG we may amalgamate them and 
obtain a differentiable structure on all of M / G  which makes it into a smooth 
manifold with boundary and with M" a codimension 2 smooth submanifold 
of the boundary. Note that 8 :  Cn + R+ x C is equivariant with respect 
to the action of the structure group O(2) of [ on Cn and an obvious smooth 
O(2)-action on R+ x C .  Thus the definition of this differentiable structure 
on M/G does not depend on the fact that 5 is trivial or on the particular 
(smooth) trivialization used. 

Although this structure on M/G is not natural it is clearly well defined 
up to diffeomorphism (preserving the submanifold M c )  by the Uniqueness 
Theorem for Invariant Tubular Neighborhoods; see the remark at the end 
of Section 2. (The situation is the same as that involved in "straightening 
the corner" of a product of two manifolds with boundary.) 

7.2. Theorem The assignment to M of the pair (MIG, MG),  with the above 
diferentiable structure, defines a one-one correspondence between the set 
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of equivariant difeomorphism classes of O(n)-knot manifolds M and the set 
of difeomorphism classes of pairs ( X ,  Z), where X is a compact, contractible, 
smooth manifold with boundary and Z is a connected, orientable, codimen- 
sion 2 submanifold of dX.  

Proof Let us first show that any such pair (X,Z) is realizable. Let R2 
x Z c d X  be a tubular neighborhood of Z in dX. For p E Z the restric- 
tion map W(8.X- Z) --+ W(S1 x { p } )  is an isomorphism (see Chapter 
V, Section 10). Let CL E W(3.X- Z) be a generator corresponding to a 
generator L E H1(S1).  The map 

H y d X  - 2) --+ W(S1 x Z) e W ( S 1 )  0 P(Z) 

takes CL to (L,  ,4), for some ,4. Now ,4 E W(Z) e [Z, Sl] is induced by some 
smooth map f: Z --+ S1. Regarding R2 as C, it is easy to see that the map 
R2 x Z + R2 x Z, taking (z, q )  H (zf(q)-l, q), induces (L ,  8) H (L ,  0) on 
H1(S1 x Z) = W(S1) @ W(Z). Thus it follows that we can take the tu- 
bular neighborhood R2 x Z c d X  in such a way that 8 = 0. Also we may 
assume that this extends to a tubular neighborhood R+ x R2 x Z of Z 
in X.  By the discussion in Chapter V, Section 10 and by 6.3 there 
is a unique O(n)-manifold M ,  over X - Z corresponding to the invariant 
--&a E H1(dX - Z). The part of M,  over (R+ x R2 - (0)) x Z corre- 
sponds to the invariant (L,  0) E H1(S1) @ W(Z) = H1(S1 x Z) - H1(d(R+ 
x R2 - {0}) x Z). However, the O(n)-manifold Cn x Z restricted to 
(Cn - (0)) x Z also has this invariant. Thus M ,  can be pasted to C" x Z 
via some equivariant diffeomorphism over (Rf x R2 - (0)) x Z and this 
clearly gives the desired O(n)-manifold corresponding to ( X ,  2). 

Now let M and N be two O(n)-knot manifolds. Select invariant tubular 
neighborhoods of the fixed point sets and hence the associated differentiable 
structures on the orbit spaces M* and N*.  Suppose that h :  M* + N* is 
a diffeomorphism carrying the submanifold MG to NG.  Now the given 
tubular neighborhoods in M and N induce tubular neighborhoods of M a  
in M* and of NG in N * .  By an isotopy of h we may suppose that h takes this 
tubular neighborhood in M* to that in N* orthogonally. (Do this for a 
closed tubular neighborhood and then pass to the interior.) Over these 
tubular neighborhoods h can clearly be covered by an equivariant diffeomor- 
phism h", since both of these tubular neighborhoods are trivial: Cn x Z 
where Z - MG - NG. Over the complements M* - MG and N* - NG, 
h can be covered by an equivariant diffeomorphism h", : M - M a  --+ N - NG 
by the Classification Theorem 6.3 of special G-manifolds; see Chapter V, 
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Section 10. Thus 
y = h";'h", 

is an orbit preserving self-equivalence of the part of M over the comple- 
ment of MG in its tubular neighborhood [which is diffeomorphic to 
(R+ x R2 - (0)) x MG].  By 6.4, V.7.1, V.7.2, the discussion in V.7.5, 
and the fact that 

[D2 x MG, S' x M G ;  S', It] zs H1((D2, Sl) x M G ;  Z) = H-'(MG) = 0 

it follows that y is isotopic through orbit preserving self-equivalences to 
the identity or to the antipodal map in the fibers of Cn x MG. Using such 
an isotopy we can clearly find an orbit preserving self-equivalence of the 
part of M over the tubular neighborhood R+ x R2 x MC (including the 
0-section M G )  which coincides with y outside some smaller closed neigh- 
borhood A of MG. Then the map h": M -+ N ,  defined to be h",~-' above 
R+ x R2 x MG and to be h, above M/G - A ,  is an equivariant diffeomor- 
phism. 1 

Now we shall restrict our discussion to the case in which the orbit space 
is a disk. Thus let Zk c Sk+2 be a smooth, connected, orientable sub- 
manifold. By 7.2 there is an O(n)-knot manifold M2n+k(,Zk) corresponding 
to (Dk+3,Zk)  and this is unique up to equivariant diffeomorphism. 

In the next section we will wish to consider the case of O(n)-knot mani- 
folds M with boundary, where M/G will now be diffeomorphic (with the 
structure as defined above) to 

D$+4 = { ( X 1 ,  . . . , x k + g )  E Dk+4 I Xk+4 2 o}, 

(aM) /G will correspond to Dk+3 (i.e., xk+g = O) ,  the set of singular orbits 
will correspond to B = Sk+3 n Df+4, and the fixed set MG will correspond 
to a submanifold Wk+l c B which is connected, orientable, and transverse 
to dB = Sk+2. There is no difficulty in checking that the argument goes 
through in this case to show that there is an O(n)-manifold Mm+k+l( Wk+l) 
with boundary, corresponding to (D$+4, Wk+l) and which is unique up to 
equivariant diffeomorphism. Clearly 

Recall from V. 11.2 that if Zk is a mod 2 homology sphere, then so 
is M2"+k(Zk). Similarly it is easily seen that if Wk+l is mod 2 acyclic, 
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then so is M2n+k+1(Wk+1). Similarly, this holds over the integers when 
n is even. 

Let us discuss briefly the question of orientation. Choose an orientation 
for Sk+2 (and hence for Dk+3) and choose one for Zk c Sk+2. If n is even, 
then the structure group O(2) preserves the orientation of Cn so that the 
orientation on Zk induces a canonical orientation on Cn x Zk and hence 
also on M2n+k(Zk). If n is odd, then O(n)/O(n - 2) admits no orientation 
reversing self-equivalences (by explicit check of the action of O(2) - N(O(n - 2 ) ) / 0 ( n  - 2 )  on this), so that we may give it a canonical 
orientation once and for all. Thus when n is odd the orientation of Dk+3 
induces an orientation on M2n+k(Zk). Thus oriented Zk in oriented S k f 2  
corresponds to oriented M2n+k(Zk) with oriented fixed point set Zk and 
oriented orbit space; but where the orientation of MZnfk(Zk) and that of 
Zk are canonically related, as above, when n is even, and the orientation 
of M2n+k(Zk) and of its orbit space are canonically related when n is odd. 
Thus there are four possible " orientations " on an O(n)-knot manifold, 
corresponding to the four orientations of the pair (Sk+2,Zk). 

Remark The results in this section are due to Janich [I] and to Hsiang 
and Hsiang [4]. Analogous results in the case of U(n) or Sp(n) actions are 
false in the smooth case even when Z (codimension 3 or 5 ,  respectively, 
in the sphere) is a sphere. This contrasts with the topological case; see 
Exercise 6 of Chapter V. 

8. GROUPS OF INVOLUTIONS 

Let 0 < k < n be fixed and consider the set of all smooth involutions 
T, (T2 = 1) on Sn (oriented) with oriented fixed point set Zk of dimension 
k. Recall that Zk is a mod 2 homology k-sphere. Up to orientation preserv- 
ing (for both Sn and Z k )  equivalence, these form an abelian semigroup 
under the operation of connected sum, which is defined as follows : Suppose 
we are given two involutions Tl and T, on Sn with fixed point sets Zlk 
and Z2k. Let Rn have the involution 

and pick canonical orientations on Rn and on the fixed set Rk. Let vi: 
Rn + Sn be invariant tubular neighborhoods of points p i  E Z$k which pre- 
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serve both orientations (i.e., of Rn-+ S" and of Rk+Zjk). Let z: R" 
- (0) + Rn - (0) be given by 

z(xl, . . . , X") = (-xl, x, ,  . . . , X")/CXi". 

Then the connected sum (S", T , ,  Zlk) # (S", T,, ZZk)  (or simply Tl # T,) 
is defined to be 

(S" - {PlN u, (S" - c p z > >  

with the involution T, u T,, where 

(Slightly less precisely, with Di = vi(D"), this is (S" - int Dl) u (S" 

- int D,) via an equivariant, orientation-reversing linear map aD, 1 aD2 .) 
It follows from 3.2, and the remark following it, that connected sum is 
well defined up to orientation-preserving equivariant diffeomorphism. Of 
course, (S", T, , Zlk) # (S", T, ,  ZZk) is equivalent to an involution on Sn 
with fixed set diffeomorphic to Zlk #Z2k. 

- 

8.1. Lemma Let T be a smooth involution on Sn x I preserving both ends. 
Let F be the j x e d  set and let Fj = F n (Sn x ( i } ) ,  for i = 0, 1. Then (F,  
F,, F,) has the mod 2 cohomology of (Sk x I, Sk x (0}, Sk x (1)) for some 
- 1  5 k 5 n, and F is orientable. [We mean that this holds for all three 
absolute cohomology groups and also for the relative groups of (F, F,), (F, Fl), 
and (F, F, u F,).] 

Proof By Smith theory, F, has the mod 2 cohomology of Sk for some k ,  
which we now fix. Since H*(Sn x I, Sn x (0); Z,) = 0 it follows from 111. 
7.9 that H*(F, F,; Z,) = 0. Note that it follows from this that P is  connected 
for k > 0 and must intersect S" x (1). (A similar remark holds for k = 0.) 
Similarly H*(F, F,; Z,) = 0. Thus F, Fo , and Fl all have the mod 2 cohomol- 
ogy of Sk and the inclusions F,, c F and F, c F induce mod 2 cohomology 
isomorphisms. Thus it is clear that Hj(F, F, u F,; Z,) is zero for i # 1, 
k + 1 and is Z, for i = 1, k + 1. An easy universal coefficient argument 
shows that F must be orientable when k # 1. In the case k = 1, F is a 2- 
manifold with F, - S1 - Fl , and the cohomology shows that F - S1 x I. I 

We shall let n 2 5 and 0 < k < n for the remainder of this section. Let 
T be a smooth involution on Sn x I (oriented) with oriented fixed point 
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set F of dimension k + 1 and let F, and Fl be as in 8.1. We give the pairs 
(S" x {0},  F,) and (S" x {l}, Fl) the induced orientations. (Thus, in parti- 
cular, the canonical identification S" .+ S" x { i }  preserves orientation for 
i = 0 and reverses it for i = 1,) 

Suppose that (S", To,  ,Yok) and (S", Tl , Zlk) are involutions with oriented 
fixed sets Zik. Then we shall say that they are L-equivalent if there exists 
an involution T on S" x I with oriented fixed set F, as above, with 
(S", To,  ,Yok) = (Sn x {0},  T, F,) and (Sn, T l ,  Zlk) - -(Sn x {l}, T, Fl);  
where - denotes orientation preserving smooth equivalence of involutions 
(with oriented total space and oriented fixed set) and the minus sign indicates 
reversal of both orientations. We shall let @kn denote the set of L-equivalence 
classes of all involutions on the oriented n-sphere with an oriented k-di- 
mensional fixed point set. 

8.2. Theorem The set @kn is an abelian group under connected sum for  
0 < k < n ;  n 2 5 .  An involution (S", T,  Zk)  represents the zero element of 
this group i f  T extends as a smooth involution on Dn+l =I Sn. The inverse is 
given by reversal of orientation. 

Proof The main point is to show that the connected sum is a well-defined 
operation on @kn. Thus suppose that (Sn x I, T, F )  and (Sn X I, T' ,  F ' )  
realize L-equivalences between involutions T, and Tl and between T,' 
and Tl', respectively. Since k > 0, F and F' are connected and touch both 
ends by 8.1. Thus there is a smooth arc A in F from a point of Sn x (0) 
to a point of Sn x (1) transverse to the boundary; and there is a similar 
arc A' in F'. We can then take an invariant tubular neighborhood Nof 
A (necessarily of the form A x Rn with the canonical involution on Rn 
fixing Rk) and similarly N' of A'. In the obvious way we can use N and N' 
to patch S" x I - A together with Sn x I - A' equivariantly with respect 
to T on the first and T' on the second. This yields an involution J on a 
manifold Wn+l (oriented with oriented fixed set) such that (aW, J )  = 
To # T,' - Tl # Tl'. By the h-cobordism theorem (see Milnor [5]) it is eas- 
ily seen that W - Sn x I, whence To # T,' is L-equivalent to TI # Tl'. 

Clearly (S", T, Z k )  is L-equivalent to the standard linear involution with 
fixed set Sk c Sn iff T extends to an involution on Dn+l. (In one direction, 
cap off S" on the standard involution end of an L-equivalence; in the other 
direction, remove an open disk from int Dn+l.) If (S", T, Z k )  is any involution, 
let Dn be an invariant disk about a point of Zk and consider the involution 
T x 1 on K = (S" - int D") x I with the corner straightened equivariantly. 
Then K = Dn+l, by the h-cobordism theorem, and on the boundary the 
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involution is just (Sn, T, Zk) # -(Sn, T, Zk). Since the linear action ob- 
viously acts as an identity under connected sum, the result clearly follows 
from these remarks. I 

These groups @kn are clearly of fundamental interest in the study of 
smooth involutions of spheres. For n > 2k a good deal of information about 
them has recently been obtained by L. Jones [2]. We shall prove three general 
results about these groups, two of which show that many of these groups 
are infinite. 

It is clear that if we consider, more generally, involutions on smooth 
oriented homotopy spheres we obtain analogous groups @kn. Clearly 
there is an exact sequence 

where 0" is the group of oriented homotopy spheres under connected sum. 
Since 0" is finite, some multiple of any element of 0," is in @kn. 

8.3. Theorem For 1 5  k I n ,  the involution T :  (z,,, . . . , z ~ " + ~ )  H 

(zo , . . . , ZZk, - Z Z k + l ,  . . . , - z ~ ~ + ~ )  on the Brieskorn manifold W$n+l (see 
Chapter V, Section 9) represents an element in whose order is either 
infinite or is divisible by 22k(22k--' - l ) a k ,  where ak = 1 or ak = 2 according 
as k is even or odd. (Note that since W?+l is the Kervaire (4n + I)-sphere, 
twice this element is always in the subgroup @;Ti.) 

Proof The fixed set of this involution is Wbk-'. (Note that this has 3- 
torsion in its homology by Chapter I, Section 7.) For the proof we shall 
use the pinvariant of Eells and Kuiper [l] (also see Montgomery and 
Yang [7]). We need only the following properties of p. It is defined (in 
particular) for smooth oriented mod 2 homology (4k - 1)-spheres 2 which 
bound spin manifolds. It takes values in Q/Z and is a homomorphism 
(under connected sum). There is a formula for p in terms of Pontriagin 
classes and the index of any cobounding spin manifold W. We only need 
this in case W is either parallelizable or W is a mod 2 (hence rational) 
homology disk, and in these cases 

where z (W)  is the index of W [i.e., the index of the intersection form on 
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H2k(W; Q)] and bk = -22k+1(22k-1 - l)ak. (Of course t (w> = 0, and 
hence p(Z) = 0, when W is a mod 2 homology disk.) 

For the given involution on W$n+l we use the fact that the fixed set 
W$k-l - dP4k(A,) and that the intersection matrix of P4k(A,) is 

(See Chapter V, Section 8 and V.9.2.) Thus r(P4"A,)) = 2. 
Suppose that m[W?+l; TI = 0 in @:ti. Then the involution on the 

m-fold connected sum of W?+l bounds an involution on D4n+2, the fixed 
point set of which is necessarily a mod 2 homology 4k-disk. Thus m Wtk-l 

that 
- - Wjk-l # # Wjk-l (m times) bounds a mod 2 homology disk, so 

p(m Wjk-l)  = 0. 

However, this is 

in QlZ, which means that bk/2 divides m. I 

Remark This is not the best that one can do. For example, one can also 
use Milnor's I-invariant, which is defined for all mod 2 homology (4k - 1)- 
spheres (in particular) and gives a homomorphism 

1; OZ-, + QlZ 

upon application to the fixed set. We refer the reader to Eells and Kuiper 
[I] for the definition of this and the comparison with p. In low dimensions 
p gives better information than A, but generally both together give better 
information than either one alone. For example, in case k = 6, the il in- 
variant shows that the divisibility in 8.3 can be improved by a factor of 
691. 

It might be conjectured, in fact, that the elements considered in 8.3 have 
infinite order. When n = k this can be shown by the method we use to prove 
the next result. 

8.4. Theorem For k 2 2, the involution T ;  (u, v ,  zl, . . . , z k )  H (u, 
v ,  zl, . . . , z k - 1 ,  - z k )  on the Brieskorn sphere W:$+l (see Chapter v, Section 
10) represents an element of infinite order in @%it:. 
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Proof Let 2n 2 k + 2 and let G = O(2n - k ) .  Consider the G-manifold 
W22-1 with G acting on the last 2n - k coordinates. Note that the isotropy 
types are G, K = O(2n - k - 1) and H = O(2n - k - 2) .  By inspection, 
it is easily seen that the representation of G about a fixed point is twice the 
standard representation plus a trivial (2k - 1)-dimensional representation, 
and the slice representation of K is a standard representation plus a trivial 
(2k + 1 )-dimensional representation. 

Thus the orbit space X = W;$-I/G is topologically a (2k + 2)-manifold 
with boundary B. Note that increasing n (and enlarging G correspondingly) 
does not change the orbits and hence Xis  independent of n. Also note that 
F(K, W$z-l) = W:$+' with the induced action of Z, = N ( K ) / K  correspond- 
ing to the given involution T o n  W:2+'. Thus there is a canonical identifica- 
tion of the orbit space of T with the space B of singular orbits: 

W;.$+lIT * B = dX. 

Since k 2 2 we know that W$+l and W$'j+l are simply connected by 
V.ll . l .  By the existence of fixed points it follows from 11.6.3 that X and B 
are simply connected. Next we claim that X is acyclic and hence is a disk. 
To see this, note that the orbits of G are all (2n - k - 3)-connected so that 

H y x ;  Z) w Hi( w4n-1. 3,5 ) Z) 

for i 5 2n - k - 3, by the Vietoris-Begle Mapping Theorem; see Spanier 
[ I ,  p. 3441. Now Wi2-l is a homotopy sphere by V.9.5. Thus, by taking 
2n - k - 3 2 dim X = 2k + 2 (i.e., 2n 2 3k + 5 )  we conclude that X 
is contractible. Since B is simply connected we have 

X w D2k+Z. 

Thus this situation fits the context of Section 7. Let ZZk-l c S2k+1 de- 
note the submanifold corresponding to F(T, W;,$+l) = W;$-l in W;F/T  
= B - SZk+l. In the notaton of Section 7 we have 

w4n-1 ~ 4 n - 1 ( 2 2 k - l ) .  
3,5 

By taking the m-fold equivariant connected sum about fixed points of this 
it is clear that 

w$$-l = ~ 4 n - l ( d z k - l )  

for any integer m > 0. 
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Now suppose that m[ W;$+l, TI = 0 in @z!. This means that there is 
an involution T' on D2k+2 which extends that on mW;,$+l SZk+l. Then 
Pk = F(T', D2k+2) is a mod 2 homology disk. Now D2k+2/T' is simply 
connected and its integral homology can be shown to be trivial (see Chapter 
111, Exercise 3). Thus DZk+2/T' is a (2k + 2)-disk and FZk c D2k+2/T' 
clearly has boundary 

mz2k+l c S2k+l/T' = m(W;y/T) = mB = SZk+l. 

That is, mZZk-' c Szk+' is the boundary of a mod 2 homology disk FZk c 
D2k+2. By the discussion in Section 7 this implies that 

m w4n-1 M4n--l(mz2k--1) m M4"-l(dF2k) m dM4"(Fk). 
3,5 

Moreover, M 4 , ( P k )  is mod 2 acyclic as noted in Section 7. In particular, 
the index of M4"(F") is 0 so that the Eells-Kuiper pinvariant 

mp( W$-') = p(m W$-') = 0 in Q/Z. 

On the other hand, it can be seen that Wt2-l bounds a parallelizable 
manifold of index f 8 ;  see Brieskorn [l] and Milnor [7]. (This can be seen 
by showing that the O(2n - 1)-manifold dP4%(E,) corresponds to the torus 
knot (3,5) and thus is equivalent to W;$-l (see Chapter V, Sections 10 and 
l l ) ,  and by the easy and well-known computation of the index of P4,(E,); 
see Hirzebruch [2].) Thus 

P.(w;,;-') = f8/b,, 

so that b, divides 8m. However, b, increases strictly with n and n is arbitrary, 
independent of m. This contradiction shows that no multiple of the given 
involution on W ; p  can be extended to D2k+2. I 

Remark There is a close relationship between the above proof and the 
notion of the signature of a knot; see Erle [ l ,  21. The technique in the above 
proof can be used, in place of the signature of a knot, to show for example 
that any nontrivial torus knot in S3 has infinite order in the Fox-Milnor 
knot cobordism group; see Milnor [6]. There is some hope that the codimen- 
sion two case can be completely calculated; see Levine [2]. 

Our next result is essentially due to Browder and Petrie [I], who defined 
an invariant for certain types of involutions. We shall develop this invariant 
in a modified, and more geometric, manner. Also the domain of definition 
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of our version of the invariant will differ from that of Browder and Petrie. 
(In their version (a) below is replaced by the requirement that MT be a 
rational homology (2k - 1)-sphere with k # n, and (b) is not needed.) 

We assume throughout that T is a smooth orientation preserving involu- 
tion on a closed oriented (4n - 1)-manifold M such that: 

(a) MT is a (2k - 1)-manifold with H,k-4n(MT; Q) = 0. 
(b) There exists a nonzero normal vector field 5 to  MT in M. 
(c) There exists an oriented 4n-manifold W with d W  = M and such 

that T extends to a smooth involution on W. 

We remark that WT and MT need not be orientable. Also MT (and 
M) need not be connected and k in (a) may vary over the components, 
with the condition (a) applying to  each component separately. 

Suppose W is as in (c) and 6 is as in (b). Then 6 can be extended to  a nor- 
mal field El of WT in W, perhaps with singularities. Assuming [, to  be small 
(this will not affect the argument) we can apply the exponential map to 6, , 
thereby obtaining a shifted copy WT(6,) of WT in W. Moreover, by a 
slight change of E l  it may be assumed that WT(E,) meets WT transversely. 
Then WT n WT(6,) is a closed (4k - 4n)-manifold whose normal bundle 
is naturally the restriction of twice the normal bundle of WT in W, whence 
WT n WT(tl) has an orientation canonically induced from that of W. Any 
other extension f 2  of 6, with WT&) transverse to WT, is homotopic to 
5, and the homotopy can be altered (making it transverse) to  provide a 
cobordism between WT n WT(t1) and WT n WT(t2). Since the index 
is a cobordism invariant, the index of WT n WT(E,) depends only on WT 
and on the (nonzero) homotopy class of the normal field 6 to  MT in M. 
We denote this index by 

Index(WT - WT, 6). 

Now consider the symmetric bilinear form (a, b)  = a . TD (intersection) 
on Ifzn( W; Q). The signature of this form is denoted by Sgn(T, W). We put 

I(M, T, 6) = Index(WT - WT, 6) - Sgn(T, W). 

We claim that this is independent of the choice of W. In fact if W, is another 
cobounding manifold as in (c), then X = W u (- W,) is a closed manifold 
with involution. If 5 is any nonzero normal field to MT in M = W n W, 
c X, then it is clear that 

Index(XT . F) = Index(WT - WT, 5 )  - Index(WIT * WIT, 6). 
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see Atiyah and Singer [2, p. 5881 and Hirzebruch [3]. (The case of greatest 
interest to us is that for which M = d W is a rational homology sphere, 
and in this case the latter formula is obvious.) By the G-Signature Theorem 
of Atiyah and Singer [2, p. 5831 (also see Hirzebruch [3] and Janich and 
Ossa [l]) we have 

Sgn(T, X )  = Index(XT . X T )  

and it follows that Z(M, T, 5 )  is independent of W. 

5 )  is clearly additive with respect to disjoint union. 
Note that we have not assumed that M is connected. The invariant I(M, T, 

8.5. Lemma (1) r f  ( M ,  T )  bounds (W,  T) such that H4k-4n(WT; Q )  
= 0 where dim WT = 2k (i.e., this holds separately for  each component of 
WT, with k varying), then Index(WT - WT, 5 )  = 0 for  any 5, and hence 
Z(M, T, 5 )  = -Sgn(T, w>. 

(2) Zn general, Z(M, T, 5 )  is independent of 5- 

Proof First let us show that (1) implies (2). Let 5 and 5’ be two non- 
zero normal fields on MT in M. Consider W = M x I with 5 on MT 
x (0) and l‘ on MT x (1) and with the involution T x 1. The fixed set 
W T = M T x I h a s  

by assumption (a). Since H,,(W) = H,(M x I) 2: H,,(M), it is geomet- 
rically obvious that the intersection form on W is zero. Thus by (1) we 
have 

0 = -Sgn(T x 1, W )  = I(M x (0) u -M x {l), T u T, 5 u 5’ )  

= Z(M, T, E )  - Z(M, T, l‘). 

Thus it suffices to prove (1). 
To prove part (1) we shall assume familiarity with the 9-series and the 

Index Theorem of Hirzebruch; see Atiyah and Singer [2, p. 5771. Let Y 
denote the self-intersection WT n WT(5,) for some suitable extension 

of 5, and recall that Y does not meet M = d W. Also dim Y = 4k - 4n. 
Let i :  Y-+ WT be the inclusion. Now the normal bundle of Y in WT is 
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isomorphic to the restriction to Y of the normal bundle Y of W T  in W. 
Since 9’ is multiplicative, this implies that 

9 ( Y )  = i*(z), 

t = Y( WT)Y(y) - l .  
where 

(These are inhomogeneous, rational, absolute cohomology classes.) Thus 

Index( WT . WT, 5 )  = Index( Y )  = L( Y )  = 22k--2n9( Y ) [  Y ]  
- - 22k--2ni*(z)[ Y ]  = 22k-%(i *[ Y ] ) .  

However, by assumption, i , [Y ]  E H4k-4n(W; Q )  = 0, and hence In- 
dex(WT - WT, 5 )  = 0. I 

Since Z(M, T, 5 )  is independent of 5 we shall now denote it by Z(M, T).  
Note that it follows immediately from the definition that it is additive with 
respect to connected sum as well as disjoint union (where the sum is taken 
at  points whose fixed point set components have the same dimension). 

Suppose that ( M ,  T )  and (M’,  T’) are involutions on homotopy (4n - 1)- 
spheres with (2k - 1)-dimensional fixed point sets. Also suppose that 
( M ,  T )  is L-equivalent to (M’, T’). If ( M ,  T )  bounds an involution on an 
oriented 4n-manifold, then so does (M‘,  T‘). Thus, in this case and for n # k,  
Z(M, T )  and Z(M’, T’) are both defined. Moreover, from the definition of 
Gequivalence and from 8.5, it follows immediately that Z(M, T )  - Z(M’, 
T’) = 0. Thus Z defines an additive integral invariant on its subgroup of 
definition in @%;XI:; k # n. 

8.6. Theorem For k # n, the involution (u, v ,  zl, . . . , z ~ ~ - ~ )  ++ (u, v ,  
zl, . . . , z k - 1 ,  -zk, . , . , -zZnPl) on the Brieskorn sphere wi*;-l represents 
an element of injinite order in @;;I:. 

Proof It suffices to show that the invariant Z is nonzero for the involution 
in question. I t  will be slightly more convenient to treat the corresponding 
involution T on the plumbed manifold dP4n(E8); see Chapter V, Section 
8. (As remarked before, dP4n(E8) can be seen to be equivalent to W3-l 
as an O(2n - 1)-manifold by the classification of knot manifolds. We shall 
assume this but note that the calculation of the invariant Z(dP4n(E8), T )  
will not use this fact.) The involution T extends canonically to P4n(E,). 
Moreover H2n(P4n(Eg)) is free abelian of rank 8 and is generated by the 
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eight 2n-spheres used in defining the plumbing; see Chapter V, Section 8. 
From this it is clear that the induced involution T* on Hzn(P4"(E8)) is 
T*(a) = (-1)k~. Thus the matrix of the bilinear form (a ,  B )  = a - T*. 
is ( - l ) k  times the intersection matrix for P4"(E,) and this has index f 8 .  

isPzk(E,). Now P4"(E,) and P412-2(E,) 
are parallelizable and thus the normal bundle of P4n-2(E,) in P4"(E8) is 
stably trivial. However, a stably trivial 2-plane bundle is trivial, since it is 
orientable and is classified by its Chern class c1 which is stable. Thus 
PZk(E,)  c P4"-2(E,) c P4"(E,) has a nonzero normal field (in fact its 
normal bundle is trivial) and therefore its self-intersection manifold can 
be taken to be empty. Thus 

Note that the fixed set of T on 

Z(dP4n(E8), T )  = -Sgn(T, P4n(E8)) = f8. 1 

9. SEMIFREE CIRCLE GROUP ACTIONS 

In this section we shall consider smooth semifree (i.e., free outside the 
fixed point set) actions of the circle group S1 on disks and homotopy spheres. 
Suppose that S1 acts semifreely on Zn with fixed set Zk. If k = n - 2, 
then the situation is covered by 6.3 and V.6.2 (also see V.2.2). Thus we may 
assume that k < n - 2. Now Zk is an integral homology sphere, but may 
not be simply connected (examples are given by the suitable S1 = SO(2) 
action on the Brieskorn sphere Wt,Y-l fixing W&, and connected sums of 
this with itself). We shall not concern ourselves with this in this section, 
however, and will assume throughout that Zk is a homotopy sphere. Sim- 
ilarly, we consider semifree actions on Dn fixing some disk Dk. All the 
results of this section have analogs for semifree S3-actions, but we leave 
it to the readei to supply the easy details of this. 

9.1. Theorem Let S1 act semifreely and smoothly on Dn fixing a k-disk 
Dk (embedded in any way in D"). Assume that n 2 7 .  Then the action is 
smoothly equivalent to an orthogonal action. 

Proof As remarked, we may assume that k < n - 2. Let p be a point 
in the interior of Dk and let Bn c int Dn be an invariant closed disk neigh- 
borhood of p on which S1 acts orthogonally (which exists by the Invariant 
Tubular Neighborhood Theorem 2.2). Let X = D" - int Bn and let X,, = 

dBn and XI = dD" be the two boundary components of X .  Now Bn n Dk 
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is a closed k-disk in int Dk and, since any such disk is ambient isotopic to 
a standard concentric disk, we know that 

X n Dk - Sk-l x [O,l]. 

Thus there is a smooth function v: X n Dk + [0,1] with y = 0 on X ,  n Dk 
and v = 1 on X ,  n Dk and with no critical points. Clearly, by a standard 
patching argument, we can extend to a smooth function 

q.7: X +  [0,1] 

such that v = 0 on X,, cp = 1 on X ,  and 9 has no critical points on X,, 
X ,  or on X n Dk (and hence on a neighborhood of these sets). By averaging, 
we obtain a smooth function y: X-+ [0,1] given by 

which is invariant, is 0 on X ,  and 1 on X, ,  and has no critical points on a 
neighborhood of ( X  n Dk) u X ,  u X,. 

Put W = ( X  - Dk)/S1 which is an open (n - 1)-manifold with boundary 
components W, = ( X ,  - Dk)/S1 = (aBn - Dk)/S1 and W, = ( X ,  - Dk)/S1 
= (aDn - aDk)/S1. Since y is invariant it induces a smooth function 

y*: w+ [0,1] 

which is 0 on W,, 1 on W, , and whose critical points are contained in a 
compact set in int( W). 

Clearly we can alter y*, and hence y, by changing it only in some compact 
subset of int(w) so that the new y* will have only nondegenerate critical 
points; see Milnor [S]. We assume this to be done. 

Now using any invariant riemannian metric on Dn consider the gradient 
vector field grad y on X.  The trajectories of this field in Dk n X run from 
Dk n X ,  to Dk n X ,  and hence there is a neighborhood of Dk n X on 
which the trajectories run from X, to X, . (If the reader prefers, one could 
start with y defined from an invariant tubular neighborhood of Dk n X 
in X ,  and then this will be obvious.) Now grady is invariant under the 
S1-action and hence induces a vector field on W which is clearly gradient- 
like for y*; see Milnor [S, p. 201. (In fact, 6 is grad y* with respect to an 
obvious induced riemannian metric on W.) Also, outside some compact set, 
the trajectories of 5 run from W, to W, . Thus, even though W is noncom- 
pact, the trajectories of 5, or of any vector field which coincides with 5 
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5 outside some compact set in int(W), never run off W; that is, they run 
from W, or to W, (at finite time) or from or to  critical points (as time goes 
to fm). 

Since k < n - 2, X -  Dk N Dn - Dk is simply connected and the 
inclusion Sn-k-l --+ X -  Dk of the sphere in a normal plane to  Dk gives a 
homology isomorphism, and hence is a homotopy equivalence. Similar 
remarks apply to X ,  - Dk and X ,  - Dk. Since these are principal S1- 
bundles it follows immediately that the inclusions W, --+ W and Wl+ W 
are homotopy equivalences, and they have the homotopy type of Sn-k-l/S1 - CPr-', where r = (n - k)/2. Thus (W, W,, W,) is a simply connected 
h-cobordism. 

From these facts it is clear that the proof of the h-Cobordism Theorem 
given in Milnor [5] will go through in the present case to  provide a modifica- 
tion 0 * :  W+ [0,1] of y* (and a modification of 5 which we now discard), 
with the modifications taking place only in some compact subset of int( W), 
such that the new function f3* has no critical points and takes W,, to 0 and 
W, to  1. By composing O* with the orbit map and using the fact that O* 
= y* outside a compact set, we obtain an invariant smooth function 

e :  X +  [0,11 

with no critical points and taking X ,  to  0 and X ,  to  1 .  Then grad 8 is an 
invariant vector field with all trajectories running from X ,  to  XI. It follows 
immediately that there is an equivariant diffeomorphism 

X ;5: X ,  x [0,1] = dBn x [0,1] 

extending the identity on X ,  = dBn. Since S1 acts orthogonally on Bn this 
implies that the given action on Dn = Bn u X is smoothly equivalent to  
this orthogonal action. I 

Remark It is clear that the method of proof of 9.1 can be used inductively 
on orbit type to prove a general equivariant h-cobordism theorem. Since 
the necessary hypotheses are so strong, however, it does not seem worth 
while to give a general statement or proof of such a theorem. 

Let S1 = SO(2) act on Rn by r times the standard representation plus 
a trivial k-dimensional representation, where n = 2r + k .  It is clear that, 
up to  orthogonal equivalence, this is the unique orthogonal semifree S1- 
action on Rn fixing Rk. Let us denote the restriction of this action to  the 
unit disk Dn by Dkn. 
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By removing a disk about a fixed point in an action on a homotopy 
sphere we see that 9.1 implies the following theorem. By a twisted k-sphere 
we mean a homotopy k-sphere which is the union of two k-disks via a dif- 
feomorphism on their boundaries. Recall that for k # 3,4 every homotopy 
k-sphere is a twisted k-sphere. 

9.2. Corollary Let S1 act smoothly and semifreely on a homotopy n-sphere 
Zn withjixed set a twisted k-sphere and with n 2 I .  Then this action is smoothly 
equivalent to 

Dkn U, Dkn, 

where pl: aDkn -j aDkn is some equivariant diyeomorphism. I 

Since any such 47 extends to an equivariant homeomorphism of Dkn, 
by coning, we have the following result. 

9.3. Corollary Let S1 act onZn as in 9.2. Then the action is topologically 
equivalent to an orthogonal action on Sn (i.e., the action aD$$:), and the 
equivalence can be taken to be a diyeomorphism outside a point. I 

Remarks The case k = 0 of 9.1 and 9.2 is due to Stewart [3]. Connell, 
Montgomery, and Yang [ 11 have proved an analogous theorem to 9.1 in the 
case of actions on Rn by using the technique of engulfing. Their result implies 
a stronger version of 9.3. Another way to decompose a semifree action on Zn 
would be to remove a tubular neighborhood of the fixed set and to use the 
h-Cobordism Theorem to identify the complement. This method is explored 
at  some length by Browder [2], who uses it to prove the existence of infinitely 
many exotic examples for n = 4m + 1, in particular. Other exotic examples 
of semifree S1-actions on homotopy spheres were constructed in Bredon 
[18, 191 and in Montgomery and Yang [5 ] .  

By restricting an Sl-action to the contained Z,-action, Theorem 8.6 can be 
used to prove the existence of infinitely many exotic examples of semifree 
S1-actions on S4"-I. However, the following theorem gives somewhat 
better results. (Note that we do not assume semifreeness for this result.) 

9.4. Theorem Let S1 act smoothly and nontrivially on an oriented homo- 
topy sphere Z4n-1 and assume that the action extends to a smooth action on 
some oriented, parallelizable manifold W4" with a W = Z. Then the index 
t( W )  of W4" is an invariant of the action on .Z4"-I. 
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Proof Suppose that 2 = d W' with W' parallelizable and with the S1- 
action extending to W'. We must show that t ( W )  = t (W' ) .  Put Y = W 
u - W'. Then Y is an oriented almost parallelizable manifold on which 
S1 acts, and we must show that z ( Y )  = 0. We shall use the remarkable 
theorem of Atiyah and Hirzebruch [2] which states that if Y is a closed orien- 
table manifold with w,(Y) = 0 (i.e., a spin-manifold) and which admits 
a nontrivial smooth S1-action, then the if-genus i f ( Y )  = 0. Now an almost 
parallelizable 4n-manifold Y has w,(Y) = 0 and the rational Pontriagin 
classes pi( Y )  = 0 for 0 < i < n. But t( Y )  = L( Y )  and A( Y )  are then non- 
zero rational multiples of pn(Y) [Y] ;  see Hirzebruch [I]. Thus t ( Y )  is a ra- 
tional multiple of A(Y),  which is 0 when S1 acts smoothly and nontrivially 
on Y. (In fact 

t( y) = -pa+' (2- - 1)A( Y )  

when Y is an almost parallelizable closed 4n-manifold.) I 

Remark This invariant can be generalized by using the rational Eells- 
Kuiper p-invariant. This is defined in the same way as in Eells and Kuiper 
[ I ]  (also see Montgomery and Yang [7]) but one takes it as a rational number 
without passing to Q/Z. It is defined for the same class of (4n - 1)-mani- 
folds as in the usual definition of ,u, but with S1 acting smoothly on the 
manifolds involved. It is calculated from a certain type of cobounding spin 
4n-manifold W (with S1-action). The difference of these numbers calculated 
from W and W' with d W = a W' is just a multiple of the A-genus of the 
closed spin manifold W u - W' and this is 0 since S1 acts nontrivially 
on this manifold. Thus this rational number p(d W )  calculated from W is an 
invariant of the S1-action on d W. If d W is a homotopy sphere, then any 
cobounding spin-manifold with Sl-action can be used for the calculation. 
If W is parallelizable, then, for given n, ,u(d W )  is just a constant multiple 
of r(W), so that this invariant does generalize 9.4. 

9.5. Corollary There are an infinite number of distinct semifree S1- 
actions on S4n-1 with jixed set difleomorphic to S4k-1 for any 1 < k < n. 

Proof Consider the (2n + 1)-dimensional representation of S1 = SO(2) 
given by n - k times the standard representation plus a trivial (2k + I)- 
dimensional representation. This induces a semifree Sl-action on the 
plumbed manifold P4n(E8) fixing P4k(E8). (One also has this for k = 1, but 
dP4(E8) is not simply connected.) Since dP4n(E8) and dP4k(E8) are homotopy 
spheres, some multiple (by connected sum), say r, of them give the standard 
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spheres S4"-l and S4k-1 (e.g., if n = 3 and k = 2, then r = 6944 works). 
Thus the r-fold equivariant connected sum of this action on 6'P4n(E8) is 
a semifree action on S4n-1 fixing S4k-1 and bounding an S1-action on the 
parallelizable 4n-manifold W = rP4"(E8) which has index T( W) = f 8 r .  
The connected sums of j copies of this action, for j = 1,2,  3,. . . are then 
distinguished by the invariants ~ ( j w )  = &8rj. I 

Remark It follows from 9.1 that for n 2 6, the oriented equivariant 
diffeomorphism classes of semifree S1-actions on oriented homotopy n- 
spheres fixing a twisted k-sphere, form an abelian group Okn(S1) under 
connected sum. The proof of 9.5 shows that the given action on dPQn(E8) 
has infinite order in @;::(S1) for 1 < k < n. 

9.6. Corollary There exists a smoothable manifold MI2 which admits 
an effective, locally smooth, semifree S1-action, but which admits no nontrivial 
smooth S1-action in any differentiable structure. 

Proof As in the proof of 9.5 take a connected sum of r copies of the ca- 
nonical semifree Sl-action on P12(E8) fixing P8(E8), such that r6'P12(E8) 
=s Sll (r = 992 works). Let M12 = rP12(E8) u D12 which is a smooth al- 
most parallelizable manifold of index &8r # 0. On D12 we take the cone 
over the given action on r6'P1$(E8) = Sll .  By 9.3 the action on M12 is then 
locally smooth. 

Since H4(M12; Q) = 0 = H8(M12; Q), it follows that, for any differen- 
tiable structure on M12, 2(M12) is a nonzero multiple of z(M12) # 0, and 
hence 2(M12) # 0. (Alternatively, one can use the fact that A ( M )  is a 
topological invariant of M ,  since the rational Pontriagin classes are topo- 
logical invariants.) By the theorem of Atiyah and Hirzebruch [2] quoted in 
the proof of 9.4, it follows that M12 carries no smooth S1-action in any 
differentiable structure. (An alternative proof can be based on the fact that 
M12 is almost parallelizable in any differentiable structure, since it is 5- 
connected and n,(S0(12)) = 0. Thus 9.6 really is a corollary of 9.4.) I 

10. REPRESENTATIONS AT FIXED POINTS 

Let G be a compact Lie group and let 0: G x M -+ M be a smooth 
action of G on a manifold M. If x E M is a stationary point, then the in- 
duced action of G on the tangent space T,(M) is a representation @, of G. 
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(Note that if M is given an invariant riemannian metric, then 0, is an or- 
thogonal representation.) If x and y are stationary points, we wish to 
compare 0, and 0,. If x and y are in the same component of MG, then it 
is clear that 0, and 0, are equivalent, so that the case in which MG is 
connected will not concern us. Eventually we shall restrict our attention 
to the case in which G = Z, or G = S'. 

The appropriate tool for this study is equivariant K-theory. We shall 
only need some elementary properties of K-theory and, for the most part, 
the book of Atiyah [2] will suffice. We will make use of both real K-theory, 
denoted by KO, and complex K-theory, denoted by KU. We simply use K 
for statements applying equally to both cases. 

Let us briefly recall some facts we shall use. If X is a compact G-space, 
then KG(X) is the quotient of the free abelian group on the equivalence 
classes [ E l  of G-vector bundles 5 [real for KOG(X) and complex for KuG(X)] 
over X modulo the subgroup generated by the [ E  @ 71 - [5] - [q]. It has 
a ring structure induced by the tensor product of G-vector bundles. For 
a point *, KG(*) is just the representation ring R(G) [= RO(G) or RU(G)] 
which can be regarded additively as the free abelian group on the irreducible 
representations of G. Also, KG is a contravariant functor. Via the projection 
E :  X-+ *, any representation e of G induces a G-vector bundle E*(e) on 
X .  This induces a homomorphism 

E * :  R(G) = Ka(*) + KQ(X). 

Note that E* is a monomorphism to a direct summand when a stationary 
point exists in X ,  but this is not generally true if X G  is empty. We put 

&(X)  = coker E * .  

Now for any G-vector bundle E over a compact G-space X there exists 
a G-vector bundle 7 with @ 7 equivalent to the product of X with a 
representation e and hence [ E  @ 71 = &*[el in KG(X); see Atiyah [2, pp. 
27,401. It follows that any element of KG(X) has the form 

for some G-vector bundle 5 and some representation e. It also follows 
that for G-vector bundles 5 and 7 over X ,  [E l  = [7] in KG(X) iff 5 and 7 
are stably equivalent; that is, there exists a representation e such that 
E @ E*(e) is equivalent to 7 @ &*(e). 
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Let SX be the (unreduced) suspension of X with vertices wo and w l .  
The inclusion bi: {wi}  + SX induces a homomorphism 

to be b,* - bo*. Since bi*&* = 1 we have BE* = 0 and hence P factors 
through &(SX) .  

10.1. Proposition The sequence 

B 
K ~ ( s x )  + R(G) 5 & ( X )  

is exact. 

Proof We remark that this comes from a Mayer-Vietoris sequence with 
R(G) replaced by R(G) @ R(G), but a direct proof seems desirable. Now 
&*bi* is induced by the constant map X - .  wi E SX and, since these are 
equivariantly homotopic to one another, we have &*b,* = &*b,* and hence 
E*P = 0. Suppose that e*[eo] = &*[el]. Then E*eo  is stably equivalent to 
&*el; that is, &*(eo @ e) - &*(el @ e )  for some representation e. Now 
ei 0 e induces a G-vector bundle Ei on the cone CX via the projection of 
CX to the vertex, and to is equivalent to El on the boundary X .  Thus to 
and El can be pasted together, forming a G-vector bundle 5 on SX. Clearly 

If 5 is a vector bundle over X/G, then the pull-back of 6 via the orbit 
map X + X/G is a G-vector bundle over X .  This induces a homomorphism 

which is an isomorphism when G acts freely on X ,  the inverse being given 
by passage to the orbit space of G on the total space of a G-vector bundle 
over X .  

Now let EG + B G  be a universal principal G-bundle whose classifying 
space B G  is a CW-complex with finite skeletons. Let B,$) be the k-skeleton 
of B G  and let E,$' be its inverse image. In the main cases G = Z, or G = S1 
of interest to us, EG can be taken to be the infinite sphere S" = u SBnfl. 
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In the special case for which X = EAk’, E* will be denoted by ak and p will 
be denoted by pk, so that the sequence of 10.1 has the form 

K ~ ( s E L ~ ) )  k R(G) 2 K ~ ( E ~ ) )  = K(B$)). 

We shall use a superscript c on ak and Bk in the case of complex K-theory 
and a superscript r for the real case. 

10.2. Theorem Let 0:  G x M + M be a smooth action of the compact 
Lie group G on the simply connected manifold M and let x and y be stationary 
points. Assume that 

Hi(BG; n i ( M ) )  = O for 1 5 i 5 m, 

where ni (M)  is the system of local coeficients defined by the action of nl(BG) 
= GIG, on n i ( M )  via 0. Then 

am(@, - 0,) = 0. 

Proof Note that for G connected, the coefficients ni (M)  are constant. 
If G is finite, then these cohomology groups are the same as the algebraic 
cohomology groups Hi(G, n i (M) )  of G with coefficients in the G-module 

Consider the constant maps fa: EG + {x} c M and fi: EG + { y }  c M. 
ni(M)- 

We try to construct an equivariant homotopy through the m-skeleton 

F :  ELrn’ x 1 - M  

betweenf, and f, . By 11.2.6 this problem is the same as that of constructing 
a cross section over BLm) x I of the bundle over BG x I with fiber M as- 
sociated with the principal G-bundle EG x I + BG x I, and extending a 
given cross section on BG x {O,l}. The obstructions to doing this are in 

Hi+l(BG x (I, LO); n i ( ~ ) )  = Hi(&; n i (M))  

for 1 5 i 5 m. By assumption, these obstruction groups are zero, so that F 
exists. 

Then F induces an equivariant map ly: SEAm) --t M taking the vertex 
w, to x and w, to y .  Pulling back the tangent bundle of M via y gives a 
G-vector bundle t on SEhm). The representation in the fiber o f t  at w, is 
0, and at  w1 it is 0,. Thus b,*[t] = 0, and b,*[z] = 0, whence p&] 
= 0, - 0, and a, must kill this. I 
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We shall now discuss the application of this theorem to the specific 
cases G = Z, and G = S1 ( p  need not be prime for the moment). We re- 
gard Z, as a subgroup of the group S1 of complex numbers of absolute 
value 1. Let In denote the 1-dimensional complex representation given by 
t"(z) - (w) = Z"W, where z E Z, (or Sl) and w E C .  For G = Z, we have 
tfl = P + p  and 1, t ,  . . . , t p - l  are a complete set of irreducible complex re- 
presentations of Z,. Moreover tfl is the tensor product of n copies of t. 
Thus the representation ring of Z, is 

RU(Z,) = Z[t]/(l - P). 

RU(S') = Z[t, t-'1, 
Similarly 

the ring ofjnite Laurent series in t. The augmentation 

RU(G) + Z 

is RU(G) = KUc(*) -+ KU(*) - Z, which assigns to a representation its 
dimension. The kernel of this is called the "augmentation ideal" and is 
denoted by Z(G). Clearly 

Z(G) = (1 - t)RU(G) 

for G = Z, or G = S1. 
For later reference let us discuss briefly the real case. For G = Z, or 

S' the representation tn + t-" is the complexification of the real 2-dimen- 
sional representation taking z = ea to 

in O(2). For p odd or for G = S1 these are all the irreducible real represen- 
tations. For p even, tpf2 is the complexification of the real representation 
z = emifP ++ (-1) E O(1). Thus in all cases G = Z, or G = S1, the com- 
plexification 

RO(G) + RU(G) 

is an injection (regarded as inclusion) whose image consists of those elements 
e E RU(G) such that Q = e. Here p is the complex conjugate of e and is 
given by t cf t-l. 

Now for G = Z,, E P - ' )  can be taken to be Sm-' (and for G = S1, 
E(h-1) = E(27l-2) = s2n-1 ) with the action given by the complex n-dimen- 0 f3 
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sional representation nt. In Atiyah [2, p. 1051 the following exact sequence 
is derived from the exact sequence of the pair (D2", SZn-'): 

ac zn-i 
0 + K U G ( S E P - l ) )  + RU(G) RU(G) - KUG(EJZn-')) -+ 0. 

The map 
for G = S' 

is multiplication by L , ( n t )  = C(-l)ili(nt) = (1 - t)". Thus 

ker a;,-, = ker a& = l(S1)" = (1 - t)"RU(S1) 

since BJtn-l) = B$"-,). In Atiyah [2, p. 1071 it is shown, for the case G = Z, , 
that the restriction K U G ( E P - l ) )  --+ KUa(E$2n-2)) is an isomorphism. 
The same proof also gives this result for G = Z, in general. Thus in the 
case G = Z,,  we also have 

ker a&-, = ker = Z(Z,)" = (1 - t)"RU(Zp). 

From 10.2 we derive the following consequence of these facts. 

10.3. Theorem Let 0 be a smooth action of G on the simply connected 
manifold M with stationarypoints x and y (at least). I f G  = Z ,  or i f G  = S1 
and if 

I+(&; n i ( ~ ) )  = 0 

then 0, - 0, E RU(G) is divisible by (1 - t)". 

for 1 5 i 5 2n - 2, 

I 

We remark that for G = Z, then 

(ker T)/(Im N) for i even, 
(ker N)/(Im T )  for i odd, 

Hi(&; ni(M>) = Hi(G; n i ( M ) )  = 

where T = 1 - g and N = 1 + g + . + g p - l  operating on ni(M),  
with g a generator of G = Z,. For G = S', BG = CP" and Hi(&; n.i(M)) 
= 0 for i odd and is ni (M)  for i even. Actually, for G = S1 it suffices in 
10.3 for ni(M) to be finite for i even and i 5 2n - 2. This, and other 
improvements, will be discussed in Section 11. 

In any specific case it is always possible to check for divisibility by (1 -t)", 
but for G = Z, this is usually quite tedious since RU(Z,) is not a unique 
factorization domain. For most cases the following corollary suffices and 
it is easily applicable. (A more general result for prime power orders can be 
found in Bredon [22].) 
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10.4. Corollary Let G = Zp for p prime in the situation of 10.3. Then 
0, - 0, is divisible by ph, where h = [ (n - l)/(p - I)] is the greatest 
integer less than or equal to (n - l)/(p - 1). 

Proof Since tP = 1, (1 - t)P is divisible by p. Thus Z(Zp)p c pZ(Zp). 
(Actually these can be shown to be equal; see Bredon [22].) Also 

Z(Z P )P+(P--l) c Pwp)z(zp)p-l = PWp)P = P 2 m p )  

and an induction shows that, in general, 

I(Zp)hp--h+l = I(Z P )p+(h-l)(p-l) c phz(Zp). 

Thus for n - 1 2 h(p - 1) we have that (1 - t)" is divisible by(1 - trp-h+l 
which is divisible by ph. I 

In the next section we shall obtain several improvements of 10.3 and 10.4, 
by using KO-theory. In the case p = 2 these improvements are quite sub- 
stantial. 

Remarks In the situation of 10.4 note that, in particular, the difference of 
the dimensions of the fixed point set at x and at y is divisible by ph, and 
by 2ph when p is odd. One should also notice that the proof of 10.4 provides 
an easily applied criterion for an element p(t) E Z(Zp), such as 0, - 0,, 
to be divisible by (1 - t)" in RU(Zp) = Z[t]/(l - tP) for a primep. Namely, 
if we know abstractly that p(t) must be divisible by (1 - t)" (e.g., from 
application of 10.3 in a particular situation), then, if we multiply q(t) by 
(1 - t>i for some i such that n + i has the form h(p - 1) + 1 for some 
integer h, the result must be divisible by ph.  The converse is also true as the 
reader may verify by an easy argument using the fact that Z(Z$ = pl(Zp); 
that is, if ph divides (1 - t){p(t) and if p(1) = 0, then (1 - t)" divides p(t) 
where n = h(p - 1) - i + 1. It is desirable to illustrate this by an example. 
Suppose that Z5 acts on a 10-manifold M and we wish to check whether 
it is possible to have the representations 0, = 8 + t 2  + t3 and 0, = 6 
+ 2t2 + 2t3 at two fixed points. Then put p(t) = 0, - 0, = 2-t2-t3 
= (1 - t)(2 + 2t + t2). If M is 2-connected then p(t) must be divisible by 
(1 - t)2. The fact that 1 - t does not divide 2 + 21 + t2 does not preclude 
this. In fact, applying the above criterion, we compute that 

(1 - t)$(t) = (1 - 3t + 3t2 - t3)(2 - t2 - t 3 )  = -5t + 5t2 

which is divisible by 5. This is consistent with (and actually implies) divisi- 



11. REFINEMENTS USING REAL K-THEORY 359 

bility of v ( t )  by (1 - t ) z .  In fact one may check that 

Ip(t) = (2 - t 2  - t3) = (1 - t)"l + 2t + 2t2 + t3). 

On the other hand, if M is 4-connected, then ~ ( t )  must be divisible by 
(1 - t)3. We compute that 

(1 - t)"(t) = (1 - 2t + t,)(2 - t2 - t3) = 1 - 4t + 22 + t3 + t4, 

which is not divisible by 5 and hence precludes divisibility of q ( t )  by (1 - t)3. 

11. REFINEMENTS USING REAL K-THEORY 

In this section we shall give several refinements of the results of Section 
10 by making use of KO-theory. We also shall obtain some improvements 
under the assumption that the tangent bundle of M is stably divisible by 
p over the k-skeleton; by which we mean that the restriction of T(M)  to 
the k-skeleton of M plus some trivial real vector bundle is equivalent to 
the direct sum of p copies of some real vector bundle. 

For future reference, we recall that KO(Sn) - n,-,(O(oo)) is given 
by the following table; see Husemoller [I, p. 2221 for example. 

N 

n (mod 8 ) :  0 1 2 3 4 5 6 7 8  
ry 

KO(Sn)=nn-,(O(cO)): z z, z, 0 z 0 0 0 z 

We shall be concerned with G-vector bundles over a G-space X whose 
underlying vector bundles are trivial. To study this, consider the space 
Map(G, e ;  O ( N ) ,  I )  of maps 8: G --f O(N)  with 8(e) = I,  with the compact- 
open topology. Let G act on this by 

(ge>(h> = e(hg>e(g>-l. 

The reader may make the straightforward check that this does define an 
action. The following result is also an easy computation which we leave 
to the reader. 

11 .I. Proposition r f  X is a G-space, then there is a natural one-one cor- 
respondence between orthogonal G-vector bundle structures on X x RN over X 
and eguivariant maps 8 :  X - +  Map(G, e ;  O(N), I ) .  If 8: x H. BZ, then the 
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corresponding action of G on X x RN is given by 

g(x7 v )  = (gx ,  %(g) .)- I 

Clearly a homotopy of such maps gives a G-bundle structure on I x X 

Consider the forgetful map 
x RN, so that homotopic maps give equivalent G-vector bundles. 

N 

Y ( ~ ) :  FO,(SEdm)) -+ KO(SEdm)). 

11.2. Lemma If G = Z, for  p odd, then y P )  is trivial. 

Proof For the G-action on KO(SEdm)) it is clear that the image of y(m) con- 
sists of elements invariant under the action. Thus it suffices to show that 

KO(SEi2n))G is trivial for G = Z,, p odd. Now we can take Edzn) to be the 
join Z, * SZn-' which has the homotopy type of the one-point union of 
p -  1 copies of SZn. Moreover (using the pointed category), 

N 

N 

N 

KO(SEdzn)) - [Edzn); O(ca)] - HM(Edm); nzn(O(ca))). 

The only nontrivial case is that for which n = 0 (mod 4), in which case 

This can be thought of as being generated by the dual cohomology classes 
yi  to the 2n-spheres 

(gi * szn-1 ) " (gi+l * SZn-1) c Z, * S%-l = E (Zn) 
a '  

where g is a generator of Z,. Now y l ,  . . . , yp--l form a basis and y p  = 

-(yl  + -. .  + ypPl ) .  Also g acts on this by taking yi to yi+l (indexes 
modulo p ) .  Since p is odd it is an easy check that there are no invariants. 1 

For G = Z ,  we have E$'-l) = S2n-1 and K O ( S E T - l ) )  = KO(Szn-), 
which is Zz for n = 1 (mod 4), 0 for n = 3 (mod 4), and is Z for n even. 

Let ?pirn) denote the induced map (G = Z,) 

N N 

and note that, for p odd, this is the trivial map unless m = 3 (mod 4). 
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11.3. Theorem Zfp is odd, then 

&(ker c Z(Zp)P(k), 

where p ( k )  = 2[k/4] + 2. 

Proof Let us first show that &-l(kery(k-l)) c Z(Zp)~(k). Let 5' be a G- 
vector bundle over SEJk-l) with y[E] = O.  Then the underlying vector 
bundle of 5' is stably trivial. Adding a trivial G-bundle to 5 does not affect 
its image under &-l so that we may as well assume that the underlying 
vector bundle of [ is SEJk-l) x RN, and N can be taken as large as we 
please. Thus t corresponds, by 11.1, to an equivariant map 

8 :  SEdk-l) + Y = Map(G, e ;  O(N),  Z). 

Since G = Z, we have Y - O ( N )  x . . - x O ( N ) ,  p - 1 times. We can 
regard 8 as an equivariant homotopy 

E(k-1) x I +  Y a 

between the constant maps to O(w,) and O(wJ on the ends. By 11.2.6, this 
in turn can be regarded as a cross section over (Ec x aI) u (Eik-l)  x I) 
of the associated Y-bundle over Bc x I. Thus the obstructions to extending 
the restriction 8 I SEAk--") to 8': S E g )  -+ Y for some n 2 k lie in 

Hi(Zp; 7ci(Y)) for k 4 i 5 n. 

However, ni(Y) = ni(O(N)) @ - - @ ni(O(N)) and we may take N large 
enough so that these are all stable groups. Since p is odd, these obstruction 
groups are nonzero only for i = 3 (mod 4). Thus the extension exists for n 
the smallest integer with n >_ k - 1 and n z 2 (mod 4). The extension 8' 
gives rise to a G-vector bundle structure T,J on S E Z )  x RN with the same 
representations at  the vertices w, and w1 as 5'. Thus 

B7k-1[E] = ,!?nr[q] E ker a,' c ker anc = I(Zp)(n+2)12. 

It is easy to check that (n + 2)/2 = p(k). 
Since w ( ~ - ' )  = 0 for k odd by 11.2 it now suffices to show that (ker 

is a lens space. Thus there is a map I?$"-" + E$--l) of degree 1, and the 
composition 

lZP and B(k-1) = Sk-1 ykk-l)) = & (ker ~ ( ~ - l ) )  for k even. Here = Sk-l a 

S k  = SE'k-1) C 2 SBik-1) -----+ SEik-1) = Sk 
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N 

then has degree p.  This implies that the image of the map n* : KO(SBAk-l)) 

+ KO(SEik-l)) contains pKO(SElk-l)). The commutative diagram 
N N 

0 
KO( S BLk-l)) 

KO(SEdk-l)) 

shows that B(ker y p )  c B(ker y + Im 7 )  = fi(ker y )  which is the desired 
result. I 

We remark that the latter part of this proof also applies to the case p = 2 
to show that P(ker yz) = p(ker y )  since yik-l) = ytk-l) for k odd. 

11.4. Corollary If p is odd and0  is a smooth action of Z ,  on the simply 
connected manifold M with 

Hi(Zp; n i (M) )  = 0 for 1 5 i 5 k - 1, 

then, .for any two stationary points x and y ,  0, - 0, is divisible by 
(1 - t)p(“-l) in RU(Zp).  g, moreover, the tangent bundle of M is stably 
divisible by p over the k-skeleton, then 0, - 0, is divisible by (1 - t)p(k). 
Here p ( k )  = 2[k/4] + 2. 

Proof As before, there is an equivariant map SEhk-l) -j M and T ( M )  
induces a G-vector bundle t on SEdk---” with &[t] = 0, - 0,. For 
k $ 0 (mod 4), yik--” = 0 so that 11.3 applies. For k = 0 (mod 4), p(k- 1) 
= k/2 and 10.3 already gives the result. In the last part, y,[z] = 0 by as- 
sumption, so that 11.3 applies. I 

By the argument in 10.4 and a straightforward calculation, we obtain 
the following improvement of 10.4. 

11.5. Corollary With the assumptions of 11.4, and with p an odd prime, 
0, - 0, is divisible by pA(k-l) in general and by pa(k)  when the tangent bundle 
of A4 is stably divisible b y p  over the k-skeleton. Here I ( k )  = [k/(2p - 2)]. I 

Note that the remarks following 10.4 provide, more generally, an easily 
applied method of utilizing the much more precise information contained 
in 11.4. 
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We now take up the case p = 2. In this case E F )  = S” and B Z )  = RPn. 
Let @(n) denote the number of integers i = 0, 1 , 2 , 4  (mod 8) such that 
1 5 i 5 n. This is given by the following table. 

n :  1 2 3 4 5 6 7 8  k + 8  

@(n) : 1 2 2 3 3 3 3 4 @ ( k ) + 4  

N 

Now KO(RPn) is known to be cyclic of order 2@(*) and is generated by 
an7(1 - t ) ;  see Husemoller [I ,  p. 2231 for example. Thus anr: R(Z,) -+ 

KOza(Sn) has 

ker anr = 2@(n)Z(Z,) c RO(Zz) = RU(Z,). 

11.6. Theorem Let 0 be a smooth action of Z, on the simply connected 
manifold M with Hi(Z,; n i ( M ) )  = 0 for 1 5 i 5 k - 1. Then for any 
stationarypoints x and y ,  0, - 0, is divisible by 2@(k-1). r f  the tangent bundle 
of M is stably divisible by 2 over the k-skeleton, then 0, - 0, is divisible 
by 2@(k). 

Proof The first part follows from the above remarks and 10.2. Note that 
Z(Z,) 5 Z additively. Also a representation of Z, is completely determined 
stably by the multiplicity of the eigenvalue - 1, and 0, - 0, can be regarded 
as the difference of these multiplicities at  x and y .  Moreover this is just 
the difference of the dimensions of the components of MZa containing y 
and x. 

To prove the second part of the theorem we recall from the proof of 11.3 
and of 11.4 that the hypothesis implies that there is a Z,-vector bundle 
E on Sk = SEk:-l) (with fixed points w, and W J  with trivial underlying 
vector bundle and such that &[El = 0, - 0,. This gives rise to an equi- 
variant map 

8: Sk -+ Map(Z,, e ;  O ( N ) ,  I )  - O ( N )  

[with involution A H A-l on O ( N ) ]  such that the difference of the multi- 
plicities of the eigenvalue - 1 of 8(w,) and e(w,) is 0, - 0,. 

Thus it suffices to show that for any such equivariant map 8: Sk + O(N) ,  
the difference of the multiplicities of the eigenvalue -1 of 8(w,) and 8(wl) 
is divisible by 2@(”’. To prove this we can take N as large as we please. As 
before, we attempt to extend 8 to 8 ’ :  S k f l  = SELY --f O ( N ) .  (In the present 
case it is simpler to think of the obstruction to the extension as the class 
[el E n,(O(N)) since if this is 0, then 8 can be extended to one hemisphere 
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as a map and then to the other hemisphere by equivariance.) If k = 2,4, 5 ,  6 
(mod 8), then n,(O(N)) = 0 and the extension exists. Otherwise the map 
8,: Sk + O(2N)  taking q to 

[BY e(&] 

is equivariant and has 0 = [el] E nk(O(2N)). Thus an extension 8,': Sk+l 
-+ O(2N) exists. The difference of the multiplicities of the eigenvalue 
-1  at wo and wl for 8,' is twice that for 8; but 2@(k+1) = 2 - 2@(k)  in this 
case also. By successive application of this argument, we can reduce the 
question eventually to the case in which @(k) = @(k - 1); i.e., k 3 3, 
5,6,7 (mod 8). In this case the (new) map 8 corresponds to a Z,-vector 
bundle r j  on Sk = and 

&l[rj] E ker (wJk-, = 2@(k-1)Z(Z,) = 2°(k)Z(Z,). 

However, this is just the difference of the multiplicities of the eigenvalue 
-1 of 8(wo) and 8(wl), which gives the desired result. I 

We now turn to the case of S'-actions. Recall that for G = S1, E;2n-1) 
- - E(2n-2) a = S%-1 which can be regarded as the join S1 * . - - * S1 of n 
copies of S1 with the diagonal action. Then Sm will always have the S1- 
action as the suspension SZn = SSZn-l = SE$n-2) which has the two fixed 
points wo and w l .  As with Z, , it will be more convenient to give the needed 
obstruction arguments directly. Thus if X is an S1-space and 9: SZn -+ X 
is equivariant, then p extends equivariantly to S*+, = SZn * S1 + X only 
if 0 = [p] E n,,(X>. Conversely, if [p] = 0, then p extends as a map to the 
cone SZn * { e }  c S2n+2 and extends uniquely from this to an equivariant 
map SZn+, + X by 1.3.3. Thus [p] E nzn(X)  is the only obstruction to extend- 
ing p to S2n+2 + X .  

Now we shall give an argument which allows us to kill the obstruction 
[p] when it hasjinite order. Let e,: S* + SZn be the map which is the suspen- 
sion of the join of n copies of the map z H d of S -+ S1. For an S-space 
M let denote M with the S1-action induced from the old action via 
the homomorphism z H zq of S1 4 S1. Clearly if q: Sm -+ M is equivariant, 
then so is 9 0 eg: Sh" -+ M(, , .  Since e, has degree qn we have that [p 0 Q,] =O 
when [p] has order q in n,,(M). 

Moreover, if w(t) E Z[t, t-'1 = RU(S1) is the representation at a fixed 
point x in M, then the representation at x in M,,) is just w(tq). The follow- 
ing lemma shows that this change will not affect divisibility by (1 - t )k .  
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11.7. Lemma A polynomial f ( t )  is divisible by ( 1  - t ) k  i f l f( tq) is divisible 
by (1 - t)E. 

Proof Put s = 1 - t and g(s) = f ( l  - s) = f ( t ) .  Put tq = ( 1  - s ) ~  
= 1 - h(s), where h has a simple zero at s = 0. Then the order of the zero 
at s = O of f ( tq)  =f((l - s)q) =f(I - h(s)) = g(h(s)) clearly equals 
that of f ( t )  = g(s). 

If S' acts smoothly on M with stationary points x and y and if ni (M)  is 
finite for i even and i 5 2n - 2, then the above arguments allow us to 
construct an equivariant map SZn + M ( k )  taking w,, to x and w1 to y ,  for 
some k.  Also, the change of action does not change the order of divisibility 
of 0, - 0, by (1 - t ) ,  and hence 0, - 0, is divisible by ( 1  - t)" by the 
discussion in Section 10. 

Let f ( t )  be the polynomial of smallest degree obtained from 0, - 0, 
E Z [ t ,  t-'1 by multiplying by a power of t .  Since 0, - 0, is real, it is in- 
variant under t ++ t-l and this implies that f ( t )  has even degree and that its 
coefficients enjoy a formal PoincarB duality. The quotient g(t)=f( t ) ( l -  t)-" 
clearly also satisfies duality. If n is odd, then g(t) has odd degree and thus 
g(1) = 0 by duality. Thus 1 - t divides g(t). This shows that 0, - 0, 
is divisible by ( 1  - t)"+l, under the above assumptions, when n is odd. 

Assume now that n is even and, in addition to the above conditions, that 
the tangent bundle of M is stably trivial over the 2n-skeleton. A map 
SZn + M(R) then induces an S1-vector bundle on S2" whose underlying 
vector bundle is stably trivial. By 11 .I this gives rise to an equivariant map 

8: SZn + Map(S1, e ;  O(N), I )  = QO(N) 

for any large N .  
Then [el E n,,(QO(N)) = n2n+l(O(N)) is the only obstruction to extend- 

ing 8 to an equivariant map S2n+2 +QO(N) .  Since n is even, this group, 
for N large, is either 0 or Z,. We shall now show how to remove this ob- 
struction. Let 

A:  QO(N) + QO(N) 

be given by (il(o))(g) = co(g2). Define y : SZn --f Q O ( N )  to be the composi- 
tion y = A o 0 o ez.  Thus yz(g) = 8ea(,)(g2) and it is easy to check that y 
is equivariant. The S1-vector bundle structure on SZn x RN induced by 
y is given by 

g(x, v )  = (g., f$+)(g2) * .> 
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and thus the representations on the fibers at x = w,, and x = w1 are obtained 
from the old representations by replacing t by t2.  Since e2 has degree 2” 
we have 0 = [y] E n2,(SZO(N)) and thus y can be extended to Sht+2. This 
shows that (0, - Or)( t2) ,  and hence (0, - @,)(t) ,  is divisible by (1 - t)n+l. 
However, then it is also divisible by (1 - r)n+2 by the Poincart duality ar- 
gument given in the case of odd n. Thus we have proved the following 
theorem. 

11.8. Theorem Let 0 be a smooth action of S1 on M .  Assume that ni (M)  
is Jinite for  all even i with 2 4 i 4 2n - 2. Then 0, - 0, is divisible by  
(1 - t)o(n-l) for  any two stationary points x and y .  If the tangent bundle of 
M is stably trivial over the 2n-skeleton of M ,  then 0, - 0, is divisible by 
(1 - t)o(n). Here o ( n )  = 2[n/2] + 2. I 

Remarks Most of the material in Sections 10 and 1 1  is taken from Bredon 
[22], but we have incorporated several improvements here. Some further sit- 
uations are also studied in this reference and several explicit examples are 
discussed there. We will meet some of these examples and applications in 
the next chapter. 

EXERCISES FOR CHAPTER VI 

1. Let G = Z, act on R by x H -x .  For a real number r > 0 let f,: 

R + R+ be f , ( x )  = I x I r .  Then f, factors f,: R 2 R/G -% R+, where 
yr  is a homeomorphism. Put a differentiable structure s on R/G by de- 
manding that yr  be a diffeomorphism. Show that is natural iff r has the 
form r = 2/n for some integer n. (By “natural” we mean that each equiva- 
riant diffeomorphism R -+ R should induce a diyeomorphism on R/G.) 

2. In Exercise 1 let us say that a differentiable structure on R/G is lift- 
able iff each diffeomorphism R/G -+ R/G is induced by an equivariant 
diffeomorphism R + R. Show that is liftable iff r has the form r = 2m 
for some integer m. (Thus the induced structure is the only one of these 
which is both natural and liftable.) 

3. Prove the statement, made at the end of Section 7, that the analogs 
of the results of that section are false for U(n)- or Sp(n)-actions. (Hint: 
Consider, for example, the restriction of the O(2n + 1)-action on Zn+l to 
U(n) c O(2n) c O(2n + l).) 
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4. Show that the group @36 of Section 8 has an element whose order is 
Extend the involution on W3, either infinite or is divisible by 8. (Hint: - Z35 with fixed set L(3, 1) to an involution on S6.) 

5. Show that the group @E2 contains a subgroup isomorphic to ker(2: 
0" + 0" }. (Thus @,' contains an element of order 2.) 

6. Define a homomorphism @:-2 + 0" which extends the identity on 
the subgroup of Exercise 5. Similarly, show that 0" is isomorphic to some 
direct summand of 

7. Show that there are an infinite number of distinct smooth semifree 
S3-actions on Sgn-l with fixed set a sphere of any codimension divisible by 8. 

Let p be an odd prime and let q be the real 2-dimensional representa- 
tion q = t + t-l of Z,. Let n be a given integer and put h = [n / (p  - l)]. 
For sufficiently large N show that there exists a smooth action 0 of Z, 
on S2" x S N  whose fixed point set is a disjoint union Sa + Sb of spheres, 
and such that if x E Sa and y E Sb,  then 0, - 0, = ph(2 - q )  in RO(Z,). 
It follows that if a 2 b, then a - b = 2ph. Note that this shows that 11.5 
is best possible. [Hint: Use the fact that Z(Zp)h(P-l)+l = phZ(Z,); compare 
the proof of 10.4. Also note that if e E RU(Z,) is in Im pmc, then e 0 p 
is in Im p,'. First consider the case n = h(p - 1) + 1.1 

8. 

9. Suppose that Z, acts smoothly on S8 x Ss. Show that the representa- 
tions of Z, at all of the fixed points are equivalent to one another. 

10. Consider the Stiefel manifold Vn,2 = SO(n) /SO(n - 2) for n 2 10. 
For any smooth involution on this with an isolated fixed point, show that 
all other fixed points are also isolated. 

11. If Z, acts smoothly on the underlying manifold of SU(n) for n # 3,5 
Use show that the representations at fixed points are all equivalent. (Hint: 

the fact that, for i < 2n, ni(SU(n)) is 0 for i even and is Z for i odd.) 

12. Let M 8  be the connected sum of several copies of S4 x S4. Suppose 
that Z, acts smoothly on M8 with isolated fixed points only. Show that the 
representations at  the fixed points are all equivalent to one another. 

13. Let M =  Snl x Sna x . x S n k  with n i#2 .  Suppose that S1 
acts smoothly and semifreely on M. Show that the components of the fixed 
set F have equal dimensions. Construct an example showing that this is 
false if some ni = 2 (e.g., construct a smooth semifree Sl-action on S2 x S5 
such that F is the di$oint union S1 + S5). 
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14. Let X be a G-space and suppose that we are given two orthogonal 
G-bundle structures on X x RN over X corresponding to the equivariant 
maps 8 and 8' of X into Map(G, e ;  O(N), I )  as in 11.1. Show that these 
G-bundles are orthogonally equivalent over X iff there is a map y :  X +  
O ( N )  such that 8,l(g) = ~(gx)B,(g)pj(x)-l for all x E X and g E G .  

15. Let G 2 K be compact Lie groups and let K act orthogonally and 
transitively on Sn-l. Let v, = (0, . . . , 0, 1 )  E Sn-l and put H = K.,. 
If n: GIH -+ GIK is the projection, then the mapping cylinder M ,  is equiv- 
alent to G x Dn as a G-space. Every point of G x K  D" has the form 
[g, v ]  where v E Rv,. Show that, in this description, the right action of 
S(n) = "(H) n N ( K ) ] / H  is induced by ( [ g ,  v ] ,  s) H [gs, v ]  for s E N ( H )  n 
N ( K )  and v E Rv,. Show that this maps the fiber Dn over g K  to that over 
gsK by kv H s-lksv and hence that this is smooth iff the map kv, H s-lksv, 
of Sn-l ---f Sn-' is orthogonal. [We remark that it seems to be possible to 
prove that this condition is, in fact, always satisfied. There does not appear 
to be any elegant or easy proof of this, and it seems to depend on the dif- 
ficult classification of those homogeneous spaces KIH which are spheres. 
On the other hand, this condition is easily checked for all specific cases of 
interest to us in this book.] 



CHAPTER VII 

COHOMOLOGY STRUCTURE OF FIXED POINT SETS 

In this chapter we return to the study of the relationships between the 
cohomological structure of a space and that of the fixed set of a Z,-action 
or Sl-action on the space, and shall obtain deeper results than those studied 
in Chapter 111. The method we use is originally due to Bore1 [4, 51, and the 
background for this method is explained in Section 1. Some general in- 
equalities on ranks of cohomology groups, due to Heller, Swan, and the 
author, are proved in Section 2. 

In Sections 3 and 5 we investigate actions on projective spaces (real, 
complex, quaternionic, and Cayley) and examples illustrating the theorems 
are given in Section 4. 

A general theorem concerning actions on Poincart duality spaces is proved 
in Section 6. In Section 7 a general theorem about involutions is proved 
which implies that an involution on a PoincarC duality space of odd euler 
characteristic has a nonempty, high-dimensional, fixed point set. 

Actions on a product of two spheres are studied in Sections 8 and 9, 
and circle actions on a product of several odd-dimensional spheres are 
studied in Section 10. 

In Section 1 1  the cohomological method is applied to mapping cones to 
prove some results about equivariant maps between spheres with linear 
involutions. 

1. PRELl MlNARlES 

For a compact Lie group G let EG + BG be a universal principal G- 
bundle whose classifying space BG is a CW-complex with finite N-skeleton 
BGN for all N. Let EGN be the inverse image of BGN and note that ECN is 
compact and N-universal. The cases of main interest for us in this chapter 
are G = Z, and G = S1. For a paracompact G-space X let 

XGN == X x G E G ~  

which is the associated bundle over BGN with fiber X .  

369 



370 VII. COHOMOLOGY STRUCTURE OF FIXED POINT SETS 

Since XGN is paracompact and since Cech and sheaf cohomology theories 
coincide for paracompact spaces, there is the Leray spectral sequence (with 
K an arbitrary coefficient group) 

Eg'q = @ ( B G ~ ;  Rq(x; K))* f i 7 + q ( X ~ N ;  K )  

in which the coefficients f&(X;  K )  are locally constant, but are twisted via 
the canonical action of n,(BGN) - no(G) on @ ( X ;  K ) .  (For background 
on this, in this generality, see Bredon [13, p. 140-1451.) 

From the spectral sequences of these fibrations it follows that the restric- 
tion I;i"(X:+l; K )  -+ @(XGN; K )  is an isomorphism for n < N .  We shall 
define 

gn(XG;  K )  = 1if-m Bn(XGN; K ) .  

(It is not clear that this coincides with the usual Cech groups of XG unless 
X x EG is paracompact, but this is immaterial since the latter will never be 
used.) 

Because of the stability, there is no difficulty in defining the limit spectral 
sequence 

Ei7.q = f ir(&; &(xi K ) )  * kT+q(x~; K ) .  

This passage to the limit is technical and not really necessary. The reader 
may simply verify that all arguments are valid with XCN replacing XG for 
sufficiently large N .  

Similarly if A c X is closed and invariant, then there is a spectral se- 
quence 

EiSq = ~ ( B Q ;  fiq(x, A ; K ) )  =+ p f q ( X ~ ,  A G ;  K). 

Throughout this chapter we shall denote the fixed point set of G on X by 

F = XG,  

and the orbit space by 
X* = X/G.  

We regard F as embedded in both X and X*. Note that 

Upon passage to orbit spaces the equivariant projection X x EG -+ X 
induces the map 

fp: xc+x*. 
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1.1. Proposition Let G = Z, for p prime. Then 

q ~ *  f P ( X * ,  A* u F )  -+ k i ( X G ,  A G  u FG) 

is an isomorphism for arbitrary coeficients and for all closed invariant A c X .  
This also holds for G = S1 and rational coeficients. 

Proof For G = Z, this follows from Exercise 8 of Chapter I11 and a 
similar proof applies to G = S1. For a direct proof, note that since 

(GIH)  X G EG (G X G EG)/H - EG/H ;5: Ba 

we see that for x E: X,  with image x* E X*,  p7-'(x*) B,,. Thus for 
x* I$ F, p7-'(x*) is acyclic (over Q for G = Sl) and the result follows from 
the Vietoris-Begle Mapping Theorem; see Bredon [13, p. 1421. (This uses 
the fact that, for example, k i ( X * ,  F )  is the cohomology of X *  - F with 
supports in the family of subsets of X *  - F which are closed in X*.)  I 

Using 1.1 and the exact sequence of the pair (XG , FG) we obtain the basic 
exact sequence 

which is defined for G = Z,, p prime, with arbitrary coefficients and also 
for G = S1 with rational coefficients. 

All the terms in the cohomology sequence of (X,, FG) are left modules 
over 8 * ( X G )  via the cup product and the homomorphisms are module 
homomorphisms (up to sign for the connecting homomorphism). The 
projection X ,  + BG induces fi*(BG) + 8 * ( X G )  and this gives (via 1.1) 
an ~*(BG)-mOdUk structure to all the terms in 1.2 and i * ,  j * ,  and 6* are 
module homomorphisms (only up to sign for a*). 

More generally, if A c X is closed and invariant, then, in the same situa- 
tion as (1.2), we have the exact sequence 

(1.3) * * * -+ Rk(X*, A* u F )  + k k ( X @ ,  A,) + Rk(FG, FG n A,) -+ 

-+ @+l(X*, A* u F )  -+ - - .  

of Ei*(BG)-modules. We shall usually take A = 0 or take A to be one point 
in F. 

Let us now digress to discuss the Leray-Hirsch Theorem. Let (Y ,  Y') 
be a fiber bundle pair over a space B with projection p :  Y -+ B and fiber 
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pair (X,  A). Let A be a principal ideal domain. By a cohomology extension 
of the fiber we mean a A-module homomorphism of degree 0 

8 :  H*(X, A ;  A )  -+ H*(Y, Y’; A )  

such that for any b E B the composition 

with the restriction to the fiber (Xb7 Ab) over b is an isomorphism; see 
Spanier [ I ,  p. 2561. It is important to notice that 6 is not required to pre- 
serve products. 

The following theorem holds in somewhat more generality but there 
are difficult technicalities in the Cech case unless some strong assumptions 
are placed on (X ,  A) or on B. When B is a finite CW-complex the proof 
is easy and this case suffices for our purposes. 

1.4. Theorem (Leray-Hirsch) In the above situation assume that X 
is paracompact and A is closed and that B is a finite CW-complex. Let 8 
be a cohomology extension of the fiber, with respect to the base ring A, and 
assume that &*(X, A ;  A )  is a torsion free A-module. Then the map 

H*(B; A )  On H*(X, A ;  A )  -+ H*(Y, Y‘; A),  

taking @ 0 01 -p*(j?) u 8(a), is an isomorphism of H*(B; A)-modules. 

Proof Note that Y is paracompact and that Y‘ is closed in Y. We use induc- 
tion on the dimension and number of cells in B. Thus it suffices to prove the 
theorem for an adjunction B = B’ U, Dn, assuming it for B‘. Using homo- 
topy invariance we may as well assume that B = B’ u D”; B’ n Dn = Sn-l. 
Since Sn-l has smaller dimension we can assume the theorem for it. The 
theorem is true trivially over Dn. There is the exact Mayer-Vietoris se- 
quence 

(coefficients in A)  and this remains exact upon tensoring with k * ( X ,  A )  
since this is torsion free. The homomorphism defined in the theorem maps 
this sequence into the Mayer-Vietoris sequence for the parts of (Y, Y’) 
over B‘ and Dn and the result follows upon application of the 5-lemma. I 
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In particular this implies, in the situation that concerns us, that the Kun- 
neth formula holds for FGN = F x BGN. Thus 

8 * ( F G ,  FG n AG; A )  = I?*@@; A )  On 8 * ( F ,  F n A ;  A) ,  

when A is a field, or generally when H*(F, F n A ;  A) is torsion free. 
The main case of interest of 1.4 is that of the fibering XG -+ BG or (XG, AG)  

+ BG. (More accurately, that of XCN + BGN for each N.) Also we are 
mainly concerned with the case of a field A of coefficients. In this case a 
cohomology extension of the fiber clearly exists iff the restriction to a 
typical fiber 

8 * ( x ~ ,  AG;  (1) + B*(x, A ;  A )  

is surjective. In this case we say that ( X ,  A) is totally nonhomologous to 
zero in (A'G, A@) .  

Recall that for p odd 

with deg s = 1 , deg t = 2, and t = /?(s), where /? is the Bockstein homomor- 
phism associated with the coefficient sequence 

0 + 2, -+ ZPB -+ z, -+ 0. 

For p = 2 we have 

I?*(Bz,; Z,) = Z,[t], 

&*(Bsl; Z )  = Z [ t ] ,  

deg t = 1. 

Also 
deg t = 2. 

We shall retain this notation throughout the chapter. 
For a general coefficient group K on which G = Z, operates we have 

for i = 0, 
N) for i > 0 even, 

(ker N)/(Im r )  for i > 0 odd, 

where g generates G, T = 1 - g and N = 1 + g + g2 + . - - + gp-l. 
Note, in particular, that if K is a vector space over Z,, then 

rk Hi(BG; K )  5 rk KG = rk ko(BG;  K) 

for all i. 
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1.5. Theorem Suppose that p is prime and let G = Z,  act on thefinitistic 
space X .  Let A c X be closed and invariant and suppose that P ( X ,  A ;  Z,) 
= 0 for i > n. Then 

j * :  f i k ( X ~ ,  AG; Z,) + f ik (FG,  FG n AG; Z,) 

is an isomorphism for k > n. If ( X ,  A )  is totally nonhomologous to zero 
(mod p )  in ( X G  , A,), then j*  is a monomorphism for all k so that the sequence 

o - + f i k ( X ~ ,  AG; Z , ) L R k ( F , ,  FG n A G ;  Z,)--+fik+'(X*, A* v F; Z,)-+O 

is exact. This also holds for G = S' and rational coeficients if X* is also fi- 
nitistic and the number of orbit types is finite. 

Proof The first part follows from the exact sequence (1.3) and the fact 
from 111.7.9, 111.7.6, and 111.10.9 (for G = S), that k i ( X * ,  A* u F) = 0 
for i > n. (For a proof of the latter fact from the present point of view 
rather than from Smith theory, see Bredon [21, p. 2491. This also gives the 
case G = S1 without the assumption of finiteness of number of orbit types.) 

If ( X ,  A) is totally nonhomologous to zero, then 8 * ( X G ,  A,) is a free 
H*(BG)-module by 1.4. If a E @(X*, A* u F), then tra =- 0 for sufficiently 
large r so that t'i*(a) = 0. Thus i*(a) = 0 for all a, which implies that j *  
is a monomorphism. I 

Recall from Chapter 111 that a space is said to be "finitistic" if each open 
covering has a finite-dimensional refinement. 

1.6. Theorem Let p be a prime and let G = Z, act on thejinitistic space 
X .  Let A c X be closed and invariant. Suppose that C rk &(X, A ;  Z,) < 00. 

Then the following statements are equivalent: 

(a) (X, A )  is totally nonhomologous to zero (modp) in (XG, A G ) .  

(b) G acts trivially on f i * ( X ,  A ;  Z,) and the spectral sequence E2.q 
= @(BG; fiq(X, A; Z,))" @ + q ( X G ,  AG; Z,) of ( X ,  , A,) + BG degenerates. 

(c) C rk @ ( X ,  A ;  Z,) = C rk p ( F ,  F n A ;  Z,). 

This also holds for G = S1 and rational coeficients, provided that X* is also 
finitistic and there are only jinitely many orbit types. 

Proof The edge homomorphism 
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is just restriction to a fiber. Also 

E?' = fio(Ba; &(X, A ) )  = k q ( X ,  A)G. 

Thus (a) holds iff G acts trivially on fi'J(X, A )  and E$J consists of permanent 
cocycles. From the multiplicative structure of the spectral sequence this is 
equivalent to (b). 
By 1.5 we have (over Z,) 

rk f ik(XG, A,) = rk f ik(FG,  FG n A Q )  

for k > n. But 

rk fik(XG , A G )  = C rk EFsi 5 C rk E$-i*i 

= C rk I;ikpi(BG; @(X,  A)) 

5 C rk @(X, A)G 5 C rk @(X,  A) 

with equality iff (b) holds (by the multiplicative properties of the differen- 
tials in the spectral sequence). Since 

f ik(FG,  FG n AG) = @ (kkpi(BG) @ fii(F, F n A ) )  

has rank equal to C rk @(F, F n A), it follows that (b) is equivalent to 
(c). I 

2. SOME INEQUALITIES 

In this section we shall prove some generalizations of the inequalities 
111.7.9 of Floyd. 

2.1. Theorem Let p be an odd prime and let G = Z,  act on the jinitistic 
space X with A c X closed and invariant. Assume that C rk @(X, A ;  Z,) 
< 00 and that ( X ,  A )  is totally nonhomologous to zero in (XG , A @ )  mod p .  
Then, for  each k, 

rk fik+zi(F, F n A ;  Z,) 5 
a 20 i 20 

rk kk+zi(X,  A ;  Z,). 

In particular, if 8 * ( X ,  A ;  Z,) vanishes in odd degrees, then so does k * ( F ,  
F n A ;  Z,). 
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Proof For notational convenience we shall omit A and the coefficients. 
Recall that fim(X,) is filtered by submodules Fk@(XG) with 

The isomorphism of the Leray-Hirsch Theorem 1.4 clearly preserves the 
filtration. It is, in fact, an isomorphism offiltered groups, since the map on 
the associated graded groups is just the isomorphism E;*q M EGq. (For 
background on these facts see Bredon [13, Appendix]. Our present Fk 
is Fm-k of that reference.) The filtration of 8 * ( B a )  @ &*(X) is given by 

q sk 

The 8* (BG)-operation preserves filtration, since I?*(&) has filtration zero. 
also preserves (or decreases) filtration. Since 

this is an isomorphism for m large (but not an isomorphism of filtered 
groups) the horizontal maps in the following diagram are surjective for 
large m 

The map p m ( X a )  3 

firn(&) ~ firn(FG) 
Fk-1firn(Xd Fk-lRm(FG) 

1. 
lP"(F0) 

4 
+% 

I-P+l(XQ) 
Fk-lg"+'(X,) Fk-lkm+l(Fc) 

The vertical maps p and y are multiplication by s E k l (BG) .  Thus the image 
of p maps onto that of y. However 

and the image of q~ consists of those terms with m - q even. Taking m - k 
even, the dimension of the image of p is C rk l?k+2i(X) for i 2 0. Similarly 
for y, and the inequality follows. I 

With some assumptions on integral cohomology one can improve on 
2.1 as in the following theorem due to Heller [2] and Swan [2]. Note that 
this applies to the case p = 2 while 2.1 definitely is false for p = 2. 

2.2. Theorem Suppose that p is prime and that G = Z, acts on thefinite- 
dimensional space X with A c X closed and invariant. Suppose that G acts 
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trivially on k * ( X ,  A ;  Z). Then 

rk Bk+zi(F, F n A; Z,) I 1 rk BkfZi(X, A; Z,). 
i L O  i 2 0  

Proof As before we shall omit A from the notation during the proof. 
Since X is finite-dimensional, we have that fim(X*, I;; Z) = 0 for large m 
and hence 

j * :  am(&; Z) --+ Bm(F@; Z) 

is an isomorphism for large m > dim X. Since, for m large, Bm(X x EG; Z) 
= 0, the composition (multiplication by p) 

Bm(X~; z) + Bm(x X EG; z) + Bm(x~; z) 

with the transfer shows that p kills km(XG; Z) and hence this is a vector 
space over Z,. 

Since G acts trivially on 8 * ( X ;  Z), we compute 

Rqx; Z) for r = 0, 

Bq(X; Z) * Z, for r > 0 odd. 
E;JI = &(B@; B ~ ( x ;  z)) - B ~ ( x ;  Z) 0 Z, for r > o even, 

Computing dimensions of Z,-vector spaces, we obtain (for m - k even 
and m large) 

= C [dim(fik+2j(X; Z) @ Z,) 
3 2 0  

+ dim(fik+2j+1(X; Z) * q)] 
dim I?k+zj(X; Z,). 

Similarly 

and the inequality follows, since j*  maps k m ( X G ;  Z)/Fk, onto 

fim(Fa; z)/Fk-i. I 
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Remark Theorem 2.2 can be proved for X finitistic rather than finite- 
dimensional, but there are some technical difficulties with the present ap- 
proach since 8 * ( X * ,  F u A*; Z) (and 8 * ( X ,  A ;  Z), etc.) need not vanish 
in high degrees. The difficulties can be overcome by using the fact that these 
groups have no p-torsion and are p-divisible. However, these difficulties 
are not present in the method of Swan [2], which is similar to, but more al- 
gebraic than, the present approach. Hence that method is preferable for 
this particular result. The present method has some other advantages over 
Swan's method, however, and it applies to the case G = S', unlike the Swan 
method. 

3. 2,-ACTIONS ON PROJECTIVE SPACES 

For a prime p we shall write X -, Y if X and Y have isomorphic mod p 
cohomology rings. Similarly, we use the notation 

X -p Ph(n) 

to mean that the cohomology ring 

where n = deg a. Thus for n = 1, 2, or 4, X has the modp cohomology 
ring of RPh, CPh or QPh, respectively. For n = 8 and h = 2, X has the 
mod p cohomology ring of the Cayley projective plane Cay P2. If p = 2, 
then these are the only possibilities for n if h 2 2. When p is odd then n 
must be even for h 1 2 and there are examples (see Section 4) of X w P  Pz(n) 
for all odd p and even n. The following theorem from Bredon [lo, 211 
is the basic result for Z,-actions on projective spaces. 

3.1. Theorem Suppose that p is prime and that G = Z, acts on the fi- 
nitistic space X wP Ph(n). Then either F is empty or F is the disjoint union 
of components Fi -, Phi(ni) with h + 1 = C (hi + 1) and ni 5 n. The 
number of components is at most p .  For p odd and h 2 2, n and the ni are 
all even. Moreover, if ni = n for some i, then the restriction Hn(X;  Z,) 
---f Hn(Fi; Z,) is an isomorphism. 

Proof Because of the Smith Theorems we may assume that h 2 2. Let 
F,, be a component of F and let x E F , .  Consider the spectral sequence of 
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( X G ,  xG) with Z, coefficients. Since Z, has no automorphisms of period 
p ,  it follows that G acts trivially on k * ( X ,  x). Let a E &(X, x) be a gen- 
erator. Then 

1 @ a E &O(Bc) @ Bn(X, X) = EZsn 

is a permanent cocycle since E$* = 0 for q < n. However, then each 
1 @ ai is a permanent cocycle and this implies that the spectral sequence 
degenerates. Thus ( X ,  x) is totally nonhomologous to zero in (XG , xG) by 
1.6. There is a unique element a E Bn(XG, xc) restricting to a E Bn(X, x). 
By 1.4, I?*(XG, xG) is the free E-i*(BG)-module generated by 

a, a2,  . . . ,ah. 

If p is odd, then H*(F, x) vanishes in odd degrees by 2.1. Our arguments 
below will take place in even degrees for p odd, and this explains the ab- 
sence of s E B1(BG) from the formulas that we will write down. 

Let j o :  BG X (Fay x) = ( (Fo)G,  xG) + ( X G ,  xG) be the inclusion and put 

and d = 1, 2 according as p = 2 or p is odd. Put b = bnPkd and note that 
n - kd  = deg b > 0. We claim that B*(Fo, x) is generated by b as an 
algebra over Z,. 

Now jo* is just j *  followed by the projection of &*(FG, xG) onto its direct 
summand g*((Fo)G,  x ~ ) .  Since j *  is onto in high degrees by 1.5, this is 
also true for jo*. However, the image of jo* is generated over &*(BG) by 
jo*(a), jo*(a2) , . . . , jo*(ah) and it follows that &*(Fo, x) is generated by 
the bi of (1) as a Z,-algebra. 

Since jo* is onto in high degrees we can write 

for sufficiently large r, where m = n/d and Ai  E Z, . If we expand the right- 
hand side of (2) using (1) and compare coefficients of tr+k we see that A ,  = 1. 
Subtracting this term from both sides of (2) we obtain 
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On the other hand, multiplying (1) by t r  and rearranging, leads to 

jo*(t'U) - t'+' @ b = t' @ b, + tr+l @ bn-d + * * * + tr+k-l 0 x bn-(k-l)d 

Thus from the last two equations we have 

t' @ b,, f * * * + t'+'-' @ bn-(k-l)d = - j o * ( A 2 t ' - m ~ 2  f - * * + Ahtr-hm+mUh). 

If we think of expanding the right-hand side of this equation using (1) and 
then comparing coefficients of powers of t ,  we obtain expressions for each 
of the elements 

bn, bn-d, . . . 2 bn-(k-l)d 

as polynomials in the bi (including b = bnwkd) with no linear terms. Thus 
bn-,k-l,d is a polynomial in b = bnWkd and hence is a scalar multiple of a 
power of b. Similarly, bn-(k-2)d is a polynomial in b and bn--(k-l)d, hence in 
6,  and must then be a scalar multiple of a power of b ;  and so on. This shows 
that the bi are all scalar multiples of powers of b and hence that b generates 
B*(Fo, x) as a Z,-algebra. 

It follows that Fo -, Pho(no) for some ho and for no = deg b 5 n. If 
p is odd, then no = n - 2k is even, since n is, even if h, = 1. 

The equality h + 1 = C(hi + 1) simply expresses 1.6(c) and the last 
statement of the theorem is an immediate consequence of the proof. 

It remains to show that there are at most p components of F. For this, 
consider the projection 

3t: i!Z*(Ba) @ B*(F, X) + i!Z*(B,) @ i!ZO(F, X) 

which is a ring homomorphism. Put 

so that 

Since n is onto and j *  is onto in high degrees, we see that c, c2, . . . , ch 
generate ao(F,  x) as a Z,-vector space. Since c p  = c, rk B0(F, x) 5 p - 1 
and hence F has at most p components. I 

Note that if one uses the canonical ring isomorphisms to write 

c=(c1 ,c2 ,  ...) E Z p @ Z p @  . * .  - i ! Z y F l ) @ k o ( F , ) @ . . . ,  

then it follows from the above remarks that the ci E Z, are all distinct 
and nonzero. (Also, one can delete x and regard c, as zero.) 
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Remark In the case of Z,-actions on RPh the above theorem was first 
proved by Smith [lo] using a geometrical argument to reduce it to the Smith 
Theorem on spheres. That argument was extended by Su [3] to the case of 
a cohomology RPh. The general case was proved in Bredon [lo, 211 as were 
the rest of the results in this section. 

Remark Theorem 3.1 can be regarded as saying that if @*(X; Z,) is 
generated as an algebra by one element, then the same holds for each com- 
ponent of F for a Z,-action on X. In Bredon [21] it was conjectured that if 
I?*(X; Zp) is generated by at most k elements as an algebra, then the same 
is true of each component of F. A counterexample to this is constructed at 
the end of Section 10. However, this may hold when X is totally nonhomol- 
ogous to zero in X ,  and this remains a nontrivial unsolved problem. 

To make a closer study of actions on projective spaces we will apply 
the Steenrod operations. Let us briefly recall the properties of these that 
we will need. The standard reference is Steenrod and Epstein [l]. 

For p = 2, there exist natural homomorphisms 

Sqi: @(X,  A ;  Z,) + fin+{(X, A ;  Z,) 

for i 2 0, with the following properties: 

(a) SqO = 1; 
if i =  degx, { f if i >  degx; (b) Sqi(x) = 

(c) Sqk(xy) = C b  Sqi(x) Sqk-i(y) (the Cartan formula). 

It follows that, in particular, 

The Adem relations (loc. cit.), which are difficult consequences of the above 
facts, imply that if X -z Ph(n) and h 2 2, then n is a power of 2. (In fact, 
it is a well-known theorem of Adams [l] that n = 1, 2,4, or 8.) Another 
fact about these operations is that Sq' is the Bockstein homomorphism of 
the coefficient sequence 

0 + z, -+ z, --+ z, --f 0. 

For an odd prime p there are natural homomorphisms 

ppi : I;ih(X, A ; z,) + fin+Z<(p-1) ( X ,  A ;  z p >  
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such that 

(a) PpO = 1; 
x p  if 2i = deg x ,  

(b) = { 0 if 2i > deg 

(c) Ppk(xy) = Ex0 Ppi(x) (the Cartan formula). 

In particular 

deg x = 2 a f ' , i ( ~ k )  = ~ k + i ( P - l ) ,  (3 
Of the Adem relations (loc. cit.) we shall only have occasion to use the 
fact that 

PplPpl = 2P,2. 

We will need to know the value of P; on Z?4(QPh; Zp) .  For this let 
x E @(CPZh+l; Z,) be a generator and note that P;(x2) = 2xP+l (from the 
above remarks). Now there is a canonical fibration f: CP2h+l+QPh 
with fiber S2 and f *: f i4(QPh; Z,) -+ fi4(CPZh+l; Z,) is an isomorphism. 
We choose a generator y E B4(QPh; Z,) by demanding that 

f * ( y )  = 2. 

P,l(y) = 2y(P+1)/2. 
Then, by naturality, 

Suppose now that we only know that X -, QPh and let z E fi4(X; Z,). 
Then 

P,'P,'(Z) = 2PP2(Z) = 22, 

by (b). However, Ppl(z) = AZ(P+~)'~ for some A E Z ,  since there are no 
other elements of Z ? z p + 2 ( X ;  Z,). From the Cartan formula we compute 

If h >_ p (so that z p  # 0), then it follows that A2 = 4 and hence that A 
= f 2 .  Thus Ppl(z) = f 2 ~ ( p + l ) / ~  provided that h >_p.  On the other hand 
there are examples of spaces X -3 QP2 (so that h = 2 < 3 = p )  for which 
P31(z) = 0; see Section 4. 

3.2. Theorem 
h >_ 2. Then one of the following possibilities must hold: 

Suppose that G = Z ,  acts on thefinitistic space X - ,  Ph(n), 



3. Z p - ~ ~ ~ ~ ~ ~ ~  ON PROJECTIVE SPACES 383 

(1) F =  0 and h is odd. 
( 2 )  F is connected and F -, Ph(m), where n = m or n = 2m. 
(3) F has two components Fl and F,,  where Fi -, Phf(n) and h = h, 

+ h, + 1. (Here hi may be 0 or 1.) 

Moreover, in case (2 )  the restriction @(X;  Z,) - @(F; Z,) is an isomor- 
phism. 

Proof By 3.1, F has at most two components and not both can be acyclic. 
Let Fo be a component of F and assume that Fo -, Pk(m), where k 2 1 
and in < n. It then suffices to show that case ( 2 )  holds with n = 2m. Since 
h L 2 we know that n is a power of 2, and in fact is one of 1, 2,4, 8. Rather 
than give the general proof (which can be found in Bredon [lo]), we shall 
restrict our attention to the case n = 4, which is typical. 

We retain the notation of the proof of 3.1. Thus a E I;i4(XG, xG) represents 
the generator a E B4(X, x), where x E Fo. Put 

j * ( a ) = t 4 @ c 0 + t 3 @ c 1 + P @ c 2 +  t @ c , +  l@C,, 

where ci E @(F, x) and c, # 0. By the proof of 3.1, co generates ao(F ,  x) 
and hence co = 0 iff F is connected. Suppose that co # 0. If m = 1 or 
m = 3, put i = 1,  and if m = 2 put i = 2. Consider Sqi(a). Since i < 4, 
k4+i(xG, xG) has only two elements 0 and tia. However, computation 
shows thatj*(Sqia) = Sqi(j*(a)) has no term involving co. Thus Sqi(a) =O. 
Now recall that 

jo*(a) = t4pm @ b + (*), 
where 0 # b E fim(Fo, x) and (+) denotes a sum of terms t4-k 0 bk whose 
second degree k > m. Then, by the choice of i, 

jO”(S&) = Sqi(jo*(a)) = @ b + (*) # 0 

and hence Sqi(a) # 0. This contradiction shows that F is connected. 

h 2 2. We must show that m # 1 .  If m = 1 ,  then 
Since F is connected we have F -, Ph(m) and m is a power of 2 since 

j*(a) = t 3  0 b + t2  0 b, + t @ b, + 1 @ b, ,  

where b generates @(F, x ;  Z,) and bi is either 0 or bi. (In fact b, and b, 
will not concern us.) As above, Sql(a) is either 0 or ta and hence Sql(j*(a)) 
= j * (Sqh) is either 0 or tj*(a). However, we calculate 

Sqlj*(a) = t4  0 b + t3  0 b2 + (f), 
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where (*) involves only higher powers of b. Thus we must have b, = b2 # 0. 
Similarly Sq2(a) is either 0 or t2a  and we calculate 

j*(Sqza) = Sqz(j*(a)) = t S  @ b + (*) 
which is neither 0 nor tzj*(a) since it has no term in b2; a contradiction. 

For the last statement, it suffices to show that 

j*(a) = t 2  @ b + 1 @ b2. 

The only other possibility is j*(a) = t 2  @ b, but in this case Sq2(j*(a)) 
= @ b + t 2  @ b2 contrary to the fact that Sq2(a) must be either 0 or 
t2a. 

That Ff 0 when h is even follows from Floyd's result 111.7.10 that 
x(F)  = x ( X )  = 1 (mod 2) when h is even. A direct proof is also easy to 
give by showing that the spectral sequence must degenerate. 

Remark If X is a finite CW-complex whose integral cohomology ring 
is that of QPh,  h 2 2, then F must be nonempty. This follows from the strong- 
er fact that these spaces have the fixed point property, and the proof of 
this is an elementary exercise in the use of the operation P,1 and the Lefschetz 
Fixed Point Theorem. 

Remark Case (2 )  of 3.2 with n = m occurs, of course, for the trivial action 
and this is the only possibility when X is a closed manifold. However, for 
spaces like CPh x D7 there can exist nontrivial examples of this situation. 
See the next section for some strange examples of this case. 

3.3. Theorem Suppose that G = Z, acts on thefinitistic space X -, Ph(n) 
with h 2 2, n >_ 2, and F # 0. Then k n ( X ;  Z,) - Z,. If n > 2, then G 
acts trivially on Hn(X; 2,). If n = 2 (i.e., X -, CPh), then G acts non- 
trivially on @(A'; Z,) ifs F -, RPh. 

Proof Since n 2 2, k * ( X ;  Z,) = 0 in odd degrees. Thus we have the 
exact sequence 

0 + Hyx; Z,) 5 Hyx; Z,) L kyx;  Z,) -+ 0. 

This, and the fact that qy = 2 on Rn(X; Z,), shows that Hn(X; Z,) = Z,. 
Considering the spectral sequence of ( X G  , xG) + BG with Z, coefficients, 
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we see that 

is Z, or Z, according as G acts nontrivially or trivially. As before, let a 
generate f i n ( X G ,  xG;  Z,) - Z,, Then the sequence 

0 ---f f i n ( x G  3 XG ; z,) fin(xQ XG ; z,) - G n ( x G ,  X Q  ; z2) % Bfl+ ' (xG,  XG ; zz) 

shows that Sql(cw) = 0 iff G acts trivially on IT"(X, x ;  Z,). If n > 2, then 
8 * ( F ,  x; Z,) = 0 in odd degrees by 3.2, so that j*(Sqla) = Sq'(j*(a))=O 
and hence Sql(a) = 0 since j *  is a monomorphism. 

If n = 2 and @(F, x; Z2) = 0, then Sql(a) = 0 for similar reasons. If 
n = 2 and #(F, x ;  Z,) # 0, then, as noted in the proof of 3.2, j*(a) 
= t @ b + 1 @ b2 and thus 

j*(Sql(a))  = Sql(j*(a)) = t2 @ b + t @ b2 # 0. a 
We shall now turn to the case of odd primes. Our first result improves 

the bound on the number of components of F. 

3.4. Theorem Let p be an odd prime and let G = Z, act on the $nitistic 
space X -, QPh. Assume either that h 2 p or that X = QPh or, more gen- 
erally, that P$(a) = &2~(p+l) /~ ,  where a is some generator of IT"(X; Z,). 
Then F has at most (p + 1)/2 components. 

Proof The result is trivially true when (p + 1)/2 > h and hence we may 
assume that # 0. With Q E k4(XG, xG;  Z,) a generator, let 

j*(a) = t2  @ c + (*), 
where c E fi0(F, x )  and (*) involves terms with positive second degree. 
By the proof of 3.1, ko(F ,  x )  is spanned by c, c2, c3, . . . as a Z,-vector 
space. 

Since P$(Q) restricts to Ppl(a) = &2a(P+1)/2 we have 

Pp'(a) = A&P+1)/2 + Azt2a(P-1)/2 + . . . + A,_,tP-la, 
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while 
P&j*(a)) = Ppl(t2 0 c + (*)) = 2tP+' 0 c + (*). 

A,C'P+1'/2 + &'P-1"2 + . . . + A,-,c z 2c 
Thus 

and this equation can be solved for C ( P + ~ ) / ~  since A,  = 42. Thus c, c 2 ,  . . . , 
C ( P - ~ ) ' ~  span f io(F, x; Z,) and the result follows. I 

In the following two theorems we restrict our attention to the case p = 3. 
There are analogs for all odd primes p ,  but they seem to require stronger 
hypotheses; see Bredon [lo]. 

3.5. Theorem Let G = Z, act on the finitistic space X -, QPh. Then 
there is at most one component F, of F with F, QPk, k 2 1 ; all other com- 
ponents having CP-type (or acyclic). 

Proof If h < 3 ,  then this holds trivially by the equality rk l?*(X; Z,) 
= rk f i * ( F ;  Z,). If h 2 3 ,  then a3 # 0 for a E R4(X; Z,) a generator, 
and hence P,l(a) = *2a2. By a sign change we may assume that P,'(a) 
= 2 d .  Assume that F, and Fl are two components of F, both of QP-type. 
Let x E F, and let a E p4(XG, xG; Z,) represent a. Then 

j*(a) = t2 0 c + 1 0 b, + 1 0 b, + (*), 
where c E go(F ,  x), b, E fi4(F0, x), b, E k 4 ( F 1 ) ,  and (*) consists of terms 
not involving these groups. We have cb, = 0 and cb, # 0 (since c generates 
Ro(F, x) multiplicatively). Now 

P:(a) = 2 a 2  + At% 

for some A E Z,. Since P, l ( t2)  = 2t4 we compute 

P:(j*(a)) = 2t4 0 c + (*) 
while 

Comparing terms in b, shows that A = 0 and comparing terms in b, then 
gives a contradiction. 
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3.6. Theorem Let Z, act on the jinitistic space X -, QPh with h 2 3 
or with h = 2 and P,l(a) = f 2 a 2  (e.g., X = QP2). Suppose that F, is a com- 
ponent of F with F, -, CPk, k 2 2. Then B4(X; Z,) + H4(F0; Z,) is an 
isomorphism. 

Proof Take x E Fo and let a be as before. As above 

P,l(a) = 2a2 + At% 

for some A E Z,. Also we can write 

jo*(a) = t @ b + B @ b2, 

where b generates H2(Fo, x; Z,) and B E Z,. We must show that B # 0. 
We compute 

P,l(jo*(a)) == t3  @ b + t @ b3 + 2B @ b4 

which must equal 

j0*(P2(a)) = 2j0*(a)* + At2j,*(a) 

= At3 @ b + (2  + AB)t2 @ b2 + 4Bt @ b3 + 2B2 @ b4. 

Thus A = 1 and 2 + A B  = 0, whence B = -2. I 

3.7. Corollary Suppose that G is a jinite group with order a power of 3, 
and that G acts on the jinitistic space X -, QPh with h 2 3 (or h = 2 and 
P,l(a) = f 2 a 2 ) .  Then there is at most one component of F = X G  of QP-type. 
Moreover, if F, is any component of F with F, -, CPk, k >_ 2, then the re- 
striction B4(X; Z,) + B4(F0; Z,) is an isomorphism. 

Proof We can write 

G = Go 3 G, 3 G, 2 ... 2 G, = {e}  

with Gi/Gi+, - Z,. The first statement of the theorem is an easy induction. 
For the second statement let Fi denote the component of F(Gi ,  X )  which 
contains F,, so that 

Po c FI c F.. c * * .  c F,= X. 

Then Fi is a component of the action of Z, = Gi/Gi+, on Fi+,. Since 
rk B*(F,) 2 3, the same follows for each Fi and hence none of these is a 
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cohomology S2 or S4. If Fi and Fi+l are both of CP-type or both of QP-type, 
then 

f i4 (~ i+ l  ; ~ 3 )  - f i * ( ~ i ;  ~ 3 )  

is an isomorphism by 3.1. By naturality of P,’ it also follows inductively 
that P,’(ai) = &2uz for a generator ai E fi*(Fi; Z,) when Fi has QP-type. 
Thus 3.6 is applicable for the passage from Fi of QP-type to Fi-l c F(Z3,  
Fi) of CP-type, and the result follows. I 

Remark It is natural to ask whether the analog of 3.7 holds for actions 
of p-groups, p # 2,3,  on QPh. The answer is unknown. 

4. SOME EXAMPLES 

In this section we shall give several examples to illustrate the theorems 
of the last section. 

On RPh, CP*, and QPh we denote the homogeneous coordinates of a 
point by (x, : x1 : . - - : xh). Also, QPn is taken to be the right projective 
space, so that 

for q # 0. 

of each Z, , on CPh and QPh are given by 

(40: 41: * * * : q h )  = (404: 414: ’ ’ ’ : q b q )  

The “linear ” actions of the circle group { z  E C I I z I = l}, and hence 

z(qo: 4,: * * * : qn)  = (zaoq, :  za’q,: - - - : zaq,), 

where a,, a,, . . . , ah are integers. (This action may have a kernel, which 
should be factored out.) There are analogous actions of Z, on RPh. In 
particular (qo: ql: - - - : qh) H (iq,: iq, : - - . : iqh) defines an involution on 
QPA with F = CPh. There is also the involution (2,: z,: - - : z h )  H (2,: 

2,: 
It is a pedestrian exercise to analyze the above actions and to see that, 

for X = RPh, CP*, or QPh, they give examples of most (all for p = 2, 3) 
of the possibilities for F consistent with 3.1, 3.2, 3.4, and 3.5. 

We shall now consider some actions on the Cayley projective plane 
Cay P2. Let us recall its definition. The Cayley numbers can be defined to 
be pairs (a, b) of quaternions with coordinatewise addition and where 
multiplication is defined by 

- : Zh) on CPh with F = RP*. 

(a, b)(c, d) = (ac - db, da + bE). 
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If x = (a, 6) is a Cayley number, then we put R = (a, -b) and I x I = ( la l 2  
+ 1 b I2)ll2, so that xR = I x l 2  = Xx. Also I xy I = I x I I y I. The Cayley 
numbers are not associative but any two elements lie in an associative subal- 
gebra. Moreover, there is the “Moufang identity” 

(zx)(yz) = z(xy)z. 

For background on all of this we recommend Curtis [l]. 
For any map A x B -+ C there is an obvious induced map of the join 

A * B to the suspension SC [which factors through S(A x B)]. For group 
actions on A, B, and C with A x B -+ C equivariant, the induced map A * B 
-+ SC is also equivariant. The multiplication of Cayley numbers of norm 
1 is a map S7 x S7 -+ S7 and hence induces the “Hopf map” 

ql: S’5 = s7 * s7 -+ ss7 = ss. 

Then Cay P2 is defined to be the mapping cone of ql. We prefer to use this 
description to produce examples of actions on Cay P2. An alternative 
approach would be to exploit the fact that CayP2 is the homogeneous 
space F,/Spin(9). 

We shall now describe some actions on CayP2. For a quaternion t of 
norm 1 and a Cayley number c = (a, 6 )  let 

t(C) = (tar-1, tbt-1). 

It is clear that this is an automorphism of the Cayley algebra and defines 
an action of S3 on S7 [but - 1 E S3 acts trivially so that, effectively, this is an 
action of SO(3)]. Multiplication S7 x S7 -+ S7 is equivariant for this action 
and hence there is an induced action on S15 -+ Ss and on its mapping cone 
Cay P2. If t is of order p (or 4 for p = 2), then this generates an action of 
Z, on Cay P2 with F = QP2. 

For another example, let w be a Cayley number of order p and let cu act 
on S7 by c H wcw. Also let w act on S7 x S7 by (cl, c2) H (wcl , c2w). 
Then multiplication S7 x S7 -+ S7 is equivariant by the Moufang identity. 
Thus there is an induced action of Z, on Cay P2. To identify I; note that 
if c E S7 is perpendicular to 1 and w, then E = -c  and 

2 = I c + w 12 = ( E  + a)(c + w )  = 2 + Ew + a c  

so that cw = a c .  That is, wcw = c for c in this 5-sphere. If c E S7 is in 
the plane spanned by 1 and w ,  then wcw = w2c which equals c iff p = 2. 
Since there are no fixed points on S7 x S7 we see that F is the vertex of the 
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mapping cone of S7 * S7 --+ SS7 together with the suspension of the fixed 
set of c t+ wcw on S7. Thus 

point + S* if p = 2, 
point + S6 if p is odd. 

One can see that this action is smooth in some smooth structure on Cay P2. 
Note that for p = 3 it illustrates VI.10.4 and shows that the condition in the 
last part of VI.11.5 cannot be dropped. Also note that Z, cannot act smoothly 
on Cay P2 with F = point + Sr for any r # 6, because 3 must divide r 
by VI.10.4 and r must be even and at most 8 by 3.1. (There is also a coho- 
mological proof of this fact; see Exercise 10.) The case r = 0 can be ruled 
out by applying a theorem of Conner and Floyd [8, p. 941; compare the 
proof of 9.3. 

We now turn to another class of examples in the case of odd primes p .  
Recall from Chapter I, Section 7 the map 

8 .  . sn-1 -O(n)  

taking x to 8, ,  the reflection through the line Rx. Also recall that the map 

2 Y ( X ,  Y )  = %O) y: sn-1 x sn-1- sn-1 

has bidegree (2, -1) for n even and bidegree (0, 1 )  for n odd. Thus the in- 
duced map 

v: S2n-1 = Sn-1 * Sn-1 -+ Ssn-1 = S n  

has Hopf invariant -2 or 0 according as n is even or odd. Let X ,  denote 
the mapping cone of cp, Then for p odd we have 

for n even, 
for n odd. Xn f fp  { ~ ~ ~ ' s z n  

The space X,, consists of three points. Now y is equivariant with respect 
to the usual O(n)-action on Sn-l and the diagonal action on Sn-I x Sn-l. 
Thus Xn inherits an O(n)-action. If G c O(n) and F(G, Rn) = Rk, then 
it is clear that F(G, X,) = xk. Thus for k,  n even, 0 5 k 5 n, and p odd, 
there is a 25,-action on Xn wP Pz(n)  with F = Xk w, P2(k). These examples 
give limitations on what one can expect to prove by purely cohomological 
methods. For example Z, acts on X ,  -, QP2 with F = X,, consisting of 
three points. This shows that the condition on Ppl is needed for 3.4 and it 
also shows that P; = 0 on X, .  Similarly, the Z,action on X ,  with F = X ,  
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shows that the P,1 condition in 3.6 is necessary, since H4(X4; Z,) -+ H4(X,; 
Z,) is trivial because it factors through H4(X,; Z3) = 0. Also see Exercise 2. 

We shall conclude this section by showing that there can be some rather 
interesting actions even in the case X -p F; i.e., when the restriction 8 * ( X ;  
Z,) -+ B*(F; Z,) is an isomorphism. 

For the first such example consider the action of S' on C2 = R4 by 

z(zl, z,) = (z2z1, z3z2). 

By adding the point at infinity, this gives a linear action on S4. Let A c S4 
be the orbit of the point (1, l), so that 

A = ((22, z3) I I z I = l}, 

and note that this touches neither of the 2-spheres 

which are the fixed point sets of the subgroups Z, and Z,, respectively. 
Now A has an invariant tubular neighborhood U 2: A x R3 - S' x R3 
in S4 and 

S4 - U - S2 x D2. 

Both of the 2-spheres F, and F, are contained in this S2 x D2. We wish to 
find the degree (up to sign) of the inclusion S2 - F2 c S2 x D2. However, 
this is clearly just the linking number of F, - S2 and A = S1 in S4. Now 
F, bounds the 3-disk 

D3 = { (zl, z,) I z, 2 0 (real)}. 

This intersects A in the three points {(d, 1) I o3 = l} and the intersections 
all have the same sign. Thus the linking number is 3, which means that the 
inclusion F, c S2 x D2 has degree 3. Similarly F, c S2 x D2 has degree 
2. Thus the subgroup Z, (respectively, Z,) acts on S2 x D2 with F = S2 
contained in S2 x D2 with degree 3 (respectively, 2). Similar constructions 
yield actions of Z, on S2 x D2 with F - S2 lying in S2 x D2 with degree 
q, for all relatively prime p and q. 

These are, of course, nontrivial examples of the Smith Theorems and also 
of 3.1 and 3.2(2) with h = 1. We shall now construct generalizations of 
this for h > 1. Consider the Brieskorn manifold WE:' defined by the equa- 
tions 

u p  + v'l + z12 + * * * + zgn = 0, 

[ u 1' + I v 1' + I ~ 1 1 '  + * .  * + I ZZn 1' = 1 
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in C2n+2, where p and q are distinct primes. Recall that this is always a 
homotopy sphere. Let S1 c SO(2) x - - - x SO(2) c SO(2n) be the di- 
agonal circle subgroup and note that this acts semi-freely on W$>+l with 
fixed set W;,, - S1 (given by zi = 0). Multiplication of u by pth roots 
of unity defines a Zp-action on this, commuting with the S'-action, and its 
fixed point set is WP-'; the set where u = 0. Note that 

wp-' n W' P,P = 0- 

An invariant tubular neighborhood U of the circle W;,, has the form 
S' x R4n and its complement WF;' - U - S4"-' x D2 contains the 
fixed set WP-l of 2,. We shall now divide by the action of S'. There 
is an equivariant inclusion S4"-l + S4"-' x D2 which is a homotopy 
equivalence. It follows that 

X = (S4n-1 x D2)>/S1 

has the homotopy type of CP2"-l. (In fact, it can be shown that X - CP2"-' 
X D2 by using the s-Cobordism Theorem in an appropriate way; at least 
for n 7( 2.) There is an induced Z,-action on X with 

F = F(Zp, X )  = WP-l/S1. 

Recall that Hzn(WP-'; Z) = Z, and that otherwise WF-' resembles a 
(4n - 1)-sphere. The spectral sequence (or the Gysin sequence) of the 
S'-bundle WF-l+ F shows easily that 

where deg x = 2 and deg y = 2n. This S1-bundle is contained in that of 
S4"-l x D2 --f X and comparison of the spectral sequences shows that the 
inclusion F c X has degree f q ;  that is, 

is multiplication by f q .  (This also implies that the inclusion WP-' c 

S4n-' x D2 has degree f q . )  Since F -;, CP2"-' -p X this illustrates 3.1 
and 3.2(2) in the "apparently trivial" case. We hope that these examples 
will prevent the reader from reading more into the theorems of Section 3 
than is there. 
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5. CIRCLE ACTIONS ON PROJECTIVE SPACES 

For S1-actions on rational cohomology projective spaces it is clear that 
one can prove the obvious analog of 3.1. In this section we shall study 
S1-actions on integral cohomology projective spaces. The symbol X wZ Y 
means that X and Y have isomorphic graded integral cohomology rings 
and X wZ Ph(n) means that 8 * ( X ;  Z )  - Z[a]/(ah+') where deg a = n. 
Recall that for h 2 2, n must be 2,4, or 8, and for h 2 3, n # 8; see Adams 
[ l ]  and Steenrod and Epstein [ l ] .  

5.1. Theorem Let X - z P h ( n ) ,  n even, and assume that S1 acts on X 
with finitely many orbit types and with X and X/S'Jinitistic. Then F = Xs' 
is nonempty and consists of components Fi -Z Phi(ni) with ni 5 n even and 
h + 1 = C ( h ,  + 1 ) .  The restriction Bn(X; Z )  + Z@(Fi; Z )  is an isomor- 
phism [f ni = n and hi 2 1 ,  for  some i. 

Proof We remark that in this generality the Universal Coefficient Theorem 
is not known to be valid and this is the reason that we shall not utilize ra- 
tional coefficients anywhere in the proof. The universal coefficient formula 
for Z ,  coefficients holds in general since it can be derived from the exact 
sequence associated with the coefficient sequence 

0 --+ z -+ z -+ z, -+ 0. 

Note that by 111.10.13, B*(F;  Z )  has finite type and, by 111.10.7, @(F;  Z )  
= 0 for i > nh. Let q be an odd prime so large that Z, c S1 is contained 
in no isotropy group other than S' itself and also such that B * ( F ;  Z )  
has no q-torsion. Then 

F(Z,,  X) = F = F(S', X). 

Now Z, acts trivially on &*(X; Z) and the integral spectral sequence of 
XZ, + Bz, degenerates since all nonzero elements of E, have both degrees 
even. This implies that F = F(Z, ,  X )  is nonempty since &*(Fz,; Z )  - 
@*(A',,; Z) # 0 in high even degrees. 

By 3.1 we conclude that B*(F; Z,) vanishes in odd degrees and 
rk k * ( F ;  Z,)  = h + 1 .  Since F has no q-torsion, we have that 

rk B*(F;  Z )  = h + 1. 

If, for any prime p ,  F had p-torsion, then we would have 

rk B*(F; Z,) > rk B*(F; Z )  = h + 1 = rk k * ( X ;  Z,). 
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Since F = F(Z,,, X )  for some r, this would contradict 111.7.9 applied in- 
ductively. Thus k * ( F ;  Z) is free abelian of rank h + 1. 

Let F, be a component of F. An inductive application of 3.1 implies that 
F0-, Pk(m)  for any given prime p .  Thus 

Z for i =  O,m,  2m, . . ., km, 
0 otherwise, 

@(Fo; Z )  = 

and m 5 n is even. If b E km(F, ;  Z )  = Z is a generator, we must show that 
bk E kkm(F,,; Z) is also a generator. However, if bk were divisible by some 
prime p ,  then F, would not have the correct ring structure over Z,. Thus 
Fo-z Pk(m). It remains to show that if m = n and k 2 1, then 

Z = k n ( X ;  2) + kn(Fo;  Z) Z 

in an isomorphism. However, this is true for Z,-coefficients for all primes 
p by an inductive application of 3.1, and it clearly follows for integral 
coefficients. I 

Note that, in particular, if X - z  CPh, then I; = (J Fi with Fi -z CPhi, 
h + 1 = C ( h i  + l),  and such that @ ( X ;  Z) -+ k z ( F i ;  Z) is an isomor- 
phism when hi 2 1. 

5.2. Theorem Suppose that X - z  QPh, h 2 2, and that S' acts on X 
with finitely many orbit types and with X and XIS1 finitistic. Then at most one 
component F, of F has F, -z QPk, k 2 1, the remainder being of CP-type 
(or acyclic). I fF ,  -Z QPk, k 2 1 ,  then H 4 ( X ;  Z) + H4(F0; Z) is an isomor- 
phism. r f  Fl -Z CPk, k 2 2,  then the cokernel of the restriction Z = H4(X; 
Z) -+ k 4 ( F 1 ;  Z) = Z is finite of order prime to 6 .  

Proof Since F ( Z , ,  X )  = F for some r, the fact that there is at most 
one component of F of QP-type follows from 3.7. The other statement 
about such components follows from 5.1. If Fl mZ CPk,  k 2 2, then 
k 4 ( X ;  Z,) --f k4(F1; Z,) is an isomorphism by 3.7 and this also follows 
for Z z  coefficients by an inductive argument on 3.1 and 3.2. Thus Z = 
k 4 ( X ;  Z) -+ B4(F1;  Z) = Z is multiplication by some integer prime to 
2and to3 .  I 

Remark One would expect that k 4 ( X ;  Z) --f a 4 ( F 1 ;  Z) is an isomor- 
phism, but this is unknown. Theorem 5.1 and the first part of 5.2 are from 
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Bredon [lo]. The case X - z  CPh was proved earlier by Su [3 ]  using a geo- 
metrical argument to reduce it to the case of actions on cohomology spheres. 

Returning to the general situation of 5.1, let a E @ ( X ;  Z) be a given 
generator. From the spectral sequence of Xs1 -+ Bst over Z we derive the 
exact sequence 

0 + P(Bs1; Z )  -+ P ( X s 1 ;  Z )  -+ P ( X ;  Z )  -+ 0 

since everything vanishes in odd degrees. Thus there is an element a E 
Ei"(Xsl; Z )  restricting to a E @(X;  Z ) ,  and a is uniquely determined up 
to addition of an integral multiple of tnl2 = tnI2 1 E gn(Xsl; Z ) .  Taking 
1, a ,  . . ., ah to 1, a ,  . . . ,ah defines a cohomology extension of the fiber 
and, by the Leray-Hirsch Theorem 1.4, we conclude that 8*(Xs1; Z) is 
the free 8*(Bs l ;  Z )  - Z [ t ]  module with basis 1, a, a2, . . . ,ah.  

Applying the homomorphism j * :  A*(&,; Z )  -+ 8 * ( F s l ;  Z )  to a we 
may write 

j*(a) = tn/2 @ c + (*), 
where c E g o ( F ;  Z )  and (*) consists of terms of positive second degree. 
For a component Fi of F let ci E B0(Fi;  Z )  be the restriction of c, and note 
that ci can be regarded as an integer under the canonical isomorphism 
Ro(Fi;  Z) = Z .  

5.3. Proposition Let p be a prime. With the above notation, two com- 
ponents Fi and Fj of F ( S ,  X )  are contained in the same component of F(Z,, X )  
if ci = c j  (mod p) .  

Proof The restriction of a to (Fi)sl is tnf2 @ ci = citnf2 0 1. If x E Fi, 
then it follows that the restriction of a to xsl = Bsl is citnf2. Since EzP can 
be taken to coincide with EsI there is the commutative diagram of spaces 

Bzp % XT - XSI - Bsi 

i 
xz, - xs1 

which, together with reduction mod p ,  induces 

B*(Xs1; Z )  - ii*(Xzp; Z,) 

I 1 
8*(Bs l ;  Z )  z: &*(XS,; Z )  - &*(xz,; Z,) B*(Bzp; Z,). 
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The bottom map takes t to the corresponding generator of @(BzP;  Z,) - Z, ,  which we have also denoted by t for p odd and by t2  for p = 2. 
Let a‘ E Bn(XZp;  Z,) be the image of a and note that a’ represents the gen- 
erator a’ E @(X; Z,) which is the modp reduction of a. The diagram 
shows that a‘ goes to citn12 (modp) in 8 * ( B z p ;  Z,) (or to citn whenp= 2). 
However, the image of a’ under 

is tnf2 @ d + (*), where d E @(F(ZP,  X); Z,), and it follows that the com- 
ponent part of d corresponding to the component of F(Z, , X )  containing 
.)c is just ci (modp). This shows that ci = cj (modp) if Fi and Fj are con- 
tained in the same component of F(Z, , X), and the converse follows from 
the fact that the component parts of d are all distinct since d generates 
the ring 8O(F(ZP, X) ;  Z,) multiplicatively. I 

The following fact is due to W;Y. Hsiang. It has obvious analogs for 
Z,-actions and toral actions, etc. 

5.4. Proposition With the above notation, 

j *  : B*(Xs1; Z)+ I?*&; Z )  

is a monomorphism and there is a ring isomorphism 

Proof For rational coefficients j*  is a monomorphism by 1.5 and this 
would imply the same fact over Z if the Universal Coefficient Theorem 
were valid. For the general case, one needs a slightly more sophisticated 
argument. For a given element of I?*(Xsl; 2) one can pick a prime p so 
large that the image of this element is nonzero in I?*(Xzp; Z,). We can 
also take Z ,  such that F(Z,,  X) = F(S,  X) so that the result follows from 
1.5, for this Z,-action, and an obvious commutative diagram. 

For the second part of the proposition, let ji be the inclusion (Fi)s1 
c Xs1. Then we have 

where Ak E I?*(Bsl; Z )  and bi E kni(Fi; Z )  is a generator. Thus 

ji*((a - Cit)hi+l) = (ji*(a - cit))hi+l = 0 
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so that H(a - cit)hi+l restricts trivially to all components of Fsl; that is, 
it is killed by j * .  Thus 

n(a - Cit)hi+l = 0 

since j *  is a monomorphism. This is a monic polynomial in a of degree 
h + 1 = C(hi  + 1) and hence it expresses ah+l in terms of 1, a, . . . , ah 

and t and completely determines the ring structure of k*(Xsl; Z). I 

Let us denote by qk the representation z H zk of S', considered as a real 
2-dimensional representation. Thus qk = t k  + t rk  in the notation of Chapter 
VI, Section 10. 

For the remainder of this section we shall assume that X - z  CPh and 
that X is a closed manifold with a locally smooth S1-action. Let Fo be a 
component of F and let x E F,. There is a representation v in the normal 
plane at x to F, and we can write 

v = cqmi, 

where the mi are nonzero integers. For a smooth action, W.-Y. Hsiang 
has claimed to prove that the set of integers {mi }  coincides, up to signs, 
with the set of integers {ci - c,} with multiplicities hi + 1 ,  where the ci 
are as above. Subsequently, T. Petrie [3] has found a counterexample to 
this. However, we shall prove some partial results in this direction for locally 
smooth actions. Stronger results for the smooth case can be found in Petrie 

[31. 

5.5. Theorem For a IocalIy smooth Sl-action on a closed manifold X 
-zCPh and with the above notation, we have 

where Cqmi is the normal representation about FP 

Proof We write G = S'. Consider the element 

/? = (a - c,t)ho n (a - cit)*%+l 
i # O  

in k z h ( X G ;  Z). Let DZh be an invariant 2h-disk in X about a point x of Fo 
and let U be its interior. Then X - U - z  CPh-l, Fo - U-z CPh0-l, and 
Fi = Fi - U - ,  CPhi. Thus, as in the proof of 5.4, /? goes to zero in 
k * ( ( F  - U)a;  Z) and hence must go to zero in k * ( ( X  - U)o; Z). Thus 
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/I pulls back to an element z E Ph(DLh, SLh-'; Z) under 

&h(D$h, s","-') P h ( x ~ ,  (x - u ) ~ )  + azh(x@). 

Inclusion of a fiber gives the diagram 

where the vertical isomorphism follows from the triviality of the spectral 
sequence of (D$*, S$"-') + BG. Now i*@) = ah, which is a generator, 
and hence t is a generator of RZh(D2,n, S$--'). 

Let F n DZh = DZho. Restriction to FG gives the diagram 

k z h ( D 2 h  Sg-1) -, aZh(D90, S2-1) @(h-ho)(Ba)  @ $@o(Dzho, S2h0-1) 

7 I 
r * i z h ( x G )  j,. R Z ~ ( ( F O ) G )  c R*(B,) 0 R*(F~) .  

Now j,*(a) = cot 0 1 + 1 @ b,, where bo E @(Fa; Z) is a generator, 
and b, = 0 if h, = 0. From the definition of /? we calculate 

j,*@) = (1 0 b o p  n [(c, - c& @ 1 + 1 @bop+' 
i # O  

= n (c, - c$t+lth-ho @ b,h,. 
i # O  

It follows that the generator z goes to ni+o (c, - in @(h-ho)  (BG) 
0 Pho(DZho, Szho-l) - Z. Now (DZh, SZh-l)  can be considered as the product 
of copies of (D2, Sl) with the representations qmi, or the trivial representa- 
tion. By a Kiinneth Theorem argument, we see that it suffices to show that, 
for the representation qm, m # 0, the generator of I?2(D2G, SIG) goes to 
fm in a Z ( B G )  0 ko({O}) - Z. (A trivial factor in the representation 
clearly only has the effect of raising the dimension of the fixed set.) Since 
(0) is an equivariant deformation retract of D2 the homomorphism in ques- 
tion is just cp of the following exact sequence 

@(DZ~,  s'G; Z) --% & ( D z ~ ;  Z) 

S', we have 

B ~ ( s ~ G ;  Z) -+ 0. 

However, with H = G/Zm 

S'G = S1 X G EG S1 XH Bz,  - Bz,. 

Thus I?z(S1c; Z) - &(Bzm; Z) - Z, and the result follows. 1 
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5.6. Proposition For a locally smooth S1-action on a closed manifold 
X m Z  CPh and with the above notation, suppose that { x }  = Fo is an isolated 
fixed point and that the tangential representation at x is Crj"'. Then each 
mi divides some cj - co. 

Proof In fact we shall prove more. Let m E Z be one of the mi and let 
N be the component of F(Zm, X )  containing x. Then N is a manifold of 
positive dimension on which S1 acts (with Z, acting trivially). By IV.2.3 
applied to a large Z, subgroup of S1, this S1-action must have more than one 
stationary point and hence N must touch another component, say F,,  
of F = F(S', X). (We remark that this is the only use we will make of the 
assumption that F, = { x }  is isolated.) Let y :  I + N be an arc between x 
and some point y E F, n N. The map q extends uniquely to an equivariant 
map I x S1+ X, where G = S1 acts on S1 via the representation qm. 
Collapsing the ends of I x S' yields an equivariant map 

y :  SZ'X, 

where S1 acts on S2 via the suspension of rjm and where y(u) = x and 
y(v) = y ,  u and v being the poles of S2. 

Now we may normalize a, and hence the ci , by taking a E BZ(XG , xG) 
and hence co = 0. Write y*(a) = da', where a generates B2((x, x )  and a' 
generates Z?2(S2, u)  and d E Z is the "degree" of y. We claim that c, = f d m  
(i.e., c1 - co = f d m ,  in the unnormalized version). 

To see this, consider the diagram 

Bz(xG 5 X G )  A B2(S2G, u G )  

Ijl* 

B ~ ( B ~ )  8 Bo(v) = @(B@).  

By definition of c1 we have 

which goes to c,t in B2(BG). However, yG*(a) is the unique element repre- 
senting y*(a)  = da' in @(S2, u).  Thus yG*(a) = dcr' where a' represents 
a'. From 5.5 applied to the action on S2 we have that jl*(a') = k m t  in 
B2(BG), SO that 

j,*yG*(a) = f d m t  E B2(Bc). 

Thus c1 = f d m  by the commutativity of the diagram. I 
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Remark It is of interest to consider the example of an Sl-action on S2 x D2 
constructed in Section 4 in the light of 5.5 and 5.6 even though this manifold 
is not closed. In that example, it can be seen just as in the proof of 5.6 that 
c1 - c, = f 6 ,  and the representation of S1 at either fixed point is q2 @ q3. 
Guided by that example, Petrie [3] has constructed a smooth S-action on 
CP with exactly four fixed points xi, 0 5 i 5 3, with c, = 0, c1 = 7, 
c2 = 6, c3 = 1 and such that the representations about x, and x1 are 
q2 @ q3 @ q7 and those about x2 and x3 are q2 @ q3 @ q5. 

6. ACTIONS ON POINCARE DUALITY SPACES 

Let K be a field. If A is a closed subspace of a space X then ( X ,  A) is said 
to be a Poincarb duality pair over K of formal dimension n if the following 
conditions are satisfied : 

(i) k * ( X ;  K )  is finitely generated. 

(ii) @(X, A; K) = 0 for i > n and k n ( X ,  A ;  K) - K. 
(iii) For all i the cup product pairing 

kyx; K )  @ IT"-i(X, A ; K )  --f kyx, A ; K )  K 

is nonsingular (i.e., it is a duality pairing). 

For an action of Z, on a finitistic Poincard duality space X (i.e., A = 0) 
over Z, it was conjectured by Su [4] that each component of the fixed set 
F is also a PoincarC duality space over Z,. For locally smooth (or, in fact 
arbitrary) actions on a closed manifold M n  this conjecture is obvious and 
uninteresting since F must then be a closed manifold. However, even for 
smooth actions on spaces like Mn x Dr, the conjecture is highly nontrivial 
and is of fundamental interest. 

The conjecture was proved in Bredon [lo, 211 under the assumption that 
X is totally nonhomologous to zero in X,. Here we shall present the proof 
of the more general relative version of this result. Despite the seeming 
simplicity of this result, it is a powerful tool and is the strongest known 
general fact about the cohomology ring structure of a fixed point set. No 
further progress has been made on the general conjecture and there is, 
in fact, very little evidence for it, mainly because of the very great diffi- 
culty in proving anything when Xis  not totally nonhomologous to zero in 
XQ . 
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6.1. Theorem Let ( X ,  A )  be a finitistic Poincark duality pair over Z, 
of formal dimension n, where p is prime. Suppose that G = Z, acts on X with 
A invariant and such that X is totally nonhomologous to zero in XG over Z, . 
Then, for each component F, of F = XG, (F,, F, n A )  is a Poincare' duality 
pair over Z, of formal dimension r I n. I f p  # 2 then n - r is even. I f r  = n 
then F = Fo is connected and the restrictions 8 * ( X ;  Z,) --f 8 * ( F ;  Z,) 
and l?*(X, A ;  Z,) - l?*(F, F n A ;  Z,) are isomorphisms. The analogous 
statements hold for S' actions over the rationals (p = 0 )  if X and XIS' are 
both finitistic. 

Proof We shall give the proof for odd primes p since this is the most dif- 
ficult case. The proof for p = 0,2 is essentially obtained by simply deleting 
s from all the formulas. (The proof for p = 2 in the absolute case A = 0 
is given explicitly in Bredon [21].) Cohomology coefficients will always 
be in Z,. First, we need the following fact: 

6.2. Lemma ( X ,  A )  is totally nonhomologous to zero in ( X G 7  AG). 

Proof Because of the naturality of the duality isomorphism @(X, A )  - Hom(l?n-i(X), Z p ) ,  G must act trivially on 8 * ( X ,  A ) .  In the spectral 
sequence of ( X G ,  A G )  - BG suppose we know that all differentials vanish 
before the k-th and that dk vanishes on terms of fiber degree greater than 
i. Let 0 # a E k i ( X ,  A )  so that we may regard 1 0 a as an element of 
E2.C - EiSi 80(BG) @ @(X,  A). Then dk(l 0 a )  = C @ c where C E 
Bk(BG) and c E 8i -k+1(X,  A ) .  If C and c are nonzero then there is an 
element b E &-i+k-l(X) (of positive degree since i 5 n) with cb # 0. 
Then 

0 = dk(l 0 ab) = (dk(l  0 a))( l  @ b)  = C @ cb # 0 

by the inductive assumption and since X is totally nonhomologous to zero 
in X G .  This contradiction shows that dk(l 0 a)  = 0 and it follows that 
dk = 0. I 

Returning to the proof of 6.1, let x E F, and regard 8*(F , ,  x) as an in- 
ternal direct summand of &*(I;, x) ,  and similarly for 8 * ( F , ,  Fo n A ) .  
Note that, via l?*(X, x) -+ I?*(X), there is a cup product k * ( X ,  x) 
0 8 * ( X ,  A )  -+ 8 * ( X ,  A )  even though x need not be in A ,  and similarly 
with other pairs. Many of our cup products will be implicitly of this type. 

Let r be the maximum degree for which &(F0, F, n A )  # 0. We must 
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prove that I?(F,, F, n A) has rank one and that if 0 # b E gi(F0, Fo n A) 
for i < r then there is an element c E I?-i(Fo, x) with 0 # bc E Rr(F0, 
Fo n A). [This will suffice, since it implies that the duality homomorphism 
Pi@,, F, n A) + Hom(8r-i(F,), Z,) is a monomorphism, and hence that 
rk 8*(Fo,  Fo n A) 5 rk 8*(F,); which is also true when 8*(F,, F, n A) 
= 0. But 

rk 8 * ( F ,  F n A) = rk 8 * ( X ,  A) = rk &*(X) = rk 8*(F)  

by 6.2 and 1.6, and this implies, in turn, that the duality homomorphism 
above is an isomorphism.] For the last fact, it suffices to find c E 8j(Fo, x )  
with bc # 0 for some j (necessarily j > 0), since repeated application of 
this eventually gives us a product in I?(F,,  Fo n A). 

Let p: I?*(X, A) + 8 * ( X G ,  A,) be a cohomology extension of the fiber. 
Denote the restriction to a typical fiber by 

i* : 8 * ( ~ , ,  A,) --+ B*(x, A) ,  

so that i*p = 1 .  Note that since the composition X -  X ,  - BG factors 
through a point, we have that i*(sa) = 0 and i*(ta) = 0 for all a E 8 * ( X G ,  
A,). We shall also use i* for the restriction 8 * ( X c ,  xc) + 8 * ( X ,  x). It 
will be convenient to isolate the following fact: 

6.3. Lemma Let sCtip(ai)  E I?*(X,, A,) be a homogeneous element with 
a, # 0 and deg a, < n. Then there is an element a E 8 * ( X , ,  x,) with 0 # a 
= i*(a) E 8 * ( X ,  x) ,  necessarily of positive degree, such that 

o # sa Ctip(ai)  E 8 * ( ~ , ,  A@).  

Proof Since deg a, < n there is an a E 8 * ( X ,  x )  with aa, # 0. Let a 
E 8 * ( X G ,  x,) be an arbitrary representative of a. Then 

i*(a Ct ip (a i ) )  = i*(a)ao = aa, # 0. 

But sa Ctip(ai)  then represents s @ aa, # 0 in E$* = Ek* of the spectral 
sequence of ( X G ,  A @ )  --+ BG and thus cannot be zero. 4 

Returning to the proof of the theorem, suppose that 0 # b E 8*(Fo,  
Fo n A) c 8*(F, F n A). Since j* is onto in high degrees, we can find 
an integer k and elements ai , ai‘ in 8 * ( X ,  A) with 

tk 0 b = j*[Cti(T(Ui) + sp(ai’))]. 



6. ACTIONS ON POINCARB DUALITY SPACES 403 

Multiplying by s gives 

stk @ b = j* (s Cticp(ai)). 

Since multiplication by t is a monomorphism, powers of t can be canceled 
from such equations and thus we may assume that 

Suppose that deg a, < n in (1). Then by 6.3 there is an a E &*(Xc, xG) 
with sa Cticp(ai) # 0. Put 

j*(a) = C(ti @ bi + sti @ bi’), 

where the bi and bi’ are in I?*(F, x). Since j*  is a monomorphism we have 

0 #j*(.s C ticp(Ui)) = c ( t i  @ bi + sti @ b i ‘ ) ( S t k  @ b)  

= c & ( s t k + i  @ bib) 

and hence 

bib # 0 for some i. 

Now this conclusion is impossible if degb = Y. Thus 

deg b = r * deg a, = n in (1). (2) 

(Note that when p # 2, deg t = 2 so that, from ( I ) ,  we have that n - r 
= 2k is even.) 

Suppose that rk Z?(F,, F,, n A )  > 1 and let b and b‘ be independent 
elements of Z?(F,, F, n A ) .  By (1) and (2) we can write 

stk @ b = j*  (s C ticp(ai)) 

s t k  @ b’ = j *  (s c t i fp(Ui ’ ) )  

where a, # 0 and a,‘ # 0 have degree n. Since &(X, A )  has rank one we 
can multiply b‘ by a scalar to make-a,’ = a,. Then 

stk @ (b - b’) = j*(stq(a, - a1‘) + st,q(a, - a,’) + - * * ) 

where deg(ai - air )  = n - 2i < n. But this, upon canceling some power 
of t, contradicts (2). Thus we have proved that @(I?,, F, n A )  has rank 
one. 

Let us now fix 
o # b E @(F, , F, n A )  
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and let b' E kq(Fo, F, n A )  for some q < r. As in (1) we can find air 
such that 

srm 0 b' = j*  (sC tip(ai')), a,' # 0. 

If deg a,' < n then, as shown above, there exists a b" E k*(F,, x )  with 
b'b'' # 0, our desired conclusion. Thus assume that deg a,' = n. By multi- 
plying b' by a nonzero scalar we can assume that a,' = a,. Thus 

0 # S t k  0 b - stm @ b' = j * ( ~  C t ' ~ ( ~ i " ) )  

where each nonzero ai" = ai - ai' has degree less than n, since a,," =O. 
By 6.3 there is an a E k * ( X , ,  xG) with as tiq(ai") # 0. Putting 

j*(a) = C (ti @ bi + sti @ bl ) ,  

where the bi and bit are in k * ( F ,  x ) ,  we calculate 

0 #j*(as C tiq(ai")) = C (ti @ bi + sti 0 bi')(stk @ b - stm @ b') 

= C (& ~ t ~ + ~  @bib') 

since b e &'(F,, F, n A )  is killed by the cup product with any element of 
k*(F ,  x) .  Thus bib' # 0 for some i which completes the proof that (F,, 
F, n A) is a Poincard duality pair over Z,. 

Now suppose that n = r and let 0 # b E @(F,, F, n A). By the der- 
ivation of (1) and (2) we can write 

1 0 b = j * ( ~ ( a o )  + ~ ~ ( a o ' )  + tp(ai) + st~(ai') + * * * ) 

with a, # 0. By commutativity of the diagram 

B * ( x ~ ,  A , ) A B * ( F G ,  ( ~ n  A ) G )  

1 1 i* 
k * ( X ,  A )  - fi*(F,, F, n A )  

and since i*(q(a,) + sp(ao') + - ) = i*(q(a,)) = a, we see that a, 
E @(X,  A )  restricts to 0 # b E k n ( F , ,  F, n A). Since ( X ,  A )  is a Poincard 
duality pair it follows that the restrictions k * ( X )  + 8 * ( F , )  and f i * ( X ,  A) - k*(F, ,  Fo n A) are monomorphisms. Since 

rk k*(F,,  F, n A) = rk k*(F,) 5 rk @*(F) 

= rk @*(X)  

= rk k * ( X ,  A ) ,  
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they must be isomorphisms. Then rk k*(F,)  = rk k * ( X )  = rk k * ( F ) ,  and 
we conclude that F,, = F. I 

7. A THEOREM ON INVOLUTIONS 

In this section we shall prove a simple but powerful general theorem 
about involutions and shall give some of its consequences. There are 
analogous results for Z,-actions, but they are not as useful and interesting 
as the case p = 2. 

Let X be a paracompact space and let T be the involution (x ,  y )  H (y, x )  
on X x X .  We recall the construction of the Steenrod squares given in 
Steenrod and Epstein [l]. First a natural map 

P :  kn(x; z,) * p ( ( X  x x ) G ;  z2) 

(not a homomorphism) is defined, such that 

i*P(a) = a x a E I P ( X  x X ;  ZZ), 

where i :  X x X -+ (X x X ) ,  is the inclusion of a typical fiber, and G = Z, 
with generator T. Then Sqk(a) E I?n+k(X; Z2) is defined by the equation 

j*p(a) = f n P k  @ Sqk(a) E B*(BG; zz) @ k*(d ; zz), 

where A c X x X is the diagonal (the fixed set of T on X x X) and j: 
BG x d = dG + (X x X ) ,  is the inclusion. 

In Steenrod and Epstein [l], P is defined for regular cell complexes, 
but it extends by naturality to Cech cohomology of paracompact spaces. 
Since this extension may not be immediately clear to the reader, we shall 
recall the construction of P and show how to extend it to Cech theory at 
the end of this section. For now, we assume this to be done. 

Now suppose that X has an involution itself, which will also be denoted 
by T .  Define a map 

h: X - + X X X  

by h(x) = (x ,  Tx) ,  and note that h is equivariant. This induces a map 
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of bundles over BG, and the diagram 

commutes, where F is  the fixed set of T on X and k :  F - +  X - A is the 
inclusion. 

We now define a natural map 

Q : fin(% z,) -+ f i2n(x~;  z,) 
by 

Q(a) = hG*P(a). 

If d :  A'-+ X x Xis the diagonal map, then h = (1 x T)d. Thus we have 

i*Q(a) = i*hG*P(a) = h*i*P(a) = h*(a x a )  = d*(a X T*a) = a.T*a. 

We also have 

j*Q(a)  = j*ha*P(a) = (1 @ k*)j*P(a) 

= (1 @ k*) C tn-i @ Sqi(a) 

= C tn-i 0 k* (Sqi(a)) = C tn-i @ Sqi(a I F). 

Summing up these facts, we have the following result. 

7.1. Theorem For involutions T on paracompact spaces X ,  there is a 
natural map 

Q : an(x; z,) + B2n(x~;  z,) 

(not a homomorphism) such that 

i*Q(a) = a - T*a E fi2"(X; Z,) 

and 

j*Q(a)  = C Pi @ Sqi(a I F )  E &*(BG; Z,) 0 k * ( F ;  Z,). I 

7.2. Corollary The element a - T*a E f i 2 T X ;  Z2)G = g 0 ( B G ;  kz l z (X;  Z,)) 
= E,0.2n is a permanent cocycle in the spectral sequence of XG -+ BG , for  any 
a E @(A'; z~) .  

Proof It is the image of  Q(a)  under the edge homomorphism. I 
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Note that if G acts trivially on B z n ( X ;  Z,), then we usually denote this 
element by 1 @ a . T*a E fio(BG) @ p ( X ) .  

7.3. Corollary Suppose that G = Z,  acts on the finitistic space X and 
that X i s  totally nonhomologous to zero in XG. Then any class a E B n ( X ;  Z,) 
with a, # 0 restricts nontrivially to F. 

Proof In this case T* = 1 so that i*Q(a) = a, # 0. Since j *  is a mono- 
morphism we have 0 # j*Q(a) = C @ Sqi(a [ F )  and thus a I F # 0. I 

The following theorem gives a sufficient condition for the existence of 
fixed points, and also a lower bound on the dimension of F. 

7.4. Theorem Let T be an invohtion on the finitistic space X and 
suppose that @(X;  Z,) = 0 for  i > 2n and that T* is the identity on RW(X; 
Z,) [e.g., H m ( X ;  Z,) = Z,]. Suppose that a E @ ( X ;  Z,) is an element such 
that a . T*a # 0. Then the fixed point set F of T on X is nonempty and 
a I F E @(F; Z,) is nonzero. 

Proof By 7.2, 1 @ a  - T*a is a permanent cocycle which represents 
Q(a) E Bzn(XG; Z,). It follows that 

t @ a T*a E H1(Bc) 0 H W ( X ;  Z,) = E$2n 

is also a permanent cocycle and hence survives to However, tQ(a) 
E fiZnf1(XG; Z,) represents this element and hence @(a) # 0. Since j*  
is an isomorphism in degrees above 2n, by 1.5, we have t j*(Q(a))  
= j*( tQ(a))  # 0 and hencej*(Q(a)) # 0. By 7.1 this implies that a I F # 0. 
In particular F #  0. I 

7.5. Corollary Let T be an involution on thefinitistic space X-, Sn x Sn 
and suppose that T* # 1 on Bn(X; Z2). Then F'is nonempty and F-, Sn. 

Proof Let a, b generate @ ( X ;  Z,) with a, = 0 = b2 and ab # 0. Since 
T* # 1 it cannot preserve both a and b and thus we may assume that 
T*a # a. Then T*a = b or T*a = a + b and, in both cases, a . T*a # 0. 
Then a I F # 0 by 7.4. Since @(F; Z,) # 0 # &O(F; Z,) we have 2 5 rk 
H*(F; Z,) < 4 by 1.6, and rk B*(F; Z,) = x ( F )  E x ( X )  = 0 (mod 2) by 
111.7.10. Thus F-, Sn. I 
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7.6. Corollary Let T be an involution on thefinitisticPoincare'dualityspace 
X over 2,. Suppose that the euler characteristic x ( X )  is odd. Then Ff (3 
and the restriction @ ( X ;  2,) -+ kn(F;  Z,) is nontrivial, where 2n is the formal 
dimension of X (necessarily even). 

Proof Consider the bilinear form 

(a ,  b )  = a - T*b E gm(X; Z,) = Z, 

on k n ( X ;  Z2), which is nonsingular. It is symmetric since b - T*a 
= T*(b * T*a) = T*b a = a - T*b. Since x ( X )  is odd it follows that rk 
k n ( X ;  2,) is odd. 

Suppose that (a ,  a )  = 0 for all a. Then, with respect to a given basis, 
this form is represented by a symmetric matrix B over Z, with zero diagonal 
and with 0 # det B E Z, . Clearly B is the reduction modulo 2 of an integral 
skew-symmetric matrix A (with entries 0, 1, and -1). Since A has an odd 
number of rows we have det A = -det(-A) = -det A' = -det A, so 
that det A = 0. However, det B is the reduction modulo 2 of det A and 
hence must be zero. 

This contradiction shows that 0 # (a,  a )  = a . T*a for some a, and 7.4 
applies to give the desired result. I 

Remark Corollary 7.6 was first proved for smooth actions on compact 
manifolds by Conner and Floyd [8, p. 711 using cobordism methods. The 
general case first appeared in Bredon [21]. 

As promised, we shall now indicate the construction of the map P. With 
G = Z, let the universal space E = EG be given a triangulation as a regular 
G-complex (e.g., an infinite join of hexagons) and let W denote the simpli- 
cia1 chain complex W = C,(E). Let E :  W-+ Z be the augmentation and 
note that E o T = E. 

Let K be a simplicia1 complex and give 1 KI x 1 K (  x E the product 
cell structure, which we denote by K x K x E. Let G act by (x, y ,  e )  
I+ (y, x, Te) on K x K x E. Since E is regular, the quotient (1 K I x I K I 
x E)/G has an induced cell structure which we denote by (K x K)Q.  
Note that the cellular chain complex of K x K x E can be identified with 

Moreover, the cochains on this which are invariant under T can clearly 
be identified with the cellular cochains of (K x K)a .  
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For a cochain u:  Cn(K) + Z, define P(u) = u 0 u @ E, that is P(u)(cl 
@ c2 @ w) = u(cl)u(c2)&(w). Since P(u) o T = P(u), P(u) can be regarded 
as a cellular cochain 

P(u) E P ( ( K  x K ) G ;  z,). 

In Steenrod and Epstein [l ,  p. 1001 it is shown that P: Cn(K; Z,) +Cw((K 
x K)G; Z,) induces a map (clearly natural with respect to simplicia1 maps) 

P: Hn(K; z2) + Hh((K x K ) G ;  z,) 

and we shall not repeat the proof of this here. (The finiteness condition on 
K (loc. cit.) is not needed for this.) Moreover, the Steenrod squares for K 
are defined from this as indicated at the beginning of this section. 

Now suppose that Xis a paracompact space and let 22 = { U }  be a locally 
finite covering of X. Let Y = { V }  be a locally finite refinement of 2? and 
p : Y’+ 22 a refinement projection with induced simplicia1 map p: I K(m I 
+ I K( 22) I. Let f = {fo} and g = {gv} be partitions of unity subordinate 
to 22 and 7, respectively, and let $ X +  I K( 9) [ and g :  X +  I K ( F )  I 
be the induced maps. Now pg(x) = Cgv(x )p (V)  and f ( x )  = C f v ( x ) U  
both lie in the simplex (U,, , U, , . . . , U,) of K( 22), where the Ui are those 
elements of 22 containing x. Thus the line segment joining pg(x) to f ( x )  
lies in I K( 22) I and provides a canonical homotopy between the maps f 
and pg. Consequently f x f is equivariantly homotopic to pg x pg and 
thus ( f x f ) ,  is homotopic to 

@ xFg)G == (p x PIG ( g  x g)G (x x * ( K ( p / )  x K( p ) ) G .  

It follows from this and the naturality of P with respect to simplicia1 maps 
that the diagram 

commutes. Thus we may pass to the direct limit and obtain the maps 

whose composition is defined to be P for Cech theory. (The last map is 
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not generally an isomorphism, but this is immaterial.) That the desired 
properties of P carry over to Cech theory is an elementary exercise which 
we shall omit. 

8. INVOLUTIONS ON So x Sm 

In this section and the next we shall study 2,-actions on S" x Sm, or 
on spaces with such a cohomology ring. Since it seems desirable to separate 
the case p = 2 from the case of odd p ,  we shall restrict our attention to 
involutions in this section. 

8.1. Theorem Suppose that G = Z ,  acts on the Jinitistic space X r u 2  Sn 
x Sm, n 5 m. If F # 0, then one of the following possibilities must occur: 

(1) F - , S  x S'. O < q ( n ,  O L r ( m .  

( 2 )  F- ,  P2(q) # -P2(q), 
(3) F-2 P3(q), n > q. 
(4) F-2 point + P2(q),  n > q. 
( 5 )  F- ,  Sq + S', 0 5 q 5 m, 0 5 r 5.m.  
(6) F w 2  Sq. 

n 2 q = 1, 2, 4, or 8. 

Proof Since x(F)  = x ( X )  _= 0 (mod 2) and rk k * ( F ;  Z,) 5 4 either 
F-,  Sq or X is totally nonhomologous to zero in X , .  In the latter case the 
components of F are Poincari duality spaces over Z, by 6.1. Cases (1)-(5) 
simply list all possibilities for the cohomology ring of F consistent with 
this and with the inequalities 111.7.9. (The inequalities n > q in (3) and (4) 
and those in (5) need more argument. They follow easily from the spectral 
sequence of X ,  + B,. For example, the inequalities in (5) result from the 
fact that the image under j*  of representatives of ring generators for Xmust 
involve ring generators for F. Also see the proof of 8.3.) I 

We remark that case ( 2 )  means that k * ( F ;  Z,) is generated by classes u 
and u in degree q with uu = 0 and u2 = -uz # 0. (Of course the sign is 
immaterial over Z,.) 

Of course this result is just the surface information available and it is 
not of interest for smooth actions on an actual product of spheres. I t  was 
first proved by Su [4], before the proof of the PoincarC Duality Theorem 6.1, 
and hence required the explicit investigation of several cases. 
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Probably one's first impression with the list in 8.1 is that most of the 
cases cannot occur. However, it turns out that there are examples of all 
cases and, except for case (4), there are examples on actual products of 
spheres; see Su [4] and Bredon [21]. The remainder of this section will be 
devoted to the discussion of the more interesting examples (some of which 
are new) and to obtaining further results about such actions having a deeper 
nature than 8.1. We will be concerned mainly with the case of smooth 
actions on Sn x Sm, or, more generally, on manifolds like Sn x Sm x Rk. 

We begin by constructing examples of case (2). For q = 1 ,  2, 4, or 8 let 
q be the Hopf q-plane bundle over S* and let q* be its inverse (the bundle 
whose characteristic class in nq-* (O(q)) is the negative of that for 7). Then 
q @ q* is trivial. Let E be a trivial line bundle and p a trivial k-plane bundle, 
k p 0. On the 2q + k + 1 plane bundle q @ E @ q* @ ,u take the involu- 
tion which is trivial on q @ E and is - I in the fibers of q* @ p. Then the 
restriction of this involution to the sphere bundle is an involution on Sq 

x S2qfk with fixed set the sphere bundle F = S(q @ E )  which is the con- 
nected sum F = P2(q) # -P2(q), where P2(q) = RP2, CP2, QP2 or Cay P2 
according as q = 1, 2,4, or 8. Note that F is the Klein bottle when q = 1.  

Starting with this example we now give a further construction to yield 
such examples in other dimensions. Suppose we have, for example, an in- 
volution T on Sn x Sm and on Sn with the projection Sn x Sm + Sn equi- 
variant and with T linear in the fibers. Then let Y and Y* be two copies of 
Dn+l x Sm and let 

x= Y W T  Y*. 

If y* denotes the element of Y* corresponding to y E Y, then y t) y* de- 
fines an involution on X extending T on S" x Sm c X and having the same 
fixed set F. Now X is an Sm-bundle over S"+l and the projection X +  Sn+l 
is equivariant. If this is a trivial bundle, so that X - Sn+l x Sm, then we 
can proceed one more step with the construction. 

For the given involution on S2 x Ski4 with F = CP2 # -CP2, the next 
step X +  S3 is a trivial bundle since n,(O(k + 5)) = 0. Thus we have an 
involution on S3 x Sk+4 with F = CP2 # - CP2. Repeating the construction 
then gives an Sk+4-bundle X over S4. Thus X - z  S4 x Sk+4, with F = CP2 
# -CP2. The obstruction to trivializing this bundle, and hence to proceed- 
ing with the construction, is in n3(O(k + 5)) # 0. It  turns out, in fact, that 
this obstruction is nonzero (see 8.2) and, moreover, that X cannot even 
have the homotopy type of S4 x Sk+4. 

Starting with the involution on S4 x S8+k with F = QP2# -QP2 we can 
construct, in the same way, involutions on Sn x S8fk with F = QP2 # -QP2 
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for n = 4, 5, 6, and 7. Also one obtains such an involution on some Se++ 
bundle over S8. 

Another class of examples are the involutions on X = S(q @ E @ p )  
-Z Sq x Sq+k, k > 0, fixing S(q @ E )  = P2(q) # -P2(q). These spaces X 
are not of the homotopy type of Sq x S'J+k since it can be seen that Sqq: 
Hq+k(X; Z,) --+ Hw+k(X; Z,) is nonzero. 

The following theorem greatly clarifies the situation of these examples, 
and shows that the given examples cover all possibilities when q = 1, 2, 
or 4. 

8.2. Theorem Suppose that Z, acts on the finitistic space X-, Sn x Sm, 
n 5 m, and assume that F w 2  P2(q) # -P2(q) (so that q = 1, 2, 4, or 8). 
IfSqn: km(X; Z,) --+ fim+"(X; Z,) is trivial, then q 5 n < 2q 5 m, and i f ,  
on the other hand, it is nontrivial, then n < m and n = q or n = 2q. 

Proof If Sqn is nontrivial, then n < m since otherwise X would not have 
the cohomology ring of Sn x Sm. Let x E F and let a E k n ( X G ,  xG)  and 
/l E @ ( X G ,  xG)  represent generators a and b of l?*(X, x) ,  so that 
8*(XG, xG) is the free k * ( B G )  = Z, [ t ]  module with basis a, 8, and ap. 
We may write 

j*(a) = Atn* @ u + Btn-w @ w ,  

j * @ )  = Ctm* @ v + Dtm-w @ w ,  

where A, B, C, D E Z , ,  u, v E Hq(F, x ) ,  and 0 # w E Hw(F, x) .  Since j *  
is onto in high degrees, Au and Cv must span Hq(F, x )  and hence are inde- 
pendent. Thus A = 1 = C and q 5 n 5 m. Since j*(ap) = tm+n-* 0 x uv 
and since aj3 is independent of a and over H*(BG) we see that uv # 0 and 
hence w = uv. 

Since a2 = 0 and 2n 5 n + m, a2 depends on a and j3 over H*(BG). 
However, j*(az) = tm-@ 0 u2, and this implies that u2 = 0. If v2 were zero, 
then F would have the wrong cohomology ring. Thus v2 = w. 

We may assume that Sqq = 0 on @ ( X ;  Z,), for otherwise n would be q 
and there would be nothing to prove. Thus S@@) must depend on a and /l 
over B*(BG). However, 

j*(Sqqp) = Sqq(j*(/?)) = (" 4 ' ) t m @ v  + (1 + D 

Since this does not involve u, S@@) must depend on /l alone, but this then 
implies that D # 0 and consequently also that m p 2q. We must also have 
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that B = 0 for otherwise @ could be replaced by @ - tm-% and the new D 
would be zero. We now have that 

j*(a) = tn* 0 u ,  

j*@) = P-Q 0 v + tm-w  @ w 

with u2 = 0, uv = w = v2. If q < n < 29, then Sqn = 0 on H m ( X )  since 
Sqn is decomposable when n is not a power of 2. Thus it remains to show 
that n 4 29 and that Sqn # 0 on X when n = 29. Thus suppose that n > 2q 
or that n = 29 but Sqw: k m ( X )  + am"(X) is trivial. Then Sqw@) depends 
on a and /I over I?*(Bc). However, 

m - q  m-2q 
j*(SqW@) = sqyj*( j3))=(m 29 - 4)t"*@v + [ ( ) + ( 2q ) ] t ~ O W .  

As before this does not involve u so that Sqw(j3) must depend on @ alone. 
But then this implies that 

m - q  m - 2 9  (",")- ( ) +  ( 2q ) (mod2). 

It is known (see Steenrod and Epstein [l, p. 51) that = 1 (mod2) iff 

2i occurs in the dyadic expansion of k. A straightforward check of the four 
possibilities for the terms q and 29 in the dyadic expansion of m - 29 shows 
that the above congruence is never satisfied. 

("z) 

Remark For q = 8 the case n = 2q is impossible since SqlS: k m ( X ;  Z,) 
+ Hm+16 (X; Z,) must be trivial by a result of Adams [l] because X has zero 
cohomology between these two dimensions. It follows that the construction 
given above 8.2, starting with an involution of Ss x S16+k with F = Cay P2 
# -CayP2, must be obstructed before it reaches S15 x S16+k. Thus this 
construction must end with such an involution on Sn x S1s+k for n = 8, 9, 
or 11, the next stage giving a nontrivial bundle over Sn+l. We conjecture 
that only the case n = 8 can actually be realized. 

We now turn to case (3) of 8.1, giving examples only; also see Exercise 5. 
If t is the tangent bundle of Sn and E is a trivial k + 1 plane bundle, k 2 0, 
then t @ E is trivial. Take the standard involution on Sn fixing S2 and take 
the differential of this on t. Add the involution - 1 on E. This gives an in- 
volution on Sn x Sn+k = S(z @ E )  with F the tangent S1-bundle to S2; 
hence F = RP3. This example is due to J. C. Su. Using the fact that CPs 
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is an S2-bundle over S4, Su [8] gave a similar example on S4 x Sm, m 2 5 ,  
with F = CP3; also see Section 9. For m large, the construction above 8.2 
applies to give involutions on Sn x Sm with F = CP3 for n = 4,5,6, and 7. 
There is an obstruction to doing this for n = 8, but it can be shown to be 
trivial, and hence there is also such an example on S8 x Sm. It seems likely 
that such examples exist for all n 2 4. 

There are no known examples for case (4) of 8.1 on S" x S", but there 
are two examples on manifolds with the correct cohomology ring. The in- 
volution A H A-l on SU(3) mZ S3 x S5 has F = point + CP2 and the 
canonical involution on the symmetric space SU(3)/SO(3) -, S2 x S3 has 
F = point + RP2. The following theorem narrows considerably the pos- 
sibilities for such involutions on actual products of spheres. 

8.3. Theorem Let Z, act smoothly on Sn x Sm with n 5 m and assume 
that F w 2  (point + P2(q)). Then the only possible values of n, m, and q 
are q = 2 and (n, m )  = (3, 4), or q = 4 and (n, m )  = ( 5 ,  8), (6, 8), (6,9), 
(7, 8), (7, 9), or (7, 10). In particular, q # 1 and q # 8. 

Proof To apply the cohomological method it is convenient to remove the 
isolated fixed point and thereby obtain an involution on a space X E  Sn v Sm 
with F - ,  P2(q). Let x E F and let a E k " ( X c ,  xG)  and B E k m ( X c ,  xc)  
represent generators a and b of 8 * ( X ,  x ) .  Let u E @(F, x )  be a generator. 
Then 

j*(a) = Atn+ @ u + Btn-@ @ u2, 

j *@)  = Ct"* @ u + Dtm-@ @ u2 

must be independent over 8 * ( B , )  so that A D  - BC # 0 in Z,. In particu- 
lar, we must have n 2 q. If n = q, then we must have j*(a) = 1 @ u which 
means that a restricts to u, contrary to the fact that a2 = 0 while u2 # 0. 
Thus q < n 5 m. 

Now we apply VI.11.6 to the original smooth action on Sn x Sm to 
conclude that 2q (the dimensional difference of the components of F )  is 
divisible by 2@(n). This implies that for q = 1, 2, 4, 8 we must have n 5 1, 
3, 7, 8, respectively. This contradicts the previous fact that q < n if q = 1 
or 8. Also, for q = 2 we must have n = 3 and for q = 4 we must have 
n = 5,  6 or 7. 

Since we now know that n < 2q we must have m 2 2q in order that 
j*(a) and j * @ )  be independent. It remains to show that m - n < q. Sup- 
pose on the contrary that m - n > q and note that Sqq: Hn(X, x) 
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+ RnM(X, x )  is trivial even when m = n + q. This implies that S@(a) 
depends on a: over a*(BG).  However, j*(a) = t"-'J @ u, since n < 2q, so 
that 

n - - q  t n @ U + t n - @ U 2  L )  j*(Sqqa) = Sqq(j*(a)) = 

is independent of j*(a);  a contradiction. I 

We now turn to case ( 5 )  of 8.1. Since S'J + S'J iss So x S'J the case q = r 
is not interesting. For examples, recall that the proof of VI.11.6 contains 
a construction of an equivariant map q ~ :  Sn + O(m + 1) for m large, where 
the generator T of Z, acts linearly on Sn with two fixed points wo and wl, 
and acts on O(m + 1) by T(A) = A-l. The construction gives such maps with 

for any - 1 5 q, r 5 m such that r - q  is divisible by 2@(n). By the Smoothing 
Theorem VI.4.2 we can assume that q~ is smooth (it can be taken to be con- 
stant near wo and w,). Then the smooth involution T(x, y )  = (Tx, ~ ( x )  - y )  
on Sn x Sm has F = S'J + S'. Note that for r = - 1 this gives examples of 
case (6) of 8.1. For q, r # - 1 these examples of case ( 5 )  of 8.1 are best 
possible by VI. 1 1.6, which we restate in this case as follows. 

8.4. Theorem Let Z, act  smoothly on Sn x Sm with F-, S'J + Sr, 
q 2 0, r 2 0 and n 5 m. Then r - q  is divisible by 2@(n). I 

Remark A somewhat weaker result is known for the nonsmooth case and 
for actions on more general spaces such as Sn x Sm x Rk; see Bredon [21]. 

Case (6) of 8.1 can occur in two distinct ways. First, we can have n = m 
with Z, acting nontrivially on @ ( X ;  Z,). In this case q = n by 7.5. Second, 
Z, can act trivially on B*(X; Z,), but the spectral sequence has a nonzero 
differential. This is the case with the examples above (where F = S'J + Sr 
with r = - 1). One would then expect that q + 1 would be divisible by some 
high power of 2 (depending on n) ,  perhaps even by 2@(n). With some further 
hypotheses, such a theorem (probably not the best possible) is proved in 
Bredon [21]. The proof involves a detailed study of the spectral sequences of 
XG , (XG , FG), and XG - FG and their relationships with one another. It is 
the only nontrivial proof (of this type of result) we know of in the case of a 
nontrivial spectral sequence, but we shall not give it here. 
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9. Zp-ACTIONS ON S" X Sm 

The basic information for Z,-actions on Sn x S" with p odd is given by 
the following theorem. The condition of finite generation is for convenience 
only. The theorem can be proved without it, at  the cost of considerably more 
argument. 

9.1. Theorem Let p be an odd prime and suppose that G = Z, acts on 
the finitistic space X-,  Sn x S*, n 5 m. Assume that H * ( X ;  Z )  is$nitely 
generated. If F # 0, then one of the following possibilities must occur: 

(1) F-, Sq x Sr, 
(2) F-, P3(q), It, m, q even, q < n. 
(3 )  F-, (point + P2(q)), n, m,  q even, q < 12. 

(4) F-, Sq + Sr, either n, m,  q, r all even and m >_ q, m 2 r ;  

( 5 )  F-, Sq, n even, m odd, q odd. 
(6)  F-, (point + Sq), n = m odd, q even, q < n, and p = 3. 
(7) F-,P2(q), n = m odd, q even, q< n, and p = 3. 

n - q 2 0 even, m - r 2 0 even. 

or n even, m 2 q, r all odd; or m even, n 2 q, r all odd. 

Moreover, if X = Sn x S", then n = m = 1, 3, or 7 in cases (6 )  and (7). 

Proof If X is totally nonhomologous to zero in XG mod p ,  then by 2.1 and 
6.1 (and a little extra work to prove the inequalities in (4) and the fact 
that q < n in (3); see the proof of 8.3) we must have one of the cases 
(1)-(4), or one other possibility: For some q we may have rk @(F; Z,) = 2 
and rk I@(F; Z,) = 1, and we must prove that the ring structure is that of 
case (1) with r = q. In this case a proof similar to the first part of that of 
8.2 shows easily that kq(F; Z,) has a basis u, v with u2 = 0, uv # 0 and 
v2 = Auv for some A E Z, with A = 0 unless q is even. Putting w = v - 4 Au 
gives u2 = 0 = w2 and uw # 0, which shows that F-, Sq x Sq. 

Suppose now that X is not totally nonhomologous to zero in X, ,  so that 
rk k * ( F ;  Z,) 5 3. First, assume that G acts trivially on 8 * ( X ;  Z,); e.g., 
n # m. Then some differential in the spectral sequence of (A'@, XG) + BG 

must be nontrivial and the multiplicative properties of the spectral sequence 
show that the first such differential must be 

d = d,,+l: E%!!'n+l + E,-n+1 m-nil,n 

which becomes, under E,*** E$?,,+l, 
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Let d(l @ b) = A @ a for a, b # 0 and 0 # A E @-n+l(BG; Z,). Then m 
must be odd, for if m is even, then 

0 = d(l @ b2) = 2(1 @ b)(A @ a)  = 2A @ ab # 0. 

Since k * ( X ;  Z) was assumed to be finitely generated, it follows easily that 
this differential is induced from that in the integral spectral sequence. Since 
I?(BG; k n ( X ;  Z)) = 0 for i odd, it follows that n must be even. Thus, for 
the Z,-spectral sequence d(l @ b) = t'@ a, where r = (m - n + 1)/2, and 
hence d(ti @ b) = tr+i @ a and d(sti @ b) = -str+i @ a. This kills, in 
high degrees, two rows of the spectral sequence, so that the remaining row 
E ; S " + ~  survives to EZn+m. It follows that rk k * ( F ;  x ;  Z,) = 1 and hence 
F-,  Sq for some q. Since x ( F )  = x ( X )  = 0 (mod p )  we must have that q 
is odd, and we are in case (5). 

Now suppose that G acts nontrivially on I?*(X; Z,). Then n = m. If 
T = 1 -g*, where g generates G, then P = 0 and hence ker T # 0. Thus, 
for an appropriate basis a, b of @ ( X ;  Z,), we have 

(since det(g*) = (det(g*))P = det(gP)* = 1 and g* # I ) .  Now g* is the 
identity on BZn(X;  Z,) so that ab = g*(ab) = a(b - a) = ab - a2, whence 
a2 = 0. If n is even, then 

whence ab = 0. However, this violates duality, and hence n must be odd 
and ab # 0. Note that on k n ( X ;  Z,) we also have 

N = 1 + g* + g*2 + . . . + g*'P-l' = 0 

by an easy calculation. 

Since N = 0 and Im T = ker T czs Z,, generated by a, we have 
Let x E F and consider the mod p spectral sequence of (XG , X G )  -+ BQ. 

k2i (BG;  @ ( X ,  x ) )  = ker T = gn(X, x)' = Z, 

generated by a, and 
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with a generator represented by b. Since c = ab generates H2n(X, x) ,  it 
represents a generator of Z?(BG; g2n(X,  x ) )  for all i. Now by the com- 
putation of products in k * ( B G ;  - )  H*(G;  e )  given in Cartan and Ei- 
lenberg [l, p. 2521 we see that multiplication by t E If2(&; Z,) is an 
isomorphism. 

Let a, denote the element of E$" - Gn(X, x ) ~  represented by a, let 
b, E Eisn - @(X,  x ) / k a ( X ,  x ) ~  be the generator represented by b, and let 
c, E E,0sZn - k h l ( X ,  x )  be represented by c = ab. Thus tia, generates EF,n, 
tib, generates E2+l>", tic, generates EF,2n, and stic, generates EF+1,2fl. 
Computation of products in E, shows that aobo = sc,. (One can also see 
that sa, = 0, that sb, = fa,, for p = 3 and sb, = 0 for p > 3, but we do not 
need these facts.) 

Consider the differential 

which has the form 

dn+l(co) = At(n+l ' /2  a, 

for some A E Z,. Then 

0 = dn+l(c,bo) = u 0 b 0 ,  

which shows that A = 0 and consequently that the spectral sequence de- 
generates. It follows that rk k * ( F ;  Z,) = 3. Since x(F)  = x ( X )  = 0 (mod p) 
we must have x(F)  = 3 and p = 3. Let q and r be the dimensions, both even 
and possibly equal, for which H*(F, x ;  Z,) # 0. Since multiplication by t 
is clearly a monomorphism in k * ( X G ,  xG)  it follows as in the proof of 1.5 
that j* is a monomorphism. 

There is the exact sequence 

0 + E;sn ---f Hi+"(XG, xG) + E 2 - n ~ ~ ~  + 0 

and we define elements a E k n ( X G ,  x G )  and ,!? E f i n + l ( X G ,  x G )  to be the 
images of a, and b,, and take a representative y E g Z n ( X G ,  xG) for c,. 
Then a Z,-basis for H*(XG,  xc) is given by {ti., tip, tiy, stiy}. Moreover 
ap = sy + Kt(n+1)/2a where K E Z,. (Also sa = 0 and sp = ta, facts which 
we will not use.) 

It is clear that j*(a) and j*@) must involve ring generators for Z?*(F, x )  
[whence q < n in cases (6) and (7)]. If q = 0 or r = 0, then we are in case 
(6). Thus suppose that 0 < q 5 r and let u E kQ(F, x) and v E f iT(F,  x) 
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be generators. Put 

419 

~ * ( G I )  = ASP' @ u + Bst" @ v ,  

j * @ )  = Ctq'+l @ u + Dtr'+l@ V ,  

where 29' = n - q - I ,  2r' = n - r - 1, and A ,  B, C, D E Z,. Since 
q 5 r we have uv = 0 = v2. Since # 0 we have 0 # j*(a@) = ACstn+ 
@ u2 and hence u2 # 0 and A ,  C # 0. This implies case (7). I t  is of inter- 
est to note that if 8, denotes the mod 3 Bockstein, then j*(@,(a)) = 

p,(j*(a)) # 0 and hence p,(a) = +@. (Actually, @,(GI) = @ for our choice 
of generators.) 

For the last statement, let a, b E Hn(Sn x Sn; Z) be the standard basis 
elements and put 

g*(a) = AU + Bb,  

g*(b) = CU + Db 

so that AD - BC = 1. Since the eigenvalues of g* are cube roots of unity, 
we see that the trace A + D = - 1. The map 

m i ,  
S" x S" 2 S" x S" - S" 

has bidegree ( A ,  B)  and hence the Hopf invariant of the induced map 

is AB. The other projection gives a map of Hopf invariant CD. Thus AB 
and CD are even for n # 1, 3, 7. This is clearly inconsistent with 
A D - B C = I  a n d A + D = - 1 .  I 

Remark Suppose that X is finitistic and that 8 * ( X ;  Z,) - fi*(Sn x S R ;  
Z,) additively for n odd. Let Z, act on X and nontrivially on @ ( X ;  Z,), and 
suppose that F-, P2(q) with 29 > n. Then, in the above proof, we still 
have j*(a) = st'=" @ u for an appropriate generator u E &q(F, x). Taking 
@ as the Bockstein of GI, as we may, j * ( p )  = t g ' + ' @  u. Thus j*(ap) 
= stn+ @ u2, which is independent of j*(a) and j*@). This implies that ap 
represents a nontrivial element in Efd" = E,1+2n - i?jBn(X, x; Z,). Since this 
element is just ab, we have that ab # 0. Thus we conclude that X has the 
mod 3 cohomology ring of Sn x Sn after all. These remarks are similar to 
the proof of a general theorem about circle actions in Bredon [23], and they 
will be important for one of our examples below. 
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For an example of case (2) of 9.1 note that CP3 is the unit sphere bundle 
in a 3-plane bundle q over S4. Let ,u be a stable real vector bundle of even 

dimension over S4 with q @ ,u trivial. Since the decomplexification KU(S4) 

-, K0(S4) is an isomorphism, ,u has a complex structure. Thus there is a 
semifree S1-action, and hence a Z,-action, on S4 x Sm = S(q @ ,u) with 
F = S(q)  = CP3. It suffices for m to be even and m 2 8. By VI.ll.l such 
an S1-bundle q @ ,u corresponds to an equivariant map S4 .+ Map(S1, 
e ;  O(m + l), I) = QO(m + l), with the trivial action on S4. Since 
n4(QO(m + 1)) = n,(O(m + 1)) = 0, this extends to an equivariant map 
S6 = S1 * S4 -, QO(m + 1). Thus S1 also acts semifreely on S6 x Sm, 
m 2 8 even, with F = CP3. 

We know of no examples for case (3) of 9.1. When p = 3 we have the 
following theorem. 

N 

N 

9.2. Theorem 
F v3 point + P2(q). 

There does not exist a smooth Z3-action on Sn x Sm with 

Proof Recall that n, m, and q are even with q < n 5 m. By VI.11.5 we 
must have that q is divisible by 3LnI41 and a short calculation shows this to 
be impossible. I 

Examples of case (4) of 9.1 can be found in Chapter VI, Exercise 8. 
Examples of cases (4) and (5) can also be constructed by an obstruction 
killing argument using VI. 11.1 ; see the proof of VI. 1 1.6. 

For examples of case (6) let n = I, 3, or 7 and regard Sn x Sn as the sub- 
space of Sn x Sn x Sn consisting of those triples (x ,  y ,  z )  with (xy)z = 1. 
In the case n = 7 of the Cayley numbers, recall that any two elements 
lie in an associative subalgebra (see Curtis [l]) and, since z = (xy)-', 
we have that (xy)z = x b z )  and z(xy)  = 1 for such triples. The permu- 
tation (x ,  y ,  z )  F+ (z, x ,  y )  defines a smooth Z3-action on Sn x Sn with 
F - { x  E Sn I XS = l }  = point + Sn-l. For another description of this 
example, see Su [4]. 

9.3. Theorem 
T h e n q = n - ~ .  

Let Z, act smoothly on Sn x Sn with F- ,  point + Sq. 

Proof Recall that n = 1, 3, or 7. Since q is even by 9.1 we have q = 0 
when n = 1. Also q = 0 or q = 2 when n = 3. When n = 7, q is divisible 
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by 3 according to VI. 11.5 and hence q is either 0 or 6 .  Thus we must elimi- 
nate the possibility that q = 0 ( F  equals three points) when n = 3 or n = 7. 
By removing disks about the three fixed points we see that three times the 
standard Z,-action on S5 (for n = 3) or S13 (for n = 7) would bound a free 
orientable Z,-action. That is, this standard action would have order 3 in the 
reduced bordism group Q*(Z,). However, the order of this element is known 
to be 32 for n = 3 and 34 for n = 7; see Conner and Floyd [8, p. 941. fl 

Finally, we turn to case (7) of 9.1. This case has been overlooked in the 
literature. To construct an example, let Z, act smoothly on S3 x S3 with 
F = point + Sa, as constructed above. Remove the isolated fixed point, 
or an open disk about it, to obtain an action of Z, on a space Y of the ho- 
motopy type of S3 v S3 and with fixed set 5,. Let p: S3 + S2 c Y be the 
Hopf map. We let 2, act on S5 = S1 * S3, fixing S3, and attempt to extend q.~ 
to an equivariant map y: S5 --+ Y. Since S2 is homotopically trivial in Y we 
see that 0 = [p] E n,(Y) and hence q can be extended equivariantly to 
Z, * S3 c S1 * S3 = S5. The only obstruction to extending q to S5 is then in 
Hodd(Z,; n4(Y)).  (The theory for this is in Bredon [14,17], but in this sim- 
ple case the extension can easily be constructed ad hoc.) Since np(Y)  - n4(S3 v S3) - n4(S3 x S3) = Z, @ Z,, this obstruction group vanishes 
and the extension exists. Now put 

which has a Z,-action with F = S2 u, D4 = CP2. By the remark below the 
proof of 9.1 it follows that X - ,  S3 x S3. Let us continue to improve this 
example. Note that n5( Y )  = n6(S3 v S3) - Z @ n,(S3 x S3) - Z @ Z, 
@ Z, and, moreover, the free summand can be taken to be generated by the 
attaching map for the top cell of S3 x S3. Denote this element by c. This 
summand clearly consists of the invariants of the Z,-action on n,(Y) and 
[y]  is indeed invariant since g o y = y o g = y for g E Z,. Now y can be 
equivariantly modified so that [y] changes by three times any invariant 
element. By changing orientation on S5 we can also change the sign 
of [y]. Thus we may assume that [y] =: c or [y] = 0. However, [y] = 0 is 
impossible since then X N S3 v S3 v Ss does not have the correct cohomol- 
ogy ring. Thus [y] can be taken to be cr and then X has the homotopy type 
of S3 x S3. We remark that CP2 cannot be embedded in a closed manifold 
homotopy equivalent to S3 x S3, so that such an example cannot be 
smoothed. It is also probable that there is no topological action on S3 x S3 
homotopy equivalent to this example. 
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A similar example arises from the Z,-action on S7 x S7 with I;= { x }  
+ S6. Here we map q ~ :  S1' + S6 with Hopf invariant 2 and extend it equi- 
variantly to S13 = S1 * Sl1+ Y = S7 x S7 - {x}. (Here the extension is 
clear since n,,(S7 v S7) - n1,(S7 x S7) = 0.) Again the extension y :  
S3 + Y can be chosen so that X = Y u, D14 has the homotopy type of 
S7 x S7. Moreover F = S6 u, D12m3 P2(6). 

Remarks Most of 9.1 is due to Su [4], but, because of a sign error, case 
(7) was thought to have been ruled out. 

Theorem 9.3 was conjectured in Bredon [21] and proved in Bredon [22]. 
It is clear that the analog of 9.1 holds for S1-actions over the rationals, with 
cases (6) and (7) not occuring. 

10. CIRCLE ACTIONS ON A PRODUCT 
OF ODD-DIMENSIONAL SPHERES 

Suppose that X-Q Snl x Sna x . - x Snk,  where the ni are oddand that 
S' acts on X with finitely many orbit types and with X and X/S1  finitistic. 
There are the obvious product actions on products of spheres. Other in- 
teresting examples are the actions by conjugation of circle subgroups of a 
connected Lie group L on the underlying space of L. In these cases, the 
fixed set F also has the rational cohomology ring of a product of k odd- 
dimensional spheres. It is natural to ask whether this holds generally; see 
Bredon [22, 231. A counterexample will be given below, but it is quite easy 
to prove this if we also assume that X is totally nonhomologous to zero In 
X ,  over Q. Note that this is the case when n, 5 n2 5 - - - I nk and n, + n, 
> nk since then a * ( X ;  Q) is generated by transgressive classes which must 
transgress to zero when F # 0. 

10.1. Theorem Let S1 act on X - Q  Snl x Sns x - - x S n k  with all ni 
odd, withJinitely many orbit types and with X and XIS'Jinitistic. Suppose that 
X is totally nonhomologous to zero in X ,  over the rationals. Then 
F-Q S71 x Sra x - - . x S r k  with ri 5 ni odd. 

Proof Let the classes a , ,  . . . , ak be an exterior basis for a * ( X ;  Q), 
with ni = deg a i .  Let ai = v(ui), where y is a cohomology extension of the 
fiber, and put 

j*(ffi> = c tqO bi,*, 
9 
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where bi,g E @-“Q(F; Q). Since a1a2- - .ak represents a1a2- - -ak # 0 we have 

and hence some product 

bl,plb2,91 * * * bk,9t 

is nonzero. Thus bl,ql ,  . . . bk,qk generate an exterior algebra, which must 
equal 8 * ( F ;  Q )  since both have rank equal to 2k = rk &*(I; Q). Thus 
F-Q Srl x . . - x S r k ,  where ri = deg bi,g, = ni - 2qi. 

Under appropriate hypotheses, one can also prove such a result over the 
integers. The compactness condition below is included to ensure that the 
Universal Coefficient Theorem is valid over the rationals. Other conditions 
which would ensure this could be substituted; e.g., locally smooth actions 
on open or closed manifolds. Also note that the condition on fixed sets of 
the Zpi holds for locally smooth actions on compact manifolds. 

10.2. Theorem Let G = S1 act on the compact space X - z  Snl x Sna 
x - . . x Snk  with all ni odd and with finitely many orbit types. Assume that 
X is totally nonhomologous to zero in X ,  over Q. Also assume that for each 
prime p and integer i, B*(F(Z,t, X); 2) has finite type. Then .F-z Srl 
x Sra x - . x S r k  with ri 5 ni odd. 

Proof For a given prime p ,  consider Fi = F(Zpt X ) .  We have 

rk 8 * ( X ;  Z,) >_ rk &*(F,; Zp) .  

Since Fi has finite type we also have 

rk R*(Fi; 2,) p rk &*(Fi; Q) 

with equality iff Fi has no p-torsion. However, S1 acts on Fi with fixed set 
F = F(S1, X )  and hence 

rk 8 * ( F i ;  Q) 2 rk k * ( F ;  Q) = rk 8 * ( X ;  Q) = rk &*(X; Z,). 

Thus these are all equalities and Fi has no p-torsion. It follows that the 
mod p reduction 8*(Fi; Z )  + H*(Fi; 2,) is onto, and also that the 
squares of odd-dimensional classes in &*(Fi; Z,) are zero (which is trivial 
for p # 2). 
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Now we claim that Fi has the mod p cohomology ring of a product of k 
odd-dimensional spheres. We prove this by induction on i. Thus let Y = Fi 
and consider the Z,-action on Y with fixed set K = Fi+l. Since this extends 
to a circle group action, the action on 8*( Y ;  Z) is trivial. Consider the spec- 
tral sequences E,***(Zp) and E$.*(Z) of Yzp --+ BZp with respect to Z, and 
Z coefficients, respectively. Since rk B*(Y;  2,) = rk k * ( K ;  Z,), as seen 
above, E:s*(Z,) degenerates. Since E;gb(Z) --f E;sb(Z,) is a monomorphism 
for a > 0, it follows that EF**(Z) also degenerates. In particular, the edge 
homorphism l?*(Yzp; Z) --+ E$.*(Z) cs 8 * ( Y ;  Z) is onto and hence 

B*(Yzp; Z) -+ A*(Y; Z,) 

is onto. Now we try to repeat, for Z,-coefficients, the proof of 10.1. By the 
above remarks, the ai E B*(Yzp; Z,) can be chosen to come from 
l?*(Yzp; Z). Hence j*(ori) is in the image of k * ( B z p ;  Z) @ B*(K;  Z) - H*(Kzp;  Z) -+ 8 * ( K z p ;  Z,) = &*(Bzp; Z,) 0 k * ( K ;  Z,) (since K has 
no p-torsion). Thus j*(ori) involves onZy odd-dimensional classes in H*(K;  
Z p ) .  From this it is clear that the proof of 10.1 works to prove our claim. 
Since F = F(S1, X )  = F(Zpi, X )  for each p and for sufficiently large i, 
we conclude that F has no torsion and 

for each prime p (with the ri possibly depending on p). 
Let us choose classes u l ,  . . . , uk E 8 * ( F ;  Z) which induce an exterior 

basis for 8 * ( F ;  Q). There is a unique minimal direct summand A of H*(F; Z) 
containing the ui and it is clear that, by changing the ui, we may take the 
ui to be a Z basis of A .  Since the modp reductions of the ui are then Zp- 
independent, they form an exterior basis of €?*(F; Z,) - H*(F; Z) 0 Z p .  
Let A be the exterior algebra on the ui and consider the canonical homo- 
morphism A -+ H = &*(F; Z), which is a monomorphism since A @ Q 
+ H 0 Q is an isomorphism. We shall regard A + H as inclusion. For 
each prime p consider the diagram 

P 0 - A --c n - A 02, - 0 
+ P  + + 

0 + H + H - H 0 Z, --+ 0 
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with exact rows and columns. This shows that H / A  is p-divisible for all p. 
Since H/A is finitely generated, this implies that H/A = 0 so that 
A = H = 8 * ( F ;  Z). I 

Example Let t be the tangent bundle of SR and let E be the trivial 2-plane 
bundle on S8. Let S1 act trivially on t and nontrivially on E over the trivial 
action on S8. Map rp: S3 x S5 + Ss with degree 1, let T,I = r p * ( t  @ E )  be 
the pull-back of T @ E,  with its S1-action, and let X = S(q)  be the total space 
of the unit sphere bundle of r] .  Since z 0 E is trivial, X - S3 x S5 x Ss. 
The fixed set F of S1 on X is the 7-sphere bundle S(rp*t) over S3 x S5 and 
it is easily seen from the spectral sequence of this bundle that Hi(F;  Q) = Q 
for i = 0, 3,  5, 10, 12, 15 and it is trivial otherwise. Only the products into 
H15(F; Q )  are nonzero. This example shows that the condition in 10.1, that X 
be totally nonhomologous to zero in X,, cannot be dropped. We remark 
that ni (F)  @ Q = Q for i = 3,  5, and 7 and is zero otherwise, and that the 
Whitehead product (n3(F) @ Q )  x (n,(F) @ Q )  + n,(F) @ Q is non- 
trivial. This answers a question in Bredon [23]. 

11. AN APPLICATION TO EQUIVARIANT MAPS 

Suppose that we are given linear involutions on Sn and on Sm and that 
we have an equivariant map rp: Sm ---f Sn. Then there is an induced involu- 
tion on the mapping cone X = Sn U, Dm+l whose fixed point set is the 
mapping cone of the restriction of p) to the fixed sets in S" and Sn. This 
motivates the study of involutions on such spaces. 

11 .I. Theorem 
withjixed set F. Let x E F and assume that 

Suppose that T is an involution on the finitistic space X 

for  i =  n, n + k ,  (0"' otherwise, 
@(X, x ;  Z,) - 

and that 
Sqk &(X, x ;  Z,) --+ I++k(X, x; Z,) 

is nontrivial. Suppose that 

for i =  q, q + r ,  
otherwise, 

#(F, x ;  Z,) = { 0"' 
and that k # r.  Then q + r 5 n. r f r  < k then 2r = k and Sqr: l?q(F, x; Z,) 
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-+ gq+'(F, x ;  Z,) is nontrivial. If r > k, then r = k + 2ki for some integer 
i > 0. (The possibility that k > 0 but r = 0 and Hq(F, x ;  Z,) - Z ,  @ Z ,  
is also excluded.) 

Proof From the structure of the Steenrod algebra, we know that k is a 
power of 2, and in fact that k = 1, 2, 4, or 8. Let a E @(X,  x) and 
b E IT"+k(X, x) be generators, so that b = Sqk(a). Let u E Rq(F, x) and 
v E I?q+r(F, x) be generators. Let a E gn(XG, xG) represent a and put 
/I = Sqk(a) E &n+k(XG, xC) which represents b. B y  the Leray-Hirsch Theo- 
rem 1.4, k * ( X G ,  xG) is the free R*(BG) = Z J t ]  module with basis a and 8. 

First assume either that r > k or that r 5 k but Sqr(u) = 0. Then 
Sqi(u) = 0 for 0 < i 5 k. Then note that j*(a) can be neither tn* 0 u 
nor tn*-" 0 v for, if it were, then j *@)  = j*(Sqk(a))  = Sqk(j*(a)) would 
depend on j*(a) over &*(BG). Thus 

j*(a) = tn* 0 u + tn-9--r @ v 

and, in particular, n 2 q + r. Now for i < k, Sqi(a) is either tia or 0. 
However 

It follows that 

for all 0 < i < k ,  and that [since /3 = Sqk(a)] 

("; ") g (y- r ) (mod2). 

Putting k = 2m, this means that the dyadic expansions of n - q and 
n - q - r are equal below the mth term and the mth terms are different. 
Thus r = k + (higher powers of 2), that is, r = k + 2ki for some i > 0, 
since r # k. 

If r 2 k ,  then we are done. If r < k ,  then the above contradiction shows 
that Sqr(u) = v.  Thus r is a power of 2 and we must show that 2r = k and 
that n 2 q + r. Now j*(a) # tn+ 0 u since otherwise Sq7(a) would be 
independent of a, contrary to the fact that r < k. Also j*(a) # tn*-r 0 v 
since otherwise /3 = Sqk(a) would depend on a over g*(Bc). (This argu- 
ment also shows that r # 0.) Thus we have again that 

j*(a) = tn* 0 u + tn*-r 0 v 
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and hence that n 2 q + r. Suppose that 2r < k.  Then SqZr(a) is either 0 
or tZra. However 

j*(SqZr(cr)) = Sq,r(j*(cr)) 

= (" 2, q)tn++,r @ u + [ (" ; ") + ( " -; - p++r @ v , 

and the fact that 

for r a power of 2, provides a contradiction; compare the proof of 8.2. I 

We now turn to the applications of this result to equivariant maps be- 
tween spheres. For any n let us denote by 

the reflection in the first u coordinates of Sn c Rn+l. Thus F(T,, Sn) - Sn-". 
11.2. Theorem Let q: (Sm+l, T,) + (Sm, T,) be equivariant and suppose 
that 0 # [p]  E zls = lim T C ~ + ~ ( S ~ ) .  Then either u - w - 0 (mod 4) or 
u - w = 1. In the latter case the restriction pG: Sm-" + Sm-,, to the fixed 
point sets, has degree congruent to 2 modulo 4. Moreover, u # w, then 
u 2 2. 

Proof Let y E Sm+' be a fixed point and put x = po). Since f i*(SmG, xG; 
Z,) is generated over H*(BG; Z,) by an element of degree m it follows that 
the map 

q G *  : f i * ( S m G ,  XQ) fi*(s$+', Y Q )  

is trivial. Since j *  is an isomorphism in high degrees, the map (qG)*: 
&*(Sm-", x ;  Z,) + fi*(Snz--u+l, y ;  Z,) is trivial. That is, degq" is even when 
u - w = l .  

If X = Sm U, Dmf2 is the mapping cone of pl, then the fixed set 
F = X G  = Sm-W U,C Dm-u+z. Since 0 # [93] E zIs - Z,, it follows that 
Sq2: f i m ( X ;  Z,) + Hm+,(X; Z,) is an isomorphism. Thus (even if u - w = 1 )  
the involution on X satisfies the hypotheses of 1 1 . 1  with n = m, k = 2 and 
r = [ u - w - 2 1. Thus there are the two possibilities: r = 2 (mod 4 )  
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(which includes the case r = k), and r = 1 with Sq' # 0 on F. The case 
r = 2 (mod 4) implies that u - w E 0 (mod 4). Thus suppose that r = 1 ; 
that is, u - w = 1 or u - w = 3. 

If u - w = 3, then F ~ :  Sm*-, --f Sm* is inessential, contrary to the 
fact that Sq' # 0 on F. Thus u - w = 1 and then Sql# 0 is equivalent to 
pG: Sm-, -+ Sm+' having degree congruent to 2 modulo 4. (This follows 
immediately from the fact that @(F, x ;  Z) - Z d  for i = m - w + 1 and 
is 0 otherwise, where d = deg pG, and the fact that Sql is the mod 2 Bock- 
stein.) The last statement of the theorem follows from the inequality q + r 
5 n when k # r of 11.1. 

In exactly the same way, the cases k = 4 and k = 8 of 1 1.1 yield the next 
two results. The reader may verify that the case k = 1 yields nothing of 
interest. 

11.3. Theorem Let p : (Sm+,, T,) - (Sm, T,) be equivariant and suppose 
that [F] ~ n ;  - Z,, is an odd multiple of a generator. Then either 
u - w = 0 (mod 8) or u - w = 2. In the Iatter case, 0 # [qG] E nIs - Z,. 
Moreover, i f u  # w, then u 2 4. I 

11.4. Theorem Let pl: (Smf7, T,) - (Sm, T,) be equivariant and suppose 
that [q] E - Z,,o is an odd multiple of a generator. Then either 
u - w E 0 (mod 16) or u - w = 4. In the latter case [pG] E n3x - Z,, 
is an odd multiple of a generator. Moreover, if u # w, then u 2 8. I 

Remark Theorem 11.1 was proved in Bredon [lo]. The present applica- 
tion to equivariant maps is from Bredon [21], where 11.2 was inadvertently 
misstated. These results can be combined with homotopy methods to yield 
a great deal of detailed information about equivariant maps between spheres 
with linear involutions. Reports on some of this information may be found 
in Bredon [15, 201. 

EXERCISES FOR CHAPTER VII 

1. If Z, acts on Cay P2, show that the fixed point set has at most two 
components. 

2. Suppose that 2, acts on the finitistic space X-, QP2 with F - ,  CP2. 
Suppose that P,l = 0 on X.  Show that IT"(X; Z,) -+ B4(F; Z,) is trivial. 
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3. Give an example of a semifree S1-action on a space X whose integral 
cohomology ring is that of the one-point union S4 v S6 and with fixed 
point set F = CP2. 

4. For p an odd prime, suppose that Z, acts on the finitistic space 
X-,QPh and that there are exactly (p + 1)/2 components Fi of F. Show 
that some component F O m p  QPk for some k 2 0. 

5. Let Z, act on the finitistic space X - ,  Sn x Sm, n 5 m, and assume 
that F-, P3(q). Prove the assertion in 8 . 1  that n > q. If n < 2q, then 
show that 2q 5 m < 3q. 

6. Suppose that X is finitistic and has the mod 2 cohomology ring of a 
product of 2k copies of Sn. Suppose that G = Z, acts on X and that 
rk Bn(X; Z,)G = k.  Show that X G  is nonempty and that it has the mod 2 
cohomology ring of a product of k copies of Sn. 

7. For r = 1, 3, or 7 let 9: (Sm+?, T') + (Sm, T') be equivariant, where 
T, is as in Section 1 1.  Suppose that [9] E np is an odd multiple of a generator 
and that u 5 r (so that u = w by the results of Section 11) .  Show that 
[vG] E n," is also an odd multiple of a generator. 

8. For an odd prime p let X - ,  L2"+l mean that a*@; Z,) - Z,[a, b]/ 
(a2, bn+l) as a ring, where deg a = 1 and b = B,(a), where B, is the modp 
Bockstein. If Z, acts on the finitistic space X-,LZn+l, show that I; is 
either empty or is the union of at most p components Fi-,LBki+l with 
C(k i  + 1 )  = n + 1.  

9. For an odd prime p let X-, LZn mean that f i * ( X ;  Z,) - Z,[a, b]/ 
(u2, bn+l, ab") as a ring, where deg a = 1 and b = B,(a). If Z, acts on the 
finitistic space X -, L2n, show that the fixed point set F is nonempty and 
is the union of at most p components Fi with Fl -, L2kl and Fi -, L2ki+1 
for i # 1 and with C(ki + 1) = n + 1.  

10. Suppose that Z, acts on the finitistic space X -, Cay P2 and that F 
is disconnected. Show that either F-, (three points) or F-,  (point + S6). 

11. Suppose that Z, acts on the finitistic space X with f i * ( X ;  Z,) 
= H*(Sn v Sn+k; Z,) and with &*(F; Z,) - H*(S'J v S'J+?; Z,) as graded 
groups (additively only). Assume that q 5 n < q + r 5 n + k.  If r < k,  
show that Sqr = 0 on F. If r = k show that Sq7 = 0 on F iff Sqk = 0 
on X. 
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12. Construct a compact space X -z S3 v S5 having an involution with 
F - CP2. Show that such a space X cannot have the homotopy type of 
s3 v s5. 

13. If T is an involution on S3 x S5 with F - RP3, show that T acts 
nontrivially on H3(S3 x S5; Z). 

14. Let S1 = U(l) c U(3) act by conjugation on X = SU(3) -Z S3 
x S5. Show that this is a semifree action with F - S1 x S3. Let a E k3(Xs1;  
Z) denote the (unique up to sign) representative of a generator of f i 3 ( X ;  
Z) = Z. For an appropriate choice of generators u E &F; Z) and 
v E H3(F; Z) show that j*(a) = 1 @ v + t @ u. 

15. Show that RPn does not support a nontrivial semifree Sl-action. 

16. Let T be a free involution on a closed, oriented 4n-manifold M4". 
Consider the intersection form (x, y )  = x - Ty on Z). Show 
that this bilinear form is symmetric and even (i.e., (x, x) is even for 
all x). 

17. Define an action of S1 on S3 x S3 by putting z(p, q )  = (p, pzp-lqz-') 
and show that the fixed set F - S1 x S3. Show that this action extends to 
S5 x S3, freely outside S3 x S3 and hence with the same fixed set F. (Note 
that the original action purposefully has a kernel Z,.) For x E F let 
a E k 3 ( ( S 5  x s 3 ) G ,  xG; Z), u E &(F, x; Z) and v E g3(F,  x; Z) be gen- 
erators, which are unique up to sign. Show that, for an appropriate choice 
of these generators, we have 

j*(a) = 1 @ u + 2t @ u 

in &*@a; Z) @ x; Z). (Note, in particular, that this implies that 
the action is not equivalent to an obvious product action on S5 x S3.) 
For any choice of j3 E g5((S5 x S3)G,  xG; Z)  representing a generator of 
fi5(S5 x S3; Z) show that 

j * @ )  = &(mt @ v + 2(m - 1 ) t Z  @ u ) ,  

where m is an arbitrary integer depending on the choice of /I. In particular, 
/3 can be chosen so that 

j*@) = t @ v .  

For n 2 2, show how to construct similar actions on SZn+l x S3 with 
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F - S1 x S3, which are homologically distinct (even over the rationals) 
from the products of S1-actions on S2"+' and on S3. 

Show, however, that our original action on S3 x S3 is equivalent to a 
product action. Why does this not contradict the statements about the (ar- 
bitrary) extended action to S5 x S3? 
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Action, 32 
amenable, 285 
covering, 62-67 
effective, 33 
free, see Free action 
kernel of, 33 
locally smooth, see Locally smooth ac- 

semifree, 36, 347-352 
smooth, 298 
transitive, 40 

simplicial, 68 
smooth, 317-319 

tion 

Approximation, equivariant, 

B 

Barycentric subdivision, 11 5 
Borel’s equation, 164 
Brieskorn varieties, 272-282, 294, 332, 

3-342, 346, 391 

C 

Cayley projective plane, 389 
Cech homology and cohomology, 136 
Cohomology extension of fiber, 372 
Collar, 225 
Complex, simplicial, 114 

barycentric subdivision of, 115 
topological realization of, 11 5 

G-, see G-covering 
invariant, 133 

Covering homotopy theorem, 92-98 
Cross section, 39 

Covering, 

D 

Differentiable action, 298 
Differential, 300 

E 

Effective action, 33 
Embedding, 

equivariant, 110-1 12 
smooth, 300 
smooth equivariant, 314-316 

between involutions on spheres, 425-428 
Equivariant map, 35 

Exceptional orbit, see Orbit 
Exponential map, 6, 22, 301, 305 

F 

Fiber bundle, 70-79, 88-90 
associated, 74 
Coo, 299 
principal, 72 
reduction of structure group of, 233-237 
structure group of, 71 

Fibered product, 47 
Finitistic space, see Space 
Fixed point(s), 44 

Fixed point set, 44 

Free action, 36 

representations at, 352-366, 397400 

orientability of, 175 

on spheres, 148-153 

G 

G-complex, 115 
regular, 116 
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G-covering, 134 
regular, 134 

G-manifold, 
special, 326-333 
special topological, 331 

Isotopy, 
equivariant, 309, 312 
integration of, 312-314 

Isotropy subgroup, 20, 35 

G-space, 32 J 
equivalence of, 35 
locally smooth, see Locally smooth ac- 

proper, 253 

Join, 583 lo8 
tion Palais, 108 

universal, 110 

euclidean, 304 

classical, 5-1 1 
general linear, 5 
Lie, 22 
one parameter, 8, 22 
orthogonal, 5 
semisimple, 30 
simple, 29 
special linear, 5 
spinor, 31 
symplectic, 9 
topological, 1 
toral, 26 
transformation, 32 
unitary, 5 
universal covering, 25 
Weyl, 27 

G-vector bundle, 303, 359 

Group, 

I 

Icosahedron, 56 
Immersion, 300 
Integral, Haar, 11 
Invariants, 

&genus, 351 
Browder-Petrie, 344-347 
Eells-Kuiper, 34Cb343. 351 
index, 350 
Milnor, 341 

Involutions, 53, 405415 
groups of, 337-347 
L-equivalence of, 339 
maps between, 425428 

K 

K-theory, equivariant, 353-366 
Kernel of action, 33 
Knot manifolds, 287-293, 333-337, 342- 

343 

L 

Lens space, 53-55, 259-260, 429 
Leray-Hirsch theorem, 372 
Lie groups, 21-31 

compact, classification of, 29-31 
exceptional, 30 

Local isomorphism, 25 
Locally smooth action, 171 

nonsmoothable example, 352 

M 

Manifold, smooth, 298 
Map, equivariant, 35 
Maximal torus, 2628 
Mostow embedding theorem, 110-1 12, 31 5 

N 

Neighborhood, invariant tubular, 306-312 
Newman’s theorem, 154-158 
Norma k e r ,  4 

0 

O(n)-manifolds, 49-55, 257-260, 263-295, 

One-parameter group, 8, 22 
Orbits of bounded diameter, 158 

331-337 



Orbit, 37 
exceptional, 181 
orientability of, 185, 188 
principal, 180 
singular, 181 
special exceptional, 185 

Orbit space, 37 
orientability of, 188 

Orbit structure, 68 
classifying, 110 
conical, 98-104 
fine, 254 

finiteness of number of, 173, 218-222 
Orbit types, 42 

P 

Partition of unity, 133 
Path lifting, 90-92 
Plumbed manifolds, 267-272 
PoincarC duality space, actions on, 400-405 
Polyhedron, 115 
Principal orbit, 180 
Pull-back, 47 

R 

Reduction of structure groups, see Fiber 
bundle 

Representation, 10 
adjoint, 29 
reducible, 14 
slice, 174 

Riemannian metric, invariant, 305 

S 

S-reduction, 233 

Sp(n)-manifolds, 252, 294, 366 
Saturated set, 37 
Semifree action, 36, 347-352 
Simplicia1 approximation, equivariant, 68 
Singular orbit, 181 
Slice, see also Tube 

Small orbits, 154-158 

equivalence of, 234 

linear, 171 

Smith sequences, 123-125, 143 
Smith-Gysin sequence, 160-162, 169 
Smooth action, 298 
Smooth approximation, 317-319 
Space, 

finitistic, 133 
structured, 225 
Tk-finitistic, 164 

Special exceptional orbit, 185 
Special G-manifold, see G-manifold 
Stationary point, 44 
Steenrod operations 381-382,405-410 
Structure, 

functional, 297 
induced smooth, 301, 366 

Structure group, see Fiber bundle 
Subdivision, barycentric, 115 
Submanifold, 300 

T 

Tangent bundle, 300 
Tietze-Gleason theorem, 36 
Torus, actions on, 214-218 
Totally nonhomologous to zero, 373 
Transfer homomorphism, 118-121, 141- 
142 
Transitive action, 40 
Translation, 1, 34 
Tube, 82 

existence of, 86 
linear, 170-171 

existence of, 306 
uniqueness of, 310 

Tubular neighborhood, invariant, 303-312 

Twisted product, 46, 79-82 
Type, 

isotropy, 42 
orbit, 42 

U 

U(n)-manifolds, 251-252, 294, 366 

V 

Vector bundle, 303 
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