
Manifold aspects of the Novikov Conjecture

James F. Davis§

Let LM 2 H4§(M ; Q) be the Hirzebruch L-class of an oriented manifold
M . Let Bº (or K(º, 1)) denote any aspherical space with fundamental
group º. (A space is aspherical if it has a contractible universal cover.) In
1970 Novikov made the following conjecture.

Novikov Conjecture. Let h : M 0 ! M be an orientation-preserving ho-
motopy equivalence between closed, oriented manifolds.1 For any discrete
group º and any map f : M ! Bº,

f§ ± h§(LM 0 \ [M 0]) = f§(LM \ [M ]) 2 H§(Bº; Q)

Many surveys have been written on the Novikov Conjecture. The goal
here is to give an old-fashioned point of view, and emphasize connections
with characteristic classes and the topology of manifolds. For more on the
topology of manifolds and the Novikov Conjecture see [58], [47], [17]. This
article ignores completely connections with C§-algebras (see the articles of
Mishchenko, Kasparov, and Rosenberg in [15]), applications of the Novikov
conjecture (see [58],[9]), and most sadly, the beautiful work and mathemat-
ical ideas uncovered in proving the Novikov Conjecture in special cases (see
[14]).

The level of exposition in this survey starts at the level of a reader
of Milnor-StasheÆ’s book Characteristic Classes, but by the end demands
more topological prerequisites. Here is a table of contents:

§ Partially supported by the NSF. This survey is based on lectures given in Mainz,
Germany in the Fall of 1993. The author wishes to thank the seminar participants as well
as Paul Kirk, Chuck McGibbon, and Shmuel Weinberger for clarifying conversations.

1Does this refer to smooth, PL, or topological manifolds? Well, here it doesn’t really
matter. If the Novikov Conjecture is true for all smooth manifolds mapping to Bº, then
it is true for all PL and topological manifolds mapping to Bº. However, the definition
of L-classes for topological manifolds depends on topological transversality [25], which is
orders of magnitude more di±cult than transversality for smooth or PL-manifolds. The
proper category of manifolds will be a problem of exposition throughout this survey.
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1 Hirzebruch L-classes

The signature æ(M) of a closed, oriented manifold M of dimension 4k is
the signature of its intersection form

¡M : H2kM £H2kM ! Z
(Æ,Ø) 7! hÆ [ Ø, [M ]i

For a manifold whose dimension is not divisible by 4, we define æ(M) = 0.
The key property of the signature is its bordism invariance: æ(@W ) = 0
where W is a compact, oriented manifold. The signature of a manifold2

can be used to define the Hirzebruch L-class, whose main properties are
given by the theorem below.

Theorem 1.1. Associated to a linear, PL, or topological Rn-bundle3 ª are
characteristic classes

Li(ª) 2 H4i(B(ª); Q) i = 1, 2, 3, . . .

satisfying

1. Li = 0 for a trivial bundle.

2. For a closed, oriented 4k-manifold M ,

hLk(øm), [M ]i = æ(M)

3. Properties 1. and 2. are axioms characterizing the L-classes.

4. Let L = 1 + L1 + L2 + L3 + . . . be the total L-class. Then

L(ª © ¥) = L(ª)L(¥).
2Gromov [17] says that the signature “is not just ‘an invariant’ but the invariant

which can be matched in beauty and power only by the Euler characteristic.”
3We require that these bundles have 0-sections, i.e. the structure group preserves the

origin. We also assume that the base spaces have the homotopy type of a CW -complex.
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5. Let B = BO,BPL, or BTOP be the classifying spaces for stable
linear, PL, or topological Euclidean bundles, respectively. Then

H§(B; Q) = Q[L1, L2, L3, . . . ]

where Li denotes the i-th L-class of the universal bundle.

We write LM = L(øM ) and call property 2. the Hirzebruch signature
formula.

Properties 1.-4. are formal consequences of transversality and Serre’s
theorem on the finiteness of stable homotopy groups; this is due to Thom-
Milnor [32], Kahn [22], and Rochlin-Svarc. Property 5 is not formal. One
checks that L1, L2, L3, . . . are algebraically independent by applying the
Hirzebruch signature formula to products of complex projective spaces and
shows that H§(BO; Q) is a polynomial ring with a generator in every fourth
dimension by computing H§(BO(n); Q) inductively. That BO, BPL and
BTOP have isomorphic rational cohomology is indicated by Novikov’s re-
sult [38] that two homeomorphic smooth manifolds have the same ratio-
nal L-class, but also depends on the result of Kervaire-Milnor [24] of the
finiteness of exotic spheres and the topological transversality of Kirby and
Siebenmann [25].

We indicate briefly how the properties above can be used to define the L-
classes, because this provides some motivation for the Novikov Conjecture.
By approximating a CW -complex by its finite skeleta, a finite complex
by its regular neighborhood, and a compact manifold by the orientation
double cover of its double, it su±ces to define LM for a closed, oriented n-
manifold. The idea is that this is determined by signatures of submanifolds
with trivial normal bundle. Given a map f : M ! Sn°4i, the meaning of
æ(f°1(§)) is to perturb f so that it is transverse to § 2 Sn°4i and take the
signature of the inverse image. This is independent of the perturbation by
cobordism invariance of the signature. Given such a map, one can show

hLM [ f§u, [M ]i = æ(f°1(§))

where u 2 Hn°4i(Sn°4i) is a generator. Using Serre’s result that

ºn°4i(M)≠Q ! Hn°4i(M ; Q)

is an isomorphism when 4i < (n ° 1)/2, one sees that the above formula
defines the 4i-dimensional component of LM when 4i is small. To de-
fine the high-dimensional components of LM one uses the low-dimensional
components of LM£Sm for m large.

It is more typical to define Pontryagin classes for linear vector bundles,
then define the L-classes of linear bundles as polynomials in the Pontryagin
classes, then prove the Hirzebruch signature theorem, then define the L-
classes for PL and topological bundles (as above), and finally define the
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Pontryagin classes as polynomials in the L-classes. But L-classes, which
are more closely connected with the topology of manifolds, can be defined
without mentioning Pontryagin classes. The Pontryagin classes are more
closely tied with the group theory of SO, and arise in Chern-Weil theory
and the Atiyah-Singer index theorem. They are useful for computations,
and their integrality can give many subtle properties of smooth manifolds
(e.g. the existence of exotic spheres).

We conclude this section with some remarks on the statement of the
Novikov Conjecture. Given a map f : M ! Bº, the 0-dimensional compo-
nent of f§(LM\[M ]) is just the signature of M , and its homotopy invariance
provides some justification of the Novikov Conjecture. If one proves the
Novikov Conjecture for a map f : M ! Bº1M inducing an isomorphism
on the fundamental group, then one can deduce the Novikov Conjecture
for all maps M ! Bº. But the more general statement is useful, because
it may be the case that one can prove it for º but not for the fundamental
group.

Definition 1.2. For f : M ! Bº and for u 2 H§(Bº; Q), define the
higher signature

æu(M, f) = hLM [ f§u, [M ]i 2 Q

When u = 1 2 H0, the higher signature is just the signature of M . The
higher signature can often be given a geometric interpretation. If the
Poincaré dual of f§u can be represented by a submanifold with trivial
normal bundle, the higher signature is the signature of that submanifold.
Better yet, if Bº is a closed, oriented manifold and the Poincaré dual of
u in Bº can be represented by a submanifold K with trivial normal bun-
dle, the higher signature is the signature of the transverse inverse image of
K. The Novikov Conjecture implies that all such signatures are homotopy
invariant.

Henceforth, we will assume all homotopy equivalences between oriented
manifolds are orientation-preserving and will often leave out mention of
the homotopy equivalence. With this convention we give an equivalent
formulation of the Novikov Conjecture.

Novikov Conjecture. For a closed, oriented manifold M , for a discrete
group º, for any u 2 H§(Bº), for any map f : M ! Bº, the higher
signature æu(M, f) is an invariant of the oriented homotopy type of M .
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2 Novikov Conjecture for º = Z
We wish to outline the proof (cf. [17]) of the following theorem of Novikov
[37].

Theorem 2.1. Let M be a closed, oriented manifold with a map f : M !
S1. Then f§(LM \ [M ]) 2 H§(S1; Q) is homotopy invariant.

Since h1, f§(LM\[M ])i = æ(M), the degree-zero component of f§(LM\
[M ]) is homotopy invariant. Let u 2 H1(S1) be a generator; it su±ces to
show hu, f§(LM \ [M ])i is a homotopy invariant, where dim M = 4k + 1.
Let K4k = f°1(§) be the transverse inverse image of a point. (Note: any
closed, oriented, codimension 1 submanifold of M arises as f°1(§) for some
map f .) Let i : K ,! M be the inclusion. Then the Poincaré dual of i§[K]
is f§u, since the Poincaré dual of an embedded submanifold is the image of
the Thom class of its normal bundle. Thus we need to show the homotopy
invariance of

hu, f§(LM \ [M ])i = hf§u,LM \ [M ]i
= hLM , f§u \ [M ]i
= hLM , i§[K]i
= hi§LM , [K]i
= hLK , [K]i
= æ(K).

Definition 2.2. If K4k is a closed, oriented manifold which is a subspace
i : K ,! X of a topological space X, let

¡KΩX : H2k(X; Q)£H2k(X; Q) ! Q

be the symmetric bilinear form defined by

¡KΩX(a, b) = ha [ b, i§[K]i = hi§a [ i§b, [K]i .

If X = K, we write ¡K .

Remark 2.3. 1. Note that

æ(¡KΩX) = æ(¡K : i§H2k(X; Q)£ i§H2k(X; Q) ! Q) ,

so that the signature is defined even when X is not compact.

2. If h : X 0 ! X is a proper, orientation-preserving homotopy equiva-
lence between manifolds of the same dimension, and K 0 is the trans-
verse inverse image of a closed, oriented submanifold K of X, then
h§i0§[K 0] = i§[K], so

æ(¡K0ΩX0) = æ(¡KΩX) .
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The Novikov conjecture for º = Z follows from:

Theorem 2.4. Let M4k+1 be a closed, oriented manifold with a map f :
M ! S1. Let K = f°1(§) be the transverse inverse image of a point. Then
the signature of K is homotopy invariant. In fact, æ(K) = æ(¡K0ΩM1)
where M1 ! M is the infinite cyclic cover induced by the universal cover
of the circle and K0 = f̃°1(§̃) Ω M1 is a lift of K.

There are two key lemmas in the proof.

Lemma 2.5. Let K4k be a closed, oriented manifold which is a subspace
i : K ,! X of a CW -complex X. Suppose X is filtered by subcomplexes

X0 Ω X1 Ω X2 Ω · · · Ω Xn Ω · · · Ω X =
[
n

Xn .

Then there exists an N so that for all n ∏ N ,

æ(¡KΩX) = æ(¡KΩXn)

Proof. Since K is compact, K Ω Xn for n su±ciently large; so without
loss of generality in : K ,! Xn for all n. Let in§ and i§ (in§ and i§) be
the maps induced by in and i on rational (co)-homology in dimension 2k.
The surjections Jn,n+1 : im in§ ! im in+1§ must be isomorphisms for n
su±ciently large (say for n ∏ N) since H2k(K; Q) is finite dimensional. We
claim

Jn : im in§ ! im i§

is also an isomorphism for n ∏ N . Surjectivity is clear. To see it is
injective, suppose [Æ] 2 H2k(K; Q) and i§[Æ] = 0. On the singular chain
level Æ = @Ø, where Ø 2 S2k+1(X; Q) = [n S2k+1(Xn; Q). Thus in§[Æ] = 0
for n su±ciently large, and hence for n ∏ N since the maps Jn,n+1 are
isomorphisms.

Dualizing by applying Hom( ; Q) we see that

im i§ ! im in
§

is also an isomorphism for n ∏ N , and hence

æ(¡KΩXn) = æ(im in
§ £ im in

§ ! Q)
= æ(im i§ £ im i§ ! Q)
= æ(¡KΩX)
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Lemma 2.6. Let X4k+1 be a manifold with compact boundary. (Note X
may be non-compact.)

1. Let L = (im i§ : H2k(X; Q) ! H2k(@X; Q)) and

L? = {a 2 H2k(@X; Q) | ¡@X(a, L) = 0} .

Then L? Ω L.

2. æ(¡@XΩX) = æ(@X).

Remark 2.7. In the case of X compact, part 2. above gives the cobordism
invariance of the signature. Indeed

¡@XΩX(a, b) = hi§a [ i§b, [@X]i
= hi§a, i§b \ @§[X]i
= hi§a, @§(b \ [X])i
= h±§i§a, b \ [X]i
= 0

Proof of Lemma. 1. Poincaré-Lefschetz duality gives a non-singular pairing

¡X : H2k+1
c (X, @X; Q)£H2k(X; Q) ! Q

Let ±§ be the coboundary map and ±§c be the coboundary with compact
supports. Now 0 = ¡@X(L?, i§H2k(X; Q)) = ¡X(±§cL?,H2k(X; Q)), so
±§cL? = 0, and hence L? Ω ker ±§c Ω ker ±§ = L.

2. By 1., ¡@X(L?, L?) = 0. Choose a basis e1, . . . en for L?, then find
f1, . . . fn 2 H2k(@X; Q) so that ¡@X(ei, fj) = ±i,j and ¡@X(fi, fj) = 0.
The form ¡@X restricted to H(L?) = Span(e1, . . . , en, f1, . . . , fn) is non-
singular and has zero signature. There is an orthogonal direct sum of vector
spaces

H2k(@X; Q) = H(L?)©H(L?)?

The inclusion of L in H2k(@X; Q) followed by the projection onto H(L?)?
induces an isometry between the form restricted to H(L?)? and

¡@X : L/L? £ L/L? ! Q

Thus

æ(@X) = æ(L/L? £ L/L? ! Q) = æ(L£ L ! Q) = æ(¡@XΩX).
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Proof of Theorem. One has the pull-back diagram

fM f̃°°°°! R??y ??yexp

M
f°°°°! S1

Suppose f is transverse to § = 1 2 S1 Ω C. Let K = f°1(§) and,
abusing notation slightly, also let K denote f̃°1(0) Ω M1. Let M+ =
f̃°1[0,1) and Xn = f̃°1[°n, n]. Let t : M1 ! M1 be the generator of
the deck transformations corresponding to x 7! x + 1 in R. Then

æ(K) = æ(¡KΩM+) (by Lemma 2.6)
= æ(¡KΩtN XN

) (for N ¿ 0 by Lemma 2.5)

= æ(¡t°N KΩXN
) (tN is a homeomorphism)

= æ(¡KΩXN
) (since K and t°NK are bordant in XN )

= æ(¡KΩM1) (for N ¿ 0 by Lemma 2.5 again)

This beautiful proof of Novikov should be useful elsewhere in geometric
topology, perhaps in the study of signatures of knots. The modern proof
of the Novikov Conjecture is by computing the L-theory of Z[Z] as in [49];
further techniques are indicated by Remark 4.2 in [47]. Later Farrell-Hsiang
[19], [12] and Novikov [39] showed that the Novikov Conjecture for º = Zn

is true, although additional techniques are needed to prove it. Lusztig [27]
gave an analytic proof of this result.

3 Topological rigidity

Given a homotopy equivalence

h : M 0n ! Mn

between two closed manifolds, one could ask if h is homotopic to a home-
omorphism or a diÆeomorphism. A naive conjecture would be that the
answer is always yes, after all M 0 and M have the same global topology
(since h is a homotopy equivalence) and the same local topology (since they
are both locally Euclidean). At any rate, any invariant which answers the
question in the negative must be subtle indeed.

Here is one idea for attacking this question. Let Kk Ω Mn be a closed
submanifold and perturb h so that it is transverse to K. Then we have
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M 0 h°°°°! Mx?? x??
h°1K °°°°! K

If k is divisible by 4 and M and K are oriented, then the diÆerence of
signatures

æ(h,K) = æ(h°1K)° æ(K) 2 Z

is an invariant of the homotopy class of h which vanishes if h is homotopic
to a homeomorphism. If n°k = 1, then æ(h,K) is always zero; this follows
from the Novikov conjecture for º = Z.

Example 3.1. This is basically taken from [32, Section 20]. Other exam-
ples are given in [47] and [17]. Let R5 ,! E ! S4 be the 5-plane bundle
given by the Whitney sum of the quaternionic Hopf bundle and a trivial line
bundle. Then it represents the generator of º4(BSO(5)) = º3(SO(5)) ª= Z
and p1(E) = 2u, where u 2 H4(S4) is a generator. Let R5 ,! E0 ! S4

be a bundle with p1(E0) = 48u, say the pullback of E over a degree 24
map S4 ! S4. Then E0 is fiber homotopically trivial (by using the J-
homomorphism J : º3(SO(5)) ! º8(S5) ª= Z/24, see [20] for details).
Thus there is a homotopy equivalence

h : S(E0) ! S4 £ S4

commuting with the bundle map to S4 in the domain and projecting on the
second factor in the target. It is left as an exercise to show æ(h, pt£S4) = 16
and hence h is not homotopic to a homeomorphism. It would be interesting
to construct h and h°1(pt £ S4) explicitly (maybe in terms of algebraic
varieties and the K3 surface).

The Novikov conjecture for a group º implies that if h : M 0 ! M is
a homotopy equivalence of closed, oriented manifolds and if K Ω M is a
closed, oriented submanifold with trivial normal bundle which is Poincaré
dual to f§Ω for some f : M ! Bº and some Ω 2 H§(Bº), then

æ(h,K) = 0

In particular if M is aspherical, then M = Bº and æ(h, K) = 0 for all
such submanifolds of M . Note that any two aspherical manifolds with
isomorphic fundamental group are homotopy equivalent. In this case there
is a conjecture much stronger that the Novikov conjecture.
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Borel Conjecture. 4 Any homotopy equivalence between closed aspherical
manifolds is homotopic to a homeomorphism.

See [1] for more on the Borel Conjecture and [9] for applications to the
topology of 4-manifolds.

We conclude this section with a historical discussion of the distinction
between closed manifolds being homotopy equivalent, homeomorphic, PL-
homeomorphic, or diÆeomorphic. It is classical that all the notions co-
incide for 2-manifolds. For 3-manifolds, homeomorphic is equivalent to
diÆeomorphic ([33], [35]). Poincaré conjectured that a closed manifold ho-
motopy equivalent to S3 is homeomorphic to S3; this question is still open.
In 1935, Reidemeister, Franz, and DeRham showed that there are homo-
topy equivalent 3-dimensional lens spaces L(7; 1, 1) and L(7; 1, 2) which are
not simple homotopy equivalent (see [31], [7]), and hence not diÆeomor-
phic. However, this was behavior based on the algebraic K-theory of the
fundamental group. Hurewicz asked whether simply-connected homotopy
equivalent closed manifolds are homeomorphic. Milnor [29] constructed ex-
otic 7-spheres, smooth manifolds which are (PL-) homeomorphic but not
diÆeomorphic to the standard 7-sphere. Thom, Tamura, and Shimada gave
examples in the spirit of Example 3.1, which together with Novikov’s proof
of the topological invariance of the rational L-classes showed that simply-
connected homotopy equivalent manifolds need not be homeomorphic. Fi-
nally, Kirby and Siebenmann [25] gave examples of homeomorphic PL-
manifolds which are not PL-homeomorphic. Thus all phenomena are real-
ized. We will return frequently to the question of when homotopy equiva-
lent manifolds are homeomorphic.

4 Oriented bordism

Let ≠n be the oriented bordism group of smooth n-manifolds. ≠§ is a
graded ring under disjoint union and cartesian product. Thom [53] com-
bined his own foundational work in diÆerential topology and with then

4A. Borel conjectured this in 1953, long before the Novikov conjecture. The mo-
tivation was not from geometric topology, but rather from rigidity theory for discrete
subgroups of Lie groups.

The choice of category is important; the connected sum of an n-torus and an exotic
sphere need not be diÆeomorphic to the n-torus.
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recent work of Serre [48] to show5

≠§ ≠Q = Q[CP 2, CP 4, CP 6, CP 8, . . . ]

A map f : M ! X where M is a closed, oriented n-manifold and X is a
topological space is called a singular n-manifold over X. Let ≠n(X) be the
oriented bordism group of singular n-manifolds over X, see [8]. Then ≠§(X)
is a graded module over ≠§. The map H : ≠nX ≠Q ! Hn(X; Q) defined
by H(f : M ! X) = f§[M ] is onto. ≠§X ≠Q is a free module over ≠§≠Q
with a basis given by any set of singular manifolds {(fÆ : MÆ ! X) ≠ 1}
such that {(fÆ)§[MÆ]} is a basis of H§(M ; Q). The Conner-Floyd map is

≠§X ≠≠§ Q ! H§(X; Q)
(f : M ! X)≠ r ! rf§(LM \ [M ])

Here Q is an ≠§-module via the signature homomorphism. The domain
of the Conner-Floyd map is Z4-graded, and the Conner-Floyd map is a
Z4-graded isomorphism, i.e. for i = 0, 1, 2, or 3

≠4§+iX ≠≠§ Q ª=
M

n¥i(4)

Hn(X; Q) .

All of these statements are easy consequences of the material in the previous
footnote.

Definition 4.1. Let M be a closed, smooth manifold. An element of the
structure set S(M) of homotopy smoothings is represented by a homotopy
equivalence h : M 0 ! M where M 0 is also a closed, smooth manifold.
Another such homotopy equivalence g : M 00 ! M represents the same
element of the structure set if there is an h-cobordism W from M 0 to M 00

and a map H : W ! M which restricts to h and g on the boundary.
5The modern point of view on Thom’s work is:

≠§ ≠ Q ª= º§(MSO)≠ Q ª= H§(MSO; Q) ª= H§(BSO; Q).

Here MSO is the oriented bordism Thom spectrum, whose n-th space is the Thom
space of the universal Rn-bundle over BSO(n). The isomorphism ≠§ ª= º§(MSO) fol-
lows from transversality and is called the Pontryagin-Thom construction. From Serre’s
computations, the Hurewicz map for an Eilenberg-MacLane spectrum is an rational iso-
morphism in all dimensions. It follows that the Hurewicz map is a rational isomorphism
for all spectra, and that the rational localization of any spectrum is a wedge of Eilenberg-
MacLane spectrum. The Thom isomorphism theorem shows H§(MSO) ª= H§(BSO).
After tracing through the above isomorphisms one obtains a non-singular pairing

H§(BSO; Q)£ (≠§ ≠ Q) ! Q (Æ, M) 7! Æ[M ]

A computation of L-numbers of even-dimensional complex projective spaces shows that
they freely generate ≠§ ≠ Q as a polynomial algebra. References on bordism theory
include [8], [50], and [28].
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In particular, if h : M 0 ! M and g : M 00 ! M are homotopy equiva-
lences, then [h] = [g] 2 S(M) if there is a diÆeomorphism f : M 0 ! M 00 so
that g ' h±f . The converse holds true if all h-cobordisms are products, for
example if the manifolds are simply-connected and have dimension greater
than 4.

Given a map f : Mn ! Bº, there is a function

S(M) ! ≠n(Bº)
(M 0 ! M) 7! [M 0 ! Bº]° [M ! Bº]

It is an interesting question, not unrelated to the Novikov Conjecture, to
determine the image of this map, but we will not pursue this.

There are parallel theories for PL and topological manifolds, and all
of our above statements are valid for these theories. There are variant
bordism theories ≠PL, ≠TOP and variant structure sets SPL and STOP .
The bordism theories are rationally the same, but the integrality conditions
comparing the theories are quite subtle.

5 A crash course in surgery theory

The purpose of surgery theory is the classification of manifolds up to home-
omorphism, PL-homeomorphism, or diÆeomorphism; perhaps a more de-
scriptive name would be manifold theory. There are two main goals: exis-
tence, the determination of the homotopy types of manifolds and unique-
ness, the classification of manifolds up to diÆeomorphism (or whatever)
within a homotopy type. For the uniqueness question, the technique is
due to Kervaire-Milnor [24] for spheres, to Browder [5], Novikov [36], and
Sullivan [51] for simply-connected manifolds, to Wall [55] for non-simply-
connected manifolds of dimension ∏ 5, and to Freedman-Quinn [16] for
4-manifolds. Surgery works best for manifolds of dimension ∏ 5 due to the
Whitney trick, but surgery theory also provides information about mani-
folds of dimension 3 and 4.

The key result of the uniqueness part of surgery theory is the surgery
exact sequence6

· · · µ°! Ln+1(Zº1M) @°! S(M) ¥°! N (M) µ°! Ln(Zº1M)

for a closed, smooth, oriented manifold Mn with n ∏ 5. The L-groups are
abelian groups, algebraically defined in terms of the group ring. They are
4-periodic Ln

ª= Ln+4. For the trivial group, Ln(Z) ª= Z, 0, Z2, 0 for n ¥
0, 1, 2, 3 (mod 4). The L-groups are Witt groups of quadratic forms (see

6This is given in [55, §10], although note that Wall deals with the Ls- and Ss-theory,
while we work with the Lh and Sh-theory, see [55, §17D].



Manifold aspects of the Novikov Conjecture 207

Wall [55]), or, better yet, bordism groups of algebraic Poincaré complexes
(see Ranicki [45]). The structure set S(M) and the normal invariant set
N (M) are pointed sets, and the surgery exact sequence is an exact sequence
of pointed sets. Furthermore, Ln+1(Zº1M) acts on S(M) so that two
elements are in the same orbit if and only if that have the same image
under ¥.

Elements of the normal invariant set N (M) are represented by degree
one normal maps

∫M 0 °! ª

# #
M 0 g°! M

that is, a map g of closed, smooth, oriented7 manifolds with g§[M 0] = [M ],
together with normal data: a stable vector bundle ª over M which pulls
back to the stable normal bundle of M 0; more precisely, the data includes
a stable trivialization of g§ª © T (M 0). There is a notion of two such maps
to M being bordant; we say the maps are normally bordant or that one can
do surgery to obtain one map from the other. The normal invariant set
N (M) is the set of normal bordism classes. The map ¥ : S(M) ! N (M)
sends a homotopy equivalence to itself where the bundle ª is the pullback of
the stable normal bundle of the domain under the homotopy inverse. The
map µ : N (M) ! Ln(Zº1M) is called the surgery obstruction map, and
is defined for manifolds of any dimension, however when the dimension is
greater than or equal to five, µ(g) = 0 if and only if g is normally bordant
to a homotopy equivalence.

Sullivan computed the normal invariant set using homotopy theory; it
is closely connected with characteristic classes, see [28]. In fact there is a
Pontryagin-Thom type construction which identifies

N (M) ª= [M, G/O]

Here G(k) is the topological monoid of self-homotopy equivalences of Sk°1

and G = colim G(k). There is a fibration

G/O
√
,! BO ! BG

BG(k) classifies topological Rk-bundles up to proper fiber homotopy equiv-
alence and so G/O classifies proper fiber homotopy equivalences between
vector bundles. A map M ! G/O corresponds to a proper fiber ho-
motopy equivalence between vector bundles over M , and the transverse
inverse image of the 0-section gives rise to the degree one normal map. If

7There are variant versions of surgery for non-orientable manifolds.
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we take the classifying map ĝ : M ! G/O of a degree one normal map
g : (M 0, ∫M 0) ! (M, ª), then √ ± ĝ is a classifying map for ª © øM . Finally,
the homotopy groups of G are the stable homotopy groups of spheres, which
are finite (Serre’s result again), and so given any vector bundle M ! BO,
then some non-zero multiple of it can be realized as a “ª” in a degree one
normal map.

Later it will be useful to consider the surgery obstruction map

µ : N (Mn) ! Ln(Zº)

associated to a map M ! Bº, which may not induce an isomorphism on
the fundamental group. This is covariant in º. When º is the trivial group
and g : (M 0, ∫M 0) ! (M, ª) with n ¥ 0 (mod 4),

µ(g) = (1/8)(æ(M 0)° æ(M)) 2 Ln(Z) ª= Z

For n ¥ 2 (mod 4), the simply-connected surgery obstruction is called the
Arf invariant of g.

6 Surgery and characteristic classes

This section is in some sense the core of this survey. We give a converse
to the Novikov conjecture and rephrase the Novikov conjecture in terms of
injectivity of an assembly homomorphism. The two key tools are the bor-
dism invariance of surgery obstructions and the product formula for surgery
obstructions. They are due to Sullivan in the case of simply-connected man-
ifolds and the facts we need are due to Wall in the non-simply-connected
case. Both of the tools were proved in greater generality and were given
more conceptual interpretations by Ranicki.

The bordism invariance of surgery obstructions is that the surgery ob-
struction map associated to a f : M ! Bº factors [55, 13B.3]

N (Mn) Ø°! ≠n(G/O £Bº) µ̂°! Ln(Zº)

Here Ø(g) = [(ĝ, f) : M ! G/O £ Bº] where ĝ classifies the degree one
normal map. (The geometric interpretation of this result is that surgery
obstruction is unchanged by allowing a bordism in both the domain and
range.)

Example 6.1. The K3-surface K4 is a smooth, simply-connected spin 4-
manifold with signature 16. There is a degree one normal map

g : (K4, ∫K) ! (S4, ª)

where ª is any bundle with hL1(ª), [S4]i = 16. Then µ(g £ IdS4) = 0 since
the classifying map S4 £ S4 ! G/O is constant on the second factor and



Manifold aspects of the Novikov Conjecture 209

hence bounds. Thus g£IdS4 is normally bordant to a homotopy equivalence
h with æ(h°1(pt£S4)) = 16. This is the same homotopy equivalence as in
Example 3.1.

The second key tool is the product formula. This deals with the follow-
ing situation. Given a degree one normal map

g : (M 0i, ∫M 0) ! (M i, ª)

and a closed, oriented manifold N j , together with reference maps

M ! Bº, N ! Bº0,

one would like a formula for the surgery obstruction

µ(g £ IdN ) 2 Li+j(Z[º £ º0])

This has been given a nice conceptual answer by Ranicki [44]. There
are “symmetric L-groups” Lj(Zº0). There is the Mishchenko-Ranicki sym-
metric signature map

æ§ : ≠§Bº0 ! L§(Zº0)

(sending a manifold to the bordism class of the chain level Poincaré duality
map of its º0-cover), and a product pairing

Li(Zº)≠ Lj(Zº0) ! Li+j(Z[º £ º0])

so that
µ(g £ IdN ) = µ(g)≠ æ§N

Furthermore, for the trivial group, Lj(Z) ª= Z, Z2, 0, 0 for j ¥ 0, 1, 2, 3
(mod 4). For j ¥ 0 (mod 4), æ§(N) 2 Z is the signature æ(N) and for
j ¥ 1 (mod 4), æ§(N) 2 Z2 is called the De Rham invariant. We only need
the following theorem, which follows from the above, but also from earlier
work of Wall [55, 17H].

Theorem 6.2. 1. If º = 1, µ(g £ IdN ) 2 Li+j(Zº0) ≠ Q depends only
on the diÆerence æ(M 0)° æ(M) and the bordism class [N ! Bº0] 2
≠j(Bº0)≠Q.

2. If º0 = 1, then

µ(g £ IdN ) = µ(g) · æ(N) 2 Li+j(Zº)≠Q

In the above theorem we are sticking with our usual convention that
the signature is zero for manifolds whose dimensions are not divisible by 4.
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Example 6.3. Let
g : (K, ∫K) ! (S4, ª)

be a degree one normal map where K is the K3-surface as in Example 6.1.
Another way to see that µ(g £ IdS4) = 0 is by the product formula.

As a formal consequence of the bordism invariance of surgery obstruc-
tions, the product formula, and the Conner-Floyd isomorphism, it follows
that the Novikov conjecture is equivalent to the injectivity of a rational
assembly map. This is due to Wall [55, 17H] and Kaminker-Miller [23].

Theorem 6.4. For any group º and for any n 2 Z4, there is a map

An :
M

i¥n(4)

Hi(º; Q) ! Ln(Zº)≠Q

so that

1. For a degree one normal map g : (M 0, ∫M 0) ! (M, ª) and a map
f : M ! Bº,

µ(g) = A§((f ± g)§(LM 0 \ [M 0])° f§(LM \ [M ])) 2 L§(Zº)≠Q

2. If An is injective then the Novikov conjecture is true for all closed,
oriented manifolds mapping to Bº whose dimension is congruent to
n modulo 4. If the Novikov conjecture is true for all closed, oriented
manifolds with fundamental group isomorphic to º and whose dimen-
sion is congruent to n modulo 4, then An is injective.

Proof. Bordism invariance, the Conner-Floyd isomorphism, and the prod-
uct formula show that the surgery obstruction factors through a Z4-graded
map eAn :

M
i¥n(4)

Hi(G/O £Bº; Q) ! Ln(Zº)≠Q

with eAn((ĝ, f)§(LM \ [M ])) = µ(g) 2 Ln(Zº)≠Q

When º is trivial, the map eAn is given by Kronecker pairing ĝ§(LM \ [M ])
with some class ` 2 H§(G/O; Q). In the fibration

G/O
√
,! BO ! BG

√§ gives a rational isomorphism in cohomology, and it is not di±cult to
show that

` = √§(
1
8
(L° 1))
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where L is the multiplicative inverse of the Hirzebruch L-class.8 The key
equation is that if g : (M 0, ∫M 0) ! (M, ª) is a degree one normal map with
classifying map ĝ, then

8ĝ§` [ LM = L(ª)° LM

The homology of G/O £ Bº is rationally generated by cross products
ĝ§(LM \ [M ])£ f§(LN \ [N ]) where ĝ : M ! G/O and f : N ! Bº; these
correspond to surgery problems of the form M 0£N ! M£N The product
formula for surgery obstructions shows that

eA§(ĝ§(LM \ [M ])£ f§(LN \ [N ])) = 0

whenever h`, ĝ§(LM \ [M ])i = 0. It follows that eAn factors through the
surjection given by the slant product

`\ :
M

i¥n(4)

Hi(G/O £Bº; Q) !
M

i¥n(4)

Hi(Bº; Q),

giving the rational assembly map

An :
M

i¥n(4)

Hi(Bº; Q) ! Li(Zº)≠Q

Tracing through the definition of A§ gives the characteristic class formula
in part 2. of the theorem. (I have suppressed a good deal of manipulation
of cup and cap products here, partly because I believe the reader may be
able to find a more e±cient way than the author.)

If An is injective, the Novikov conjecture immediately follows for n-
manifolds equipped with a map to Bº, since the surgery obstruction of a
homotopy equivalence is zero.

Suppose An is not injective; then there exists an non-zero element
a 2 H4§+n(Bº; Q) so that An(a) = 0 2 Ln(Zº) ≠ Q. There is a b 2
H4§+n(G/O £ Bº; Q) so that a = `\b. Next note for some i, there is
an element c = [(ĝ, f) : M ! G/O £ Bº] 2 ≠4i+n(G/O £ Bº), so
that (ĝ, f)§(LM \ [M ]) = kb where k 6= 0. (Note the i here. To get
c 2 ≠4§+n one simply uses the Conner-Floyd isomorphism, but one might
have to multiply the various components of c by products of CP 2 to guar-
antee that c is homogeneous). By multiplying c by a non-zero multiple,
find a new c = [(ĝ, f) : M ! G/O £ Bº] 2 ≠4i+n(G/O £ Bº) so that
µ(c) = 0 2 L4i+n(Zº). We may assume that 4i + n > 4. By (very) low

8This class ` has a lift to H§(G/O; Z(2)) which is quite important for the characteristic
class formula for the surgery obstruction of a normal map of closed manifolds [28], [34],
[52].
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dimensional surgeries [55, Chapter 1], we may assume M has fundamen-
tal group º. Since µ(c) = 0, one may do surgery to obtain a homotopy
equivalence h : M 0 ! M , where the diÆerence of the higher signatures in
H§(Bº; Q) is a multiple of a and hence non-zero.

Our next result is folklore (although seldom stated correctly) and should
be considered as a converse to and a motivation for the Novikov conjec-
ture. It generalizes Kahn’s result [21] that the only possible linear combi-
nations of L-classes (equivalently rational Pontrjagin classes) which can be
a homotopy invariant of simply-connected manifolds is the top L-class of
a manifold whose dimension is divisible by 4. The non-simply connected
case requires a diÆerent proof; in particular one must leave the realm of
smooth manifolds.

Theorem 6.5. Let M be a closed, oriented, smooth manifold of dimension
n > 4, together with a map f : M ! Bº to the classifying space of a
discrete group, inducing an isomorphism on fundamental group. Given
any cohomology classes

L = L1 + L2 + L3 + · · · 2 H4§(M ; Q), Li 2 H4i(M ; Q),

so that f§(L\ [M ]) = 0 2 Hn°4§(Bº; Q), there is a non-zero integer R, so
that for any multiple r of R, there is a homotopy equivalence

h : M 0 ! M

of closed, smooth manifolds so that

h§(LM + rL) = LM 0

Proof. As motivation suppose that there is a map ĝ : M ! G/O so that
ĝ§` = (1/8)LLM , where ` 2 H§(G/O; Q) is as above and LM is the multi-
plicative inverse of the total Hirzebruch L-class of M . Then if g : N ! M
is the corresponding surgery problem, a short computation shows that

g§(LM + L) = LN

and, by using Theorem 6.4, Part 2, that µ(ĝ) = 0 2 Ln(Zº) ≠ Q. So the
idea is to clear denominators and replace ĝ by a multiple. Unfortunately,
this is nonsense, since the surgery obstruction map is not a homomorphism
of abelian groups.

To proceed we need two things. First that G/TOP is an infinite loop
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space9 and
[M,G/TOP ] µ°°°°! Ln(Zº)??y ??yL
i¥n(4) Hi(º; Q) A§°°°°! Ln(Zº)≠Q

is a commutative diagram of abelian groups10 where the left vertical map
is given by ĝ 7! f§(ĝ§` \ [M ]). (See [52].)

The second thing we need is a lemma of Weinberger’s [57]. Let j :
G/O ! G/TOP be the natural map.

Lemma 6.6. For any n-dimensional CW -complex M , there is a non-
zero integer t = t(n) so that for any [f ] 2 [M,G/TOP ], t[f ] 2 im j§ :
[M,G/O] ! [M, G/TOP ].

Now suppose we are given L 2 H4§(M ; Q) as in the statement of the
theorem. The cohomology class ` gives a localization of H-spaces at 0

` : G/TOP !
Y
i>0

K(Q, 4i)

and hence a localization of abelian groups

[M, G/TOP ] !
Y
i>0

H4i(M ; Q)

In particular, there is an non-zero integer R1, so that for any multiple r1

of R1, there is a map ĝ : M ! G/TOP so that

ĝ§` = r1
1
8
LLM

Then µ(ĝ) = 0 2 Ln(Zº)(0), so there is a non-zero R2 so that R2µ(ĝ) = 0 2
Ln(Zº). Finally, by Weinberger’s Lemma, there is a non-zero R3, so that
R3[R2ĝ] factors through G/O. Then R = R1R2R3 works. Surgery theory
giving the homotopy equivalence.

Weinberger’s Lemma follows from the following; applied where s : Y !
Z is the map G/TOP ! B(TOP/O). Note that B(TOP/O) has an infinite
loop space structure coming from Whitney sum.

9G/O, G/PL, and G/TOP are all infinite loop spaces with the H-space structure
corresponding to Whitney sum. However, the surgery obstruction map is not a homo-
morphism. Instead, we use the infinite loop space structure on G/TOP induced by
periodicity ≠4(Z£G/TOP ) ' Z£G/TOP . This will be discussed further in the next
section.

10We can avoid references to topological surgery by using the weaker fact that the
surgery obstruction map µ : [M, G/PL] ! Ln(Zº) is a homomorphism where G/PL is
given the H-space structure provided by the Characteristic Variety Theorem [51].
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Lemma 6.7. Let s : Y ! Z be a map of simply-connected spaces of finite
type, where Y is an H-space and Z is an infinite loop space with all homo-
topy groups finite. Then for any k there is a non-zero integer t so that for
any map f : X ! Y whose domain is a k-dimensional CW -complex, then
s§(t[f ]) = 0, where

s§ : [X,Y ] ! [X,Z]

is the induced map on based homotopy.

Proof. It su±ces to prove the above when f is the inclusion ik : Y k ,! Y
of the k-skeleton of Y ; in other words, we must show s§[ik] 2 [Y k, Z] has
finite order. Let Y = Yn, n = 1, 2, 3, . . . . Let Æn : Yn ! Yn+1 be a
cellular map so that [Æn] = n![Id]. Then Æn induced ·n! on homotopy
groups, since the co-H-group structure equals the H-group structure. Let
hocolimn Yn denote the infinite mapping telescope of the maps Æn. Then
Y ! hocolimn Yn induces a localization at 0 on homotopy groups.

Consider the following commutative diagram of abelian groups.

[hocolimn Y k+2
n , Z] ©°°°°! limn[Y k+2

n , Z] pr1°°°°! [Y k+2
1 , Z]

A

??y B

??y C

??y
[hocolimn Y k

n , Z] ©°°°°! limn[Y k
n , Z] pr1°°°°! [Y k

1 , Z]

To prove the lemma it su±ces to show that some multiple of s§[ik] 2 [Y k
1 , Z]

is in the image of C ± pr1 ± © and that A is the zero map. First note
Cs§[ik+2] = s§[ik]. Now

im([Y, Z] ! [Y k+2, Z])

is a finite set by obstruction theory, so

{s§(n![ik+2])}n=1,2,3,...

sits in a finite set, hence there exists an N so that s§(N ![ik+2]) pulls
back arbitrarily far in the inverse sequence. Hence by compactness of
the inverse limit of finite sets, there is an [a] 2 limn[Y k+2

n , Z] so that
pr1[a] = s§(N ![ik+2]). By Milnor’s lim1 result [30], © is onto, so that
[a] = ©[b] for some [b].

We next claim that A is the zero map. Indeed the homology groups of
hocolimn Y k+2

n are rational vector spaces in dimensions less than k +2. By
obstruction theory any map hocolimn Y k+2

n ! Z is zero when restricted
to the (k + 1)-st skeleton, and thus when restricted to hocolimn Y k

n . Thus
we have shown that s§(N ![ik]) is zero by tracing around the outside of the
diagram. Let t = N !.
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Remark 6.8. For a closed, oriented, topological n-manifold M , define

°TOP (M) : STOP (M) ! H4§(M ; Q)
[h : M 0 ! M ] 7! L where h§(LM + L) = LM 0

If M is smooth, define an analogous map °DIFF (M) from the smooth
structure set. The above discussion shows that the image of °TOP (M) is
a finitely generated, free abelian group whose intersection with the kernel
of the map H4§(M ; Q) ! Hn°4§(Bº1M ; Q) is a lattice (i.e a finitely gen-
erated subgroup of full rank). Furthermore if the Novikov Conjecture is
valid for º1M , the image of °TOP (M) is a precisely a lattice in the above
kernel.

Similar things are true for smooth manifolds up to finite index. If
t = t(n) is the integer from Lemma 6.7, then

1
t
im °TOP (M) Ω im °DIFF (M) Ω im °TOP (M)

However, a recent computation of Weinberger’s [56] shows that the image
of °DIFF (M) is not a group when M is a high-dimensional torus. It follows
that SDIFF (M) cannot be given a group structure compatible with that of
STOP (M) and that G/O cannot be given an H-space structure so that the
surgery obstruction map is a homomorphism.

7 Assembly maps

The notion of an assembly map is central to modern surgery theory, and
to most current attacks on the Novikov Conjecture. Assembly maps are
useful for both conceptual and computation reasons. We discuss assembly
maps to state some of the many generalizations of the Novikov conjecture.
Assembly can be viewed as gluing together surgery problems, as a passage
from local to global information, as the process of forgetting control in
controlled topology, as taking the index of an elliptic operator, or as a map
defined via homological algebra. There are parallel theories of assembly
maps in algebraic K-theory and in the K-theory of C§-algebras, but the
term assembly map originated in surgery with the basic theory due to
Quinn and Ranicki.

With so many diÆerent points of view on the assembly map, it is a bit
di±cult to pin down the concept, and it is perhaps best for the neophyte
to view it as a black box and concentrate on its key properties. We refer
the reader to the papers [42], [43], [46], [59], [11] for further details.

The classifying space for topological surgery problems is G/TOP . The
generalized Poincaré conjecture and the surgery exact sequence show that
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ºn(G/TOP) = Ln(Z) for n > 0. There is a homotopy equivalence

≠4(Z£G/TOP ) ' Z£G/TOP

(Perhaps the 4-fold periodicity is halfway between real and complex Bott
periodicity.) Let L denote the corresponding spectrum. Oriented manifolds
are oriented with respect to the generalized homology theory defined by L.
When localized at 2, L is a wedge of Eilenberg-MacLane spectra, and after
2 is inverted, L is homotopy equivalent to inverting 2 in the spectrum
resulting from real Bott periodicity. The assembly map

An : Hn(X;L) ! Ln(Zº1X)

is defined for all integers n, is 4-fold periodic, and natural in X. By natu-
rality, the assembly map for a space X factors through Bº1X.

The surgery obstruction map can interpreted in terms of the assembly
map. Let G/TOP be the connective cover of L, i.e. there is a map
G/TOP ! L which is an isomorphism on ºi for i > 0, but ºi(G/TOP) =
0 for i ∑ 0. Here G/TOP is an ≠-spectrum whose 0-th space is G/TOP .
The composite

Hn(X;G/TOP) ! Hn(X;L) A°! Ln(Zº1X)

is also called the assembly map. When X = Bº, this assembly map ten-
sored with IdQ is the same as the assembly map from the last section. In
particular the Novikov conjecture is equivalent to the rational injectivity
of either of the assembly maps when X = Bº.

The surgery obstruction map for a closed, oriented n-manifold M

µ : [M,G/TOP ] ! Ln(Zº1M)

factors as the composite of Poincaré duality and the assembly map

[M,G/TOP ] = H0(M ;G/TOP) ' Hn(M ;G/TOP) A°! Ln(Zº1M)

There is a surgery obstruction map and a structure set for manifolds with
boundary (the L-groups remain the same however). The basic idea is that
all maps are assumed to be homeomorphisms on the boundary throughout.
The surgery exact sequence extends to a half-infinite sequence

· · ·! STOP (M £ I, @) ! [(M £ I)/@, G/TOP ] ! Ln+1(Zº1M)

! STOP (M) ! [M, G/TOP ] ! Ln(Zº1M)

Assembly maps are induced by maps of spectra; we denote the fiber of

X+ ^G/TOP A°! L(Zº1X)
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by STOP(X). When X is a manifold, the corresponding long exact se-
quence in homotopy can be identified with the surgery exact sequence.
In particular, the structure set STOP (M) = ºnSTOP(M) is naturally an
abelian group, a fact which is not geometrically clear. Thus computing
assembly maps is tantamount to classifying manifolds up to h-cobordism.

There is a parallel theory in algebraic K-theory. For a ring A, there
are abelian groups Kn(A) defined for all integers n; they are related by the
fundamental theorem of K-theory which gives a split exact sequence

0 ! Kn(A) ! Kn(A[t])©Kn(A[t°1]) ! Kn(A[t, t°1]) ! Kn°1A ! 0

There is an ≠-spectrum K(A) whose homotopy groups are K§(A). Abbre-
viate K(Z) by K; its homotopy groups are zero in negative dimensions, Z
in dimension 0, and Z/2 in dimension 1. There is the K-theory assembly
map [26], [11]

An : Hn(X;K) ! Kn(Zº1X).

Computing with the Atiyah-Hirzebruch spectral sequence and the test case
where X is the circle shows that An is injective for i < 2, and the cokernels
of An are Kn(Zº1X), K̃0(Zº1X),Wh(º1X) for n < 0, n = 0, n = 1.

The analogue of the Novikov conjecture in K-theory has been proven!

Theorem 7.1 (Bökstedt-Hsiang-Madsen [4]). Suppose º is any group
such that Hn(Bº) is finitely generated for all n. Then A§≠IdQ is injective.

Hopefully this result will shed light on the Novikov conjecture in L-
theory (which has more direct geometric consequences), but so far this has
been elusive.

8 Isomorphism conjectures

A strong version of Borel’s conjecture is:

Conjecture 8.1. Let h : M 0 ! M be a homotopy equivalence between
compact aspherical manifolds so that h(M 0 ° @M 0) Ω h(M ° @M) and
h|@M 0 : @M 0 ! @M is a homeomorphism. Then h is homotopic rel @ to a
homeomorphism.

Applying this to h-cobordisms implies that Wh(º1M) = 0, and by
crossing with tori, that K̃0(Zº1M) = 0 and K°i(Zº1M) = 0 for i >
0. Similarly, the structure groups STOP (M £ Ii, @) = 0, so the assembly
maps are isomorphisms. The following conjecture is motivated by these
considerations.
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Borel-Novikov Isomorphism Conjecture. 11 For º torsion free, the
assembly maps

A§ : H§(Bº;K) ! K§(Zº)
A§ : H§(Bº;L) ! L§(Zº)

are isomorphisms.

This implies the geometric Borel conjecture for manifolds of dimension
greater than 4, and for torsion-free groups the vanishing of the Whitehead
group, that all finitely generated projective modules are stably free, and
the Novikov Conjecture.

What can be said for more general groups, in other words how does
one compute the L-groups and the surgery obstruction groups? Well, for
finite groups, the assembly map has been largely computed, starting with
the work of Wall [55] and ending with the work of Hambleton, Milgram,
Taylor, and Williams [18]. The techniques here are a mix of number theory,
quadratic forms, and topology. The assembly maps are not injective, and
not even rational surjective, in K-theory, because the Whitehead groups
may be infinite, and in L-theory, because the multisignature (or Ω-invariant)
show that the L-groups of the group ring of a finite group may be infinite.

There are also analyses of the K- and L-theory of products Z£G and
amalgamated free products A§B C (see [2], [49], [41], [54], [6]). While these
give evidence for the Borel-Novikov Isomorphism Conjecture for torsion-
free groups, for infinite groups with torsion the “nil” phenomena showed
that the non-homological behavior of L-groups could not all be blamed on
the finite subgroups. In particular there are groups º where the assembly
map is not an isomorphism, but where the assembly map is an isomorphism
for all finite subgroups. To account for this, Farrell and Jones laid the blame
on the following class of subgroups.

Definition 8.2. A group H is virtually cyclic if it has a cyclic subgroup
of finite index.

For example, a finite group G is virtually cyclic and so is Z£G. Farrell-
Jones have made a conjecture [13] which computes K§(Zº) and L§(Zº) in
terms of the assembly maps for virtually cyclic subgroups and homological
information concerning the group º and the lattice of virtually cyclic sub-
groups of º. We give the rather complicated statement of the conjecture

11Neither Borel nor Novikov made this conjecture, but rather made weaker conjectures
whose statements did not involve assembly maps.

It is a fairly bold conjecture; there exist a lot of torsion-free groups. A more conser-
vative conjecture would be to conjecture this when Bº is a finite complex and perhaps
only that the assembly map is a split injection. One might also wish to restrict the
conjecture in K-theory to § < 2, where there is a geometric interpretation of the results.
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below, but for now we note that the Farrell-Jones isomorphism conjecture
implies:

1. The Novikov conjecture for a general group º.

2. The Borel-Novikov isomorphism conjecture for a torsion-free group
º.

3. For any group º and for any N 2 Z [ {1}, if for all virtually cyclic
subgroups H of º, the assembly map

A§ : H§(BH;K) ! K§(ZH)

is an isomorphism for § < N and a surjection for § = N , then the
assembly map for º is an isomorphism for § < N , and similarly for
L-theory.

We proceed to the statement of the isomorphism conjecture, as formu-
lated in [11]. We work in K-theory, although there is an analogous conjec-
ture in L-theory.12 One can show that an inner automorphism of º induces
the identity on K§(Zº), but not necessarily on the associated spectrum.
(One needs to worry about such details to make sure that constructions
don’t depend on the choice of the base point of the fundamental group.)
To account for this, one uses the orbit category Or(º), whose objects are
left º-sets {º/H}HΩº and whose morphisms are º-maps. For a family of
subgroups F of º (e.g. the trivial family F = 1 or the family F = VC
of virtually cyclic subgroups of º), one defines the restricted orbit category
Or(º,F) to be the full subcategory of Or(º) with objects {º/H}H2F . A
functor

K : Or(º) ! SPECTRA

is constructed in [11], with º§(K(º/H)) = K§(ZH). The (classical) assem-
bly map is then given by applying homotopy groups to the map

A : hocolim
Or(º,1)

K ! hocolim
Or(º)

K

induced on homotopy colimits by the inclusion of the restricted orbit cat-
egory in the full orbit category.

Farrell-Jones Isomorphism Conjecture. For any group º,

hocolim
Or(º,VC)

K ! hocolim
Or(º)

K

induces an isomorphism on homotopy groups.
12In L-theory it is necessary to work with a variant theory, L = Lh°1i.
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This gives a theoretical computation of the K-groups, the (classical)
assembly map, and in L-theory, the classification of manifolds with fun-
damental group º. For proofs of the conjecture in special cases see [13].
For applications in some special cases see [40] and [10]. The Farrell-Jones
Isomorphism Conjecture is parallel to the C§-algebra conjecture of Baum
and Connes [3], with the family of virtually cyclic subgroups replaced by
the family of finite subgroups.
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Sci. École Norm. Sup. (4), 9:309–377, 1976.

[27] G. Lusztig. Novikov’s higher signature and families of elliptic opera-
tors. J. DiÆerential Geometry, pages 229–256, 1972.

[28] I. Madsen and J. Milgram. The classifying spaces for surgery and
cobordism of manifolds. Princeton University Press, 1979.

[29] J. Milnor. On manifolds homeomorphic to the 7-sphere. Ann. of Math.,
64:399–405, 1956.

[30] J. Milnor. On axiomatic homology theory. Pacific J. Math., 12:337–
341, 1962.

[31] J. Milnor. Whitehead torsion. Bull. Amer. Math. Soc., 72:358–426,
1966.

[32] J. Milnor and J. D. StasheÆ. Characteristic classes. Princeton Uni-
versity Press, 1974.

[33] E. E. Moise. A±ne structures in 3-manifolds. V. The triangulation
theorem and Hauptvermutung. Ann. of Math., 56:96–114, 1952.

[34] J. W. Morgan and D. P. Sullivan. The transversality characteristic
class and linking cycles in surgery theory. Ann. of Math., 99:463–544,
1974.

[35] J. Munkres. Obstructions to the smoothing of piecewise-diÆerentiable
homeomorphisms. Ann. of Math., 72:521–554, 1960.

[36] S. P. Novikov. DiÆeomorphisms of simply-connnected manifolds. Dokl.
Akad. Nauk SSSR, 143:1046–1049, 1962. English translation, Soviet
Math. Doklady, 3:540–543, 1962.

[37] S. P. Novikov. Rational Pontrjagin classes. Homeomorphism and ho-
motopy type of closed manifolds. I. Izv. Akad. Nauk SSSR Ser. Mat.,
29:1373–1388, 1965. English translation, Amer. Math. Soc. Transl.
(2), 66:214–230, 1968.

[38] S. P. Novikov. On manifolds with free abelian fundamental group and
their application. Izv. Akad. Nauk SSSR Ser. Mat., 30:207–246, 1966.
English translation, Amer. Math. Soc. Transl. (2), 71:1–42, 1968.

[39] S. P. Novikov. Algebraic construction and properties of Hermitian
analogs of K-theory over rings with involution from the viewpoint of
Hamiltonian formalism. Applications to diÆerential topology and the
theory of characteristic classes. I. II. Math. USSR-Izv., 4:257–292; ibid.
4:479–505, 1970.



Manifold aspects of the Novikov Conjecture 223

[40] K. Pearson. Algebraic K-theory of two-dimensional crystallographic
groups. K-Theory, 14:265–280, 1998.

[41] D. Quillen. Higher algebraic K-theory, I. In Proceedings of Battelle
Seattle Algebraic K-theory Conference 1972, vol. I, volume 341 of Lec-
ture Notes in Math., pages 85–147. Springer, 1973.

[42] F. Quinn. A geometric formulation of surgery. In Topology of mani-
folds; Proceedings of 1969 Georgia topology conference, pages 500–511.
Markham Press, 1970.

[43] A. Ranicki. The total surgery obstruction. In Algebraic topology,
Aarhus 1978 (Proc. Sympos., Univ. Aarhus, Aarhus, 1978), volume
763 of Lecture Notes in Math., pages 275–316. Springer, 1979.

[44] A. Ranicki. The algebraic theory of surgery I, II. Proc. London Math.
Soc., 40:87–287, 1980.

[45] A. Ranicki. Exact sequences in the algebraic theory of surgery. Prince-
ton University Press, 1981.

[46] A. Ranicki. Algebraic L-theory and topological manifolds. Cambridge
University Press, 1992.

[47] A. Ranicki. On the Novikov conjecture. In Proceedings of the con-
ference “Novikov conjectures, index theorems and rigidity” volume I,
Oberwolfach 1993, pages 272–337. Cambridge University Press, 1995.

[48] J.-P. Serre. Groupes d’homotopie et classes de groupes abéliens. Ann.
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