Fundamental Theorem of Symmetric Groups

Fundamental Theorem of Symmetric Groups. Every element $\alpha \in S_X$ has a complete factorization, unique up to reordering.

Example 1. If $\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ 5 & 7 & 3 & 1 & 4 & 6 & 2 \end{pmatrix}$, then $\alpha = (154)(27)(3)(6)$ and $\{1,2,3,4,5,6,7\} = \{1,4,5\} \sqcup \{2,7\} \sqcup \{3\} \sqcup \{6\}$.

Let X be a finite set and $\alpha : X \to X$ a bijection.

Definition 2. $Y \subset X$ is α-invariant if $\alpha(Y) \subset Y$ and Y is nonempty.

Lemma 3. If Y is α-invariant, then

1. $\alpha(Y) = Y$
2. $\alpha(Y') \subset Y'$.
3. $\alpha(Y') = Y'$.

Proof. 1. Pigeonhole Principle:
$\alpha : Y \to Y$ injective \implies α bijective.
2. By contradiction. If $\exists b \in Y'$ with $\alpha(b) \in Y$, then by 1. $\exists a \in Y$ so that $\alpha(b) = \alpha(a)$. But α is injective. #.
3. Follows from 2. and 1.

Notation:

- If Y is α-invariant, define the restriction $\alpha|_Y \in S_Y$ by $\alpha|_Y(i) = \alpha(i)$ for $i \in Y$.

If $Y \subset X$, $\beta \in S_Y$ and $\gamma \in S_{Y'}$ then define $\beta \gamma \in S_X$ by
\[
\beta \gamma(i) = \begin{cases}
\beta(i) & i \in Y \\
\gamma(i) & i \in Y'
\end{cases}
\]

Definition 4. Y is an α-cycle if $Y = \{i_1, i_2, \ldots, i_r\}$ and $\alpha|_Y = (i_1 i_2 \ldots i_r)$.

Definition 5. Y is a *minimal α-invariant set* if it is α-invariant and has no proper subsets which are α-invariant.

Lemma 6.
1. Any $i_1 \in X$ is contained in an α-cycle.
2. An α-cycle is a minimal α-invariant set.
3. A minimal α-invariant set is an α-cycle.

Proof.
1. Inductively define $i_{j+1} = \alpha(i_j)$. Let r be the smallest positive integer so that $\alpha(i_r) = i_{r+1} \in \{i_1, \ldots, i_r\}$. Then $\alpha(i_r) = \alpha(i_j)$ for some j and since α is injective, $j = 1$ (or else $\alpha(i_r) = \alpha(i_{j-1})$).
2. Clear.
3. If Y is a minimal α-invariant set, and $i_1 \in Y$, then there exists a α-cycle Z so that $i_1 \in Z \subset Y$. Then $Y = Z$ by minimality.

Definition 7. A *partition of a set* X is a collection of subsets Y_1, Y_2, \ldots, Y_l so that every element of X is a member of exactly one of the Y_i’s. In this case we write
\[
X = Y_1 \sqcup Y_2 \sqcup \cdots \sqcup Y_l
\]
where the symbol \sqcup is called *disjoint union*.

Lemma 8. The minimal α-invariant sets partition X.

Proof. Two different α-invariant sets are disjoint by minimality. Lemma 6 shows that every element is contained in a minimal α-invariant set.

Proof of the Fundamental Theorem. Let $X = Y_1 \sqcup Y_2 \sqcup \cdots \sqcup Y_l$ be a partition of X into minimal α-invariant sets. This is unique, up to reordering. By Lemma 6, $\alpha|_{Y_i}$ is an α-cycle for each i and thus $\alpha = \alpha|_{Y_1} \sqcup \alpha|_{Y_2} \sqcup \cdots \sqcup \alpha|_{Y_l}$ is a complete factorization. Conversely, a complete factorization gives a partition of X into minimal α-invariant sets, and the uniqueness of the partition gives a unique complete factorization.